Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications - Archive ouverte HAL
Article Dans Une Revue Logical Methods in Computer Science Année : 2023

Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications

Rémy Cerda
  • Fonction : Auteur
  • PersonId : 1299372
  • IdHAL : rc2197

Résumé

Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of λ-terms has been broadly used as a tool to approximate the terms of several variants of the λ-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its Böhm tree. This led us to consider extending this formalism to the infinitary λ-calculus, since the Λ001∞ version of this calculus has Böhm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of Λ001∞. We define a Taylor expansion on this calculus, and state that the infinitary β-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary λ-calculus.
Fichier principal
Vignette du fichier
2211.05608.pdf (802.43 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04357092 , version 1 (13-09-2024)

Licence

Identifiants

Citer

Rémy Cerda, Lionel Vaux Auclair. Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications. Logical Methods in Computer Science, 2023, 19 (4), pp.34. ⟨10.46298/lmcs-19(4:34)2023⟩. ⟨hal-04357092⟩
115 Consultations
6 Téléchargements

Partager

More