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Abstract 

 

Tashlhiyt is a low-resource language with respect to acoustic databases, language corpora, and 

speech technology tools, such as Automatic Speech Recognition (ASR) systems. This study 

investigates whether a method of cross-language re-use of ASR is viable for Tashlhiyt from an 

existing commercially-available system built for Arabic. The source and target language in this 

case have similar phonological inventories, but Tashlhiyt permits typologically rare phonological 

patterns, including vowelless words, while Arabic does not. We find systematic disparities in 

ASR transfer performance (measuring as word error rate (WER) and Levenshtein distance) for 

Tashlhiyt across word forms and speaking style variation. Overall, performance was worse for 

casual speaking modes across the board. In clear speech, performance was lower for vowelless 

than for voweled words. These results highlight systematic speaking mode- and phonotactic-

disparities in cross-language ASR transfer. They also indicate that linguistically-informed 

approaches to ASR re-use can provide more effective ways to adapt existing speech technology 

tools for low resource languages, especially when they contain typologically rare structures. The 

study can also speak to issues of linguistic disparities in ASR and speech technology more 

broadly. It can also contribute to understanding the extent to which machines are similar or, 

different from, humans in mapping the acoustic signal to discrete linguistic representations. 

 

 

 

1. Introduction 

 

The huge rise and fast-paced advancement of speech technology - computational systems that 

understand and generate spoken language - allows for millions of people to communicate with 

devices using speech to perform a range of tasks (i.e., dictate text messages, seek information 

using voice searches, play games or music) (Bentley et al., 2018; Ammari et al., 2019). Speech-

enabled devices can also be used for a wide range of education and healthcare applications, such 

as language translation (Nakamura, 2009), language learning (Godwin-Jones, 2011, 2017), and 

“emergency media” technologies that connect users to emergency service providers in the case 

of a crisis (Ellcessor, 2022).  

However, there are asymmetries in who has access to speech technology. Currently, there 

are over 7,000 languages spoken in the world (Ethnologue.com), but speech technology is 

available in only approximately 100 languages (Pratap et al., 2023). There is a bias in speech 
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technology development for languages that have large digital resources, such as acoustic 

databases, lexicons and pronunciation dictionaries, transcribed corpora (Du et al., 2023). Low-

resource languages, like Tashlhiyt (an Amazigh language of Southern Morocco), are 

disadvantaged for speech technologies, such as Automatic Speech Recognition (ASR), which 

provide users with a range of applications for healthcare, education, and other domains where 

ASR is valuable. Even for languages that have commercially available ASR systems, there are 

disparities in how well they perform across dialects and varieties (Koenecke et al., 2020; 

Wassink et al., 2022; Song et al., 2022). Access to ASR for more languages and varieties is 

beneficial to language communities all around the world by providing more equitable access to 

technology. 

 One approach to addressing the gaps in availability of speech technology is to re-use an 

existing acoustic model and ASR system developed for a high-resource language (the “source” 

language) that is phonologically similar to the “target” low-resource language without any kind 

of adaptation (Prasad et al., 2019). Prasad et al. argue that if two languages are similar enough in 

terms of their phonological inventories, the acoustic model of the source language could be 

applied to the low-resource target language without any modifications. They demonstrate this 

approach using Hindi as the source language and Marathi and Gujarathi as the target languages 

and report a less than 20% word error rate (WER). Researchers have applied this technique for 

re-using ASR systems for other target and source languages (e.g., Abate et al. (2020) for 

Tigrinya as target language using Amharic as source language; Nair et al. (2020) and Klejch et 

al. (2022) use a variety of source and target languages, including Bulgarian and Czech with 

varying success). In the current study, we apply the cross-language ASR transfer method to 

Tashlhiyt, which is under-resourced with respect to speech technology, using Arabic as the 

source language. 

In addition to this goal of determining whether cross-language re-use of ASR for 

Tashlhiyt is a viable solution, we are interested in exploring the linguistic, phonological, and 

phonetic factors that might influence the success of this approach. While much of the work in 

this area is aimed at understanding the broad practical challenges with this approach, examining 

systematic disparities in recognition of different phonological and phonetic forms of words 

within the target language can lead to more theoretically-guided and effective cross-language 

ASR transfer practices. In particular, the current study focuses on two types of systematic ways 

in which speech patterns vary across and within languages: phonotactic variation (the allowance 

of certain sound sequences in the words of a language) and speaking style variation (talking 

clearly vs. talking casually). Human listeners with different native language backgrounds show 

difficulty adapting to phonotactic patterns that are not allowed in their first language (e.g., 

Escudero, 2005; Hallé & Best, 2007; de Leeuw et al., 2021). Do ASR systems also show 

“native” (i.e., source) language phonotactic biases when adapting to a target language? This is a 

gap in our understanding of the parallels and differences across machine and human cross-

language perception and can identify major disparities that could arise during transfer of any 

kind.  

In this study, we specifically focus on Tashlhiyt, which is well-known in the linguistics 

literature for having typologically rare phonological patterns. Tashlhiyt permits many words that 

can contain sequences of only consonants - vowelless words (e.g., zdm ‘to collect wood’; See 

Supplementary Materials for our wordlist) (Dell & Elmedlaoui, 2012; Bensoukas, 2001; 

Ridouane, 2008; Lahrouchi, 2010, 2018). A fundamental observation is that certain sequences of 

speech sounds are favored, and others dispreferred, in the forms of words found cross-
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linguistically. Across languages of the world, there is an overwhelming preference for words to 

contain a vowel. One view is that vowelless words are dispreferred because they might be harder 

for listeners to hear, since a lack of vowels means less robust acoustic cues in the speech signal. 

Thus, it has been argued that observed cross-linguistic phonological tendencies are the result of 

auditory properties of the speech signal or perceptual processing mechanisms (Ohala, 1981; 

Blevins, 2004). Do the same biases apply to an ASR system? It might be predicted that since 

ASR systems are trained to detect variations in spectral amplitude when identifying the signal 

(O'Shaughnessy, 2023), vowelless words will be more difficult for speech recognition systems 

since they contain the smallest differences in acoustic modulations across segments, compared to 

words that have vowels which contain large acoustic perturbations (Ohala & Kawasaki-

Fukumori, 1997; Stevens, 2002). Understanding the role of word form variation on ASR 

recognition is a major area of work with both scientific and commercial application 

(O'Shaughnessy, 2023). Since Tashlhiyt has unusual phonological patterns, the current study can 

enhance our understanding of how ASR handles even the rarest cross-linguistic variation. 

 

1.1. Target and source languages: Tashlhiyt and Arabic 

 

There is currently no commercially available speech recognition technology system available for 

Tashlhiyt. Some researchers have worked on developing speech recognition systems for other 

Amazigh languages. For instance, Telmem and Ghanou (2018) used open-source technology 

(CMU-Sphinx) to create an ASR system for Tarifit, a language related to Tashlhiyt. However, 

Telmem and Ghanou built their system on limited acoustic data from 1 speaker, and report that 

their system is highly speaker-dependent. El Ouahabi et al. (2019) developed a speaker-

independent speech recognition system for spoken digits and letters in Amazigh languages. 

These systems are limited in their generalizability across takers and words and also are not easily 

accessible by most people for every-day use. Moreover, neither of these studies discuss the 

systems’ performance for Tashlhiyt, or on vowelless words, specifically.  

The cross-language ASR transfer approach (Prasad et al., 2019) has high potential to 

create a successful ASR system for Tashlhiyt. In the current study, we use a language model 

built for Arabic using Sonix Speech-to-text, a popular and versatile online transcription service. 

Arabic and Tashlhiyt both have three vowels and a large consonant inventory, with overlapping 

phoneme inventories: i.e., pharyngealized consonants, uvular, and pharyngeal segments; yet, 

there are major differences in the phonotactics, or allowable sound sequences, between Tashlhiyt 

and Arabic, such as the presence of vowelless words in Tashlhiyt which is not permitted in 

Arabic (Abdel Massih, 1982 [2012]; Lahrouchi, 2018; Dell & Elmedlaoui, 2012; Broselow, 

2017).  

ASR systems convert speech to text transcriptions. Amazigh languages have their own 

ancient writing system (Tifinagh), which was selected as the official orthography for those 

languages in Morocco in 2003, though Arabic was and is often used for writing Amazigh 

(Soulaimani, 2016). Using the Arabic ASR system means converting Tashlhiyt speech into 

Arabic orthographic forms, which will be familiar to many Amazigh speakers (though, we 

acknowledge, comes with complex social, political, and cultural concerns). A practical benefit of 

using Arabic speech to text is that there is a large amount of shared vocabulary and cognates 

between Tashlhiyt and Arabic (Soulaimani, 2016), which can be useful given our non-

modification ASR transfer approach in the current study. Arabic is an alphabet with characters 

representing consonants and long vowels. Optionally, diacritics can be added to characters to 
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indicate short vowels and geminates; the output of the ASR system used in the current study does 

not use diacritics in the transcriptions. Thus, the use of Arabic transcriptions is appropriate since 

we are interested in the present study on recognition of words without vowels. 

By applying the cross-language ASR transfer approach to Tashlhiyt, we can investigate 

fundamental questions about how variation in word forms across source and target language 

impacts the efficacy of cross-language ASR adaptation. Examining whether a current acoustic 

model can be re-used for Tashlhiyt, and for vowelless words in Tashlhiyt in particular, can be a 

key milestone in the development of ASR technology for the low-resource language. Moreover, 

identification of the specific types of phonological structures, speaking styles, and phonetic 

patterns that might pose particular challenges using this approach can also be used to support 

targeted adaptation and fine-tuning when re-using an existing acoustic model to a new language 

in other source and target language contexts.  

 

1.2. ASR performance across speaking styles 

 

As mentioned above, we also explore the effect of speech style variation on the efficacy of this 

cross-language ASR adaptation approach. In particular, we compare ASR transcription errors 

across clear and casual (reduced) speech productions of Tashlhiyt words. Speakers vary their 

speaking style based on communicative context: they can hyperarticulate and produce more 

extreme acoustic realizations of words if they believe the listener will have trouble understanding 

or they can exert less articulatory effort and produce more acoustically reduced forms of words if 

they think the listener will have no trouble comprehending (Picheny et al., 1986; Lindblom, 

1990; Smiljanić & Bradlow, 2005). Clear speech forms are indeed more intelligible and better 

perceived by listeners (Smiljanić & Bradlow, 2011; Cohn et al., 2022). ASR systems, also, have 

been shown to perform better at word recognition of clear speech forms, compared to reduced 

forms (Spille et al., 2018; Zhang et al., 2018). Temporal and segmental reduction are commonly 

observed pronunciation variants in reduced speech that lead to ASR errors across languages 

(Adda-Decker & Snoeren, 2011; Vasilescu, Hernandez, Vieru, & Lamel, 2018).  

How can this speaking style disparity be addressed? Increasing the amount of casual 

speech the ASR systems get in training can improve recognition accuracy for reduced word 

forms (Adda-Decker & Snoeren, 2011; Ernestus & Warner, 2011). Another solution is to add 

sequential pronunciation variants to the pronunciation dictionary, e.g. a “clear” and a “casual” 

form of variable words (Adda-Decker & Snoeren, 2011; Vasilescu et al., 2018). But first, 

understanding the nature of disparities across speech styles in ASR performance when adapting 

to a low-resource language can be helpful in targeting the type of data that could be used to 

efficiently improve the model. Clear speech does not always contain the same types of acoustic 

enhancements across languages and varieties (Smiljanić & Bradlow, 2005; Wassink et al, 2007), 

therefore, it is critical to explore the performance of different types of registers when exploring 

the efficacy of cross-language ASR transfer. 

 

1.3. Current study 

 

The current study tests performance of the “out-of-the-box” cross-language ASR transfer method 

on Tashlhiyt vowelless and voweled words, produced in both Clear and Casual speaking styles. 

This study was designed to address three major gaps in the literature on speech recognition 

technology. 

https://scholar.google.com/citations?user=UIU9E6sAAAAJ&hl=en&oi=sra
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First, this study addresses a gap in understanding how cross-linguistic differences in 

phonological structure influence ASR transfer. If there are disparities across voweled and 

vowelless words for Tashlhiyt, this can illuminate how phonotactic differences (differences in 

word shape and sound combinations) across target and source languages can result in less 

effective ASR transfer even if the languages have similar phoneme inventories. This is also a gap 

in our understanding of the parallels or differences across machine and human cross-language 

perception. Human adults show particular difficulties in learning second languages that differ 

from their native language’s restrictions on sound sequences (e.g., de Leeuw et al., 2021). 

Therefore, we predict ASR systems will have a hard time identifying words in the target 

language that do not conform to the source language’s rules of sound sequencing and word 

structure. 

Second, there is a gap in examining how speaking style differences influence cross-

language ASR transfer. Thus, we also compare cross-language ASR transfer across clear and 

reduced speech productions of the target language. It is predicted that the ASR system will 

perform less well for reduced speech forms, consistent with prior findings that fast, casual speech 

is less well understood than clear speech by human (e.g., Zellou et al., 2022 for Tashlhiyt) and 

machine (Adda-Decker & Snoeren, 2011) comprehenders. However, if vowelless words are 

understood at an even lower rate than voweled words in one speech mode, this can further reveal 

how disparities across phonotactic patterns in the target language can be amplified given the 

range of variation in speaking styles that is found across users and contexts. 

Finally, Tashlhiyt is one of the thousands of languages that do not have commercially-

available speech technology systems. Exploring if cross-language ASR transfer is a viable 

approach to speech recognition for Tashlhiyt is one small step in addressing the huge gap in 

speech-enabled technology availability for under-resourced languages. 

 

2. Methods 

 

2.1. Target words 

 

Target items were 74 Tashlhiyt words consisting of 37 vowelless words and 37 words with a 

vowel nucleus. The voweled words were selected to contain a vowel with consonants on either 

side. Within voweled words, there was roughly an equal number of items containing /a/ (n=11), 

/i/ (n=12), and /u/ (n=14), the three vowel phonemes in Tashlhiyt.  

The vowelless words were selected to contain exactly three consonants. We focus on tri-

segmental vowelless words as a way to strategically home in on the precise mechanisms at play 

for ASR comprehension disparities across voweled and vowelless sequences: a trisegmental 

word form is the smallest structure where a middle segment is surrounded by two consonants. 

One way to quantify how much acoustic modulation a segment carries is sonority (defined as the 

relative loudness and resonant properties of sounds). All sounds can be assigned a ranking within 

a universal hierarchy of sonority: vowels, which are most sonorous are assigned the highest 

numerical sonority score, and consonants are assigned sequentially lower values based on their 

acoustic-sonority properties) (Parker, 2002: 8 = vowels, 7 = glides, 6 = liquids, 5 = nasals, 4 = 

voiced fricatives, 3 = voiceless fricatives; 2 = voiced stops; 1 = voiceless stops). As mentioned in 

the Introduction, vowelless words might be more difficult for speech recognition systems since 

they contain smaller differences in acoustic modulations across segments since they detect 

variations in spectral amplitude in the acoustic signal (O'Shaughnessy, 2023). Following from 
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this, we also predict that within vowelless words, ASR performance will decrease for items that 

contain center segments with lower sonority values than those that contain center consonants 

with higher sonority values. We selected target vowelless word items that contained a range of 

sonority values of the center consonant (center segment sonority ranged from 6-1; glides are not 

permitted as word centers in Tashlhiyt). 

A full list of the target words is provided in the Supplemental Materials.  

 

2.2. Stimulus materials 

 

Four native Tashlhiyt speakers produced the wordlist in two speaking styles. Three of the 

speakers were born in Agadir, Morocco and one speaker was born outside of Marrakech, 

Morocco (mean age = 48 years old; 1 female, 3 male). 

Recordings were made with Audacity. The recording took place in a sound attenuated 

booth using a microphone and audio mixer (AT 8010 Audio-technica microphone and USB 

audio mixer, M-Audio Fast Track), digitized at a 44.1 kHz sampling rate.  

Words were recorded in two speaking styles: Clear and Casual. To elicit Clear Speech, 

the speakers were given instructions used to elicit clear speech in prior work (e.g., Bradlow, 

2002): “In this condition, speak the words clearly to someone who is having a hard time 

understanding you.” Following the Clear Speech style elicitation, the speakers produced the 

words in a fast, casual speaking style with the following instructions also modeled after those 

used in prior work (e.g., Bradlow, 2002): “now, speak the list as if you are talking to a friend or 

family member you have known for a long time who has no trouble understanding you, and 

speak quickly”. The speakers produced the words in each of the two frame sentences in each 

speaking style: ini ___ jat tklit ‘say ___ once’, inna ___ baɦra ‘he said ___ a lot’. A total of 

1,185 target word productions were collected.  

All research was performed in accordance with guidelines and regulations of the IRB. 

Informed consent was obtained from the speakers. 

 

2.3. Data and coding 

 

Each recording was transcribed using Sonix, an ASR tool for transcribing audio, with the 

language set to Arabic. The Sonix transcript for each file was downloaded as a .csv file, with a 

timestamp for each word. Transcriptions for target words were identified and coded based on the 

timestamp. Any punctuations were removed from the transcript. 

Each target word was given an acceptable “ground truth” Arabic transcription (non-

diacritized, as is the output of the ASR system); these written forms are provided in the 

Supplementary Materials. There are several consonantal phonemes (in both source and target 

languages) for which there is not a distinct Arabic letter. First, based on tests of the ASR system 

and conventions for how this letter is used across Arabic varieties, we used the Arabic letter jeem 

to represent the phoneme /g/ (e.g., “رجل” ,<r-ž*-l> for /rgl/), in addition to /ž/ (e.g., “جلد”, <ž-l-d> 

for /žld/). Also, Tashlhiyt has additional pharyngealized segments that do not have a distinct 

letter in written Arabic. For these segments, the “ground truth” transcription contained the non-

pharyngealized letter (e.g., “زور” <z-w-r> for /zˤurˤ/).  

ASR transcription performance was assessed in three ways: 

Transcription generated: In a small number of cases, the ASR system did not generate a 

transcription of the target word, indicating a recognition failure - for instance, that the system 
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treated the speech sample as noise or non-linguistic audio. Since vowelless words, in particular, 

might contain no voicing information, they might be particularly prone to being treated like 

“noise” rather than “speech” by the ASR system and hence not transcribed. Thus, we evaluated 

this as one metric of ASR performance - generating a transcription is evidence that the ASR 

treats the input as speech. All trials were coded as “transcription” or “no transcription”.  

Transcription accuracy: Of the words where a transcription was generated, these were 

then coded for accuracy if the ASR transcription output matched the “ground truth” transcription 

of the word in Arabic script or not.  

Levenshtein distance: For each transcribed word, Levenshtein distance was calculated, 

which quantifies the distance between two strings in terms of substitutions, deletions, and 

insertions (Levenshtein, 1965; and used in linguistic studies such as for measures of phonetic 

distances between languages and varieties, e.g., Kessler, 1995; Weiling et al., 2014). Levenshtein 

distance is used here as a metric for phonetic distance between ground truth and generated 

transcriptions. 

We also coded ASR transcriptions as being either real Arabic words (identified as such 

using google translate) or nonwords. 83% of target word transcriptions generated by the ASR 

were real words. A chi-square test revealed that there was a difference in the proportion of real 

vs. nonwords for vowelless and voweled words (𝛸2(1)=82.5, p < 0.001). Vowelless words were 

less likely to be transcribed as nonwords (36/547 transcriptions) than voweled words (156/573 

transcriptions).  

 

3. Results 

 

3.1. Comparing ASR performance across voweled and vowelless words 

 

Our first set of analyses investigated whether the ASR performs differently for vowelless and 

voweled words, as well as the effect of speaking style.  

 We ran two separate mixed effects logistic regressions. The first model analyzed whether 

there was a difference in rates of “no transcription” across target words as a function of word 

type and speech style. For this model, data were coded for whether the ASR system produced 

any transcription (=1) or not (=0). The second model was run on a subset of data for which the 

ASR system did produce a transcription (n=1,120). For these data, we modeled accuracy in 

generating the ground truth transcription (=1) or not (=0). Both models were run using the glmer 

function in the lme4 R package (Bates et al., 2015). The models included fixed effects of Word 

Type (voweled vs. vowelless) and Speaking Style (Clear vs. Casual), as well as their interaction. 

Effects were sum-coded. For the random effect structure: We first fit models with maximal 

random effects structure, consisting of random intercepts for speaker and word, as well as by-

speaker random slopes for Word Type and Style and the interaction between them. If this 

resulted in a singularity error (indicating overfitting of the random effects), then the random 

effects structure was then simplified by removing predictors that accounted for the least amount 

of variance until the model fit (following Barr et al., 2013). (Random effects simplification for 

all models reported in this paper followed the same procedure.) The glmer syntax for the retained 

transcription presence model was: transcription presence~Word Type * Speech Style + (1 | 

Word) + (1 + Speech Style | Speaker); the glmer syntax for the retained accuracy model was: 

accuracy~Word Type * Speech Style + (1 | Word) + (1 + Word Type + Speech Style | Speaker). 
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 Figure 1A shows the averaged performance of the ASR system in generating a 

transcription across vowelless and voweled words by speaking style. Overall, only 5% (n=65) of 

target words did not get assigned a transcription by the ASR system. Yet, the transcription 

presence model revealed an effect of Word Type such that vowelless words were more likely to 

not get transcribed at all than voweled words (coef. = -0.4, SE = -0.2, z = -2.5, p < 0.05). Thus, 

even though 95% of target words did get transcribed, there were still disparities in this measure 

by word type. There was not an effect of Speaking Style (p = 0.7) and there was not an 

interaction between Word Type and Speaking Style (p = 0.5) for the transcription presence 

model. 

Figure 1B presents accuracy data for items where a transcription was generated. Speaking 

Style predicted accuracy, with the ASR system more likely to generate a “ground truth” 

transcription of Clear forms of words (coef. = 0.8, SE = 0.1, z = 5.9, p < 0.001). There was also 

an interaction between Word Type and Speech Style (coef. = -0.5, SE = 0.1, z = -5.2, p < 0.001). 

To explore this interaction, a Tukey’s HSD pairwise comparison was performed using the 

emmeans() function in the emmeans R package (Lenth et al., 2021). This post hoc comparison 

revealed that while vowelless words were less accurately transcribed than voweled words in 

Clear speech (coef. = -1.5, SE = 0.4, z = -3.5, p < 0.001), there was no difference in transcription 

accuracy for word types in Casual speech (p = 0.4). 

 

 

  

Figure 1. Mean performance (and standard errors) for generating a transcription (A.) and, (B.) 

accuracy in reflecting the written Arabic “ground truth”, for words where a transcription was 

generated.  

 

Next, we analyzed Levenshtein distances for the items where a transcription was generated using 

a mixed effects linear regression model. The model included fixed effects of Word Type 

(voweled vs. vowelless) and Speaking Style (Clear vs. Casual), as well as their interaction. 

Effects were sum-coded. The random effects structure of the model started as maximal, but was 
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reduced to avoid overfitting (lmer syntax of retained model: distance ~ Word Type * Style + (1| 

Word) + (1|Speaker)).  

Figure 2 provides mean Levenshtein distances across items and conditions. The model 

computed an effect of Speaking Style wherein Clear speech transcriptions had lower Levenshtein 

distances than Casual speech productions (coef. = -0.5, SE = 0.04, t = -12.6, p < 0.001), meaning 

that transcriptions for casual items were further away from ground truth transcriptions than those 

for clear speech productions. There was also an interaction between Word Type and Style (coef. 

= 0.1, SE = 0.04, t = 2.7, p < 0.01). A post hoc pairwise comparison with emmeans revealed that 

Levenshtein distances were higher for vowelless words than for voweled words in Clear speech 

(coef. = 0.4, SE = 0.2, t = 2.6, p < 0.05), but there was no difference between word types in 

Casual speech (p=0.9). In other words, within Clear speech, transcriptions for vowelless words 

were more different from ground truth forms than those for voweled words. 

 

 
Figure 2. Levenshtein distance means (and standard errors) for transcribed words, averaged by 

Word Type and Speaking Style. 

 

3.2. ASR performance within vowelless words 

 

Finally, we ran two analyses on a subset of the data from vowelless words only. As mentioned 

above, our vowelless items varied in having consonantal centers that are more sonorous (i.e., /l/ 

and /r/ are loud, resonant, and highly sonorant consonants) or less sonorous (e.g., /d/ and /k/ are 

less sonorous sounds). Using a numerical scale that assigns consonants a rating based on their 

sonority properties (Parker, 2002), we tested whether the sonority value of the central segment in 

vowelless words predicts ASR transcription accuracy and Levenshtein distances. 

 First, we ran a mixed effects logistic regression model on accuracy values for vowelless 

words only with fixed effects of Sonority value of the center consonant (continuous variable 

from 1-6, centered) and Speech Style (Clear vs. Casual, sum-coded), and their interaction (glmer 

syntax for the retained model: accuracy~Speech Style * Center Consonant Sonority + (1 | Word) 
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+ (1 | Speaker)). Next, we ran a mixed effects linear regression on Levenshtein distance values 

for vowelless words with fixed effects of Sonority value, Speech Style, and their interaction 

(lmer syntax: distance ~ Style * Center Consonant Sonority + (1 | Word) + (1 + Speech Style | 

Speaker)).  

For the accuracy model, there was an effect of Style, wherein Clear speech was more 

accurately transcribed than Casual speech (coef. = 0.3, SE = 0.1, z = 2.2, p < 0.05). There was 

also an interaction between Sonority and Style (coef. = 0.3, SE = 0.1, z = 2.7, p < 0.01), 

indicating that vowelless words containing more sonorous center consonants are more likely to 

be assigned the correct transcription by the ASR system in Clear speech; it also means the 

reverse is true: lower ASR accuracy for vowelless words with lower sonority centers.  

For the Levenshtein model, the effect of sonority was associated with a negative 

coefficient (coef. = -0.3, SE = 0.1, t = -2.7, p < 0.05), meaning that vowelless words with less 

sonorant centers are more likely to be transcribed with forms that are further away from the 

ground truth transcriptions. There was not an interaction between Style and Sonority (p = 0.4).  

Thus, these analyses provide converging evidence that, even within vowelless words, 

ASR performance decreases for Tashlhiyt words that contain less sonorant word centers. 

 

4. General discussion 

 

There is a language gap in speech technology: computer systems that understand speech are only 

available in a fraction of the extant languages of the world. In the current study, we re-used an 

existing, commercially-available ASR system from Arabic without any modification for 

Tashlhiyt, a low-resource language with over seven million speakers. The segmental inventories 

of Arabic and Tashlhiyt are similar and using Arabic orthography allows for a great deal of 

flexibility in providing functional transcriptions of vowelless words in Tashlhiyt (even though 

Amazigh languages have their own writing system). Overall, our results indicate this is a 

promising approach to adapt an existing ASR system for an under-resourced language. Yet, we 

found disparities in ASR performance across items and speech styles in Tashlhiyt. There were 

three key findings that reflect systematic phonological and speaking style factors that affect the 

efficacy of this method.  

 First, even though the system did not generate a transcription for only 5% of tokens, the 

proportion of items where the ASR system failed to transcribe the target word was higher for 

vowelless words than for words that contained vowels. This indicates that the ASR system is 

more likely to ignore vowelless words than voweled words. One possible explanation is that 

vowelless words are more likely to be identified as non-speech than voweled words. ASR 

systems detect variations in spectral amplitude when identifying the signal (O'Shaughnessy, 

2023). So, vowelless words, which overall contain smaller differences in spectral modulations 

across segments, compared with large acoustic perturbations that occur from consonant to vowel, 

will indeed have a unique acoustic signature that might be interpreted as non-speech by a ‘naive’ 

ASR system and not transcribed. 

 Second, when the ASR generated a transcription, we found that the WER and 

Levenshtein distances were higher for casual, compared to clear, speaking styles. This is an 

unsurprising finding as ASR systems perform less well on reduced speech, even for languages 

that they are trained on and built for (Adda-Decker et al., 2005), but here it highlights even 

further disparities that can arise using the cross-language ASR transfer method due to speaking 

style variation. While many practical issues arise when considering similarities between source 
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and target language (Prasad et al., 2019), this is the first study, to our knowledge, investigating 

the effect of speaking style on cross-language ASR transfer.  

Thirdly, in Clear speech, both WERs and Levenshtein distances between generated and 

ground truth transcriptions were greater for vowelless words than words with vowels. Note that 

there was no difference for these word forms in casual speech because performance was low 

across the board. Only in Clear speech, where ASR performance was enhanced, do we observe 

that vowelless words are accurately transcribed at lower rates than voweled words. This 

interaction parallels recent findings examining perceptual patterns of clearly- and casually-

produced Tashlhiyt words by non-native listeners in Zellou et al. (2022). In that study, Tashlhiyt-

naive listeners showed a clear speech boost in perceiving Tashlhiyt words that have phonotactic 

patterns that are also present in English (i.e., clear speech enhanced the discrimination of pairs 

like sin vs. fin). But there was not a perceptual benefit for clear speech productions of word 

forms that are not present in English (e.g., clear speech provided no improvement for 

discrimination of word pairs like ssin vs. fsin). Thus, our observation that clear speech does not 

enhance the intelligibility of words that are illegal in the “native” language than for those that are 

legal has support for both human perception and machine speech recognition. 

Our findings highlight linguistic disparities that may occur in cross-language ASR 

transfer: phonotactically rare word forms. Speech recognition systems not trained on vowelless 

words will fail: a vowelless word is more likely to be transcribed incorrectly, and it is more 

likely to be further from the ground truth form making it even harder for a user to understand. An 

explanation for this disparity can be attributed to differences in phonotactics across source and 

target language: Arabic does not permit vowelless words. This observation indicates that re-

using an acoustic model trained on a source language with different phonotactic patterns can lead 

to disparities for phonological structures in the target language that are not attested in the source 

language. This means we can predict other cases where ASR transfer is likely to be problematic: 

even if target and source language have overlapping phoneme inventories, differences in the 

shapes of word forms across them might lead to disparities. 

Furthermore, we also found that within vowelless words, ASR performance was lower 

for items containing center consonants that are less sonorous than words containing more 

sonorous centers. Thus, our results allow us to home in on which types of vowelless word forms, 

specifically, the ASR systems have the most trouble with: words with less resonant and sonorant 

center consonants. This observation provides even further evidence that ASR disparities are 

systematic and shows how machine recognition patterns can be linked to auditory properties of 

human sound systems.  

This study had several limitations that can serve as directions for future work. One 

limitation of the current study is that the speech samples were not elicited as device-directed 

speech. Prior work has observed that speakers make distinct clear speech adjustments when 

talking to ASR-enabled devices, like smartphones and voice-AI assistants (Siegert & Kruger, 

2021; Cohn & Zellou, 2021), and adjust their pronunciations even more when the machine 

makes an error (Cohn et al., 2022). A ripe direction is to explore whether cross-language ASR 

re-use recognition accuracy improves if the speakers are producing authentic device-directed 

speech. There are other factors that can be explored in future studies, such as how ASR transfer 

performs when there is background noise or other types of environmental factors (e.g., multiple 

talkers). Particularly for a language with typologically unusual phonological and phonetic 

patterns, such as Tashlhiyt, studying how within-speaker and across-context factors affect speech 
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recognition can provide even further insight into how to address the language gap for speech 

technology.  

 

5. Conclusion 

 

In sum, we find that with zero modification, re-using a commercially available Arabic ASR 

system on Tashlhiyt resulted in close to 45% accurate word transcription for clearly spoken 

voweled words produced by multiple talkers. This means that such an “out-of-the-box” cross-

language ASR transfer approach can provide some limited access to spoken language technology 

for a low resource language. However, the disparities in word transcription (simply in providing 

a transcription at all, and number of errors when there was a transcription) were systematic: 

lower performance for vowelless words. Vowelless words are a common word form in Tashlhiyt, 

so such failures are not trivial. However, future approaches to adapting an Arabic ASR system 

for Tashlhiyt can be most effective by targeting these linguistic structures. In other words, 

addressing the language gap in speech technology can be more efficient by understanding the 

within-language disparities that arise during ASR transfer.  

The current study focused on machine recognition for cross-linguistically uncommon 

word forms - vowelless words in Tashlhiyt - and how differences in phonotactics across target 

and source language could influence ASR performance disparities. Yet, our findings can be 

useful for thinking more generally about the factors that affect cross-language ASR transfer. Two 

languages that have a similar set of consonants and vowels can have quite different word forms 

and that can create challenges for second language learners: for instance, a Spanish speaker 

learning English might hear the word ‘sport’ as esport, because Spanish does not permit words 

with initial s+obstruent sequences (even though s and p are common sounds in Spanish) (Cuetos, 

Hallé, Domínguez & Segui, 2011; de Leeuw et al., 2021). Thus, we predict that in any case 

where target and source language differ in phonotactics, there will be linguistic disparities. 

Engineers and scientists can more effectively augment cross-language speech technology transfer 

by understanding the linguistic issues that might lead to disparities within a target language and 

addressing them, such as training the system on the types of words that are more likely to fail 

using this approach. Investigating ways to make ASR more accessible for people who speak low 

resource languages is one step toward addressing major inequities in access to speech technology 

across the world. Our study also highlights how linguistically- and phonetically-informed 

approaches to this aim provide ways to more effectively and efficiently adapt existing speech 

technology to low-resource languages.  

Finally, we find that disparities in ASR transfer generally parallel the types of difficulties 

that adults make when learning a second language (i.e., difficulties with sound sequences that are 

illegal in the first language). Therefore, this work can also speak to broader issues in cognitive 

science, linguistics, and human-computer interaction, particularly in understanding the extent to 

which machines are similar to or different from humans in mapping the acoustic signal to 

discrete linguistic representations (e.g., Stevens, 2002). 
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Supplementary Materials.  

 

List of items used in the study, with English glosses, and ground truth Arabic transcriptions. The 

sonority value of the center consonant for vowelless words (following Parker, 2002: 6 = liquids, 

5 = nasals, 4 = voiced fricatives, 3 = voiceless fricatives; 2 = voiced stops; 1 = voiceless stops) is 

provided in parentheticals after the gloss.  

Voweled Words Vowelless words 

Tashlhiyt word 

- IPA 

transcription English gloss  

“Ground truth” 

Arabic 

transcription 

Tashlhiyt word 

- IPA 

transcription 

(center 

consonant 

sonority value) English gloss  

“Ground truth” 

Arabic 

transcription 

daʁ again داغ bsr (3) spread بسر 

fan they gave فان žhd (3) be strong جهد 

fat give 2MS.PL فات sdˤr (2) fall/make drop سضر 

fin they suppurated فين bdr (2) mention بدر 

fuħ revel in فوح bzg (4) swell بزج 

lfal omen لفال bʕdˤ (4) them (emphatic) بعض 

lfil elephant لفيل dbʁ (2) tan دبغ 

lždid new لجديد mnʕ (5) prohibit/forbid منع 
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lždud ancestors لجدود ʁbr (2) disappear غبر 

man which مان ʁdr (2) betray غدر 

mun 

accompany 

someone مون žbd (2) pull جبد 

ʕum swim عوم zdm (2) collect wood زدم 

nuf we are better نوف zbr (2) prune زبر 

ruħ go home روح zgr (2) cross زجر 

ʁar only غار fkt (1) give it فكت 

ʁir only غير fst (3) feed on فست 

sut drink it سوت ftħ (1) operate فتح 

tuf she's better توف ħkm (1) govern/judge حكم 

ʕif get tired of عيف kšf (3) be faded كشف 

ruħ go home روح skr (1) do/make سكر 

sir go! سير ngr (2) between نجر 

zud like, as زود nkr (1) wake نكر 

mit what ميت nšf (3) scrape نشف 

zˤurˤ visit زور nsˤħ (3) advise نصح 

luħ throw لوح nžħ (4) pass a test نجح 

ran they want ران rbħ (2) win ربح 

sul stay alive سول rdˤl (2) borrow/lend رضل 

sak pass through ساك rgl (2) lock رجل 

liʁ I married ليغ rħl (3) leave the city رحل 

tid these.FM تيد frˤħ (6) be happy فرح 

sin two سين ħrm (6) deprive حرم 

lan they have لان krf (6) tie كرف 

ʁir only غير slt (6) leave on the sly سلت 

tut she hit توت tlf (6) get mixed up تلف 

dar at دار žld (6) leather جلد 

gan they are جان zlm (6) glance زلم 

riʁ I want ريغ ʕlf (6) feed علف 
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