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Abstract. Originating in Girard’s Linear logic, Ehrhard and Regnier’s Taylor expansion
of λ-terms has been broadly used as a tool to approximate the terms of several variants of
the λ-calculus. Many results arise from a Commutation theorem relating the normal form
of the Taylor expansion of a term to its Böhm tree. This led us to consider extending this
formalism to the infinitary λ-calculus, since the Λ001

∞ version of this calculus has Böhm trees
as normal forms and seems to be the ideal framework to reformulate the Commutation
theorem.

We give a (co-)inductive presentation of Λ001
∞ . We define a Taylor expansion on this

calculus, and state that the infinitary β-reduction can be simulated through this Taylor
expansion. The target language is the usual resource calculus, and in particular the resource
reduction remains finite, confluent and terminating. Finally, we state the generalised
Commutation theorem and use our results to provide simple proofs of some normalisation
and confluence properties in the infinitary λ-calculus.
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1. Introduction

The seminal idea of quantitative semantics, introduced in the early 1980s by Girard as an
alternative to traditional denotational semantics based on Scott domains, is to interpret the
terms of the λ-calculus by power series [Gir88; for a bief survey see Pag14]. In this model,
each monomial of the interpretation captures a finite approximation of the execution of the
interpreted term, and its degree corresponds to the number of times it uses its argument.
The parallelism between the decomposition of such a power series into linear maps and the
behaviour of the cut-elimination of proofs led Girard to introduce linear logic [Gir87; Gir95],
which has been a major and fruitful refinement of the Curry-Howard correspondence.

In the early 2000s, Ehrhard reformulated Girard’s quantitative semantics in a more
standard algebraic framework, where terms are interpreted as analytic maps between certain
vector spaces [Ehr05]. The notion of differentiation, that is available in this framework, was
then brought back to the syntax by Ehrhard and Regnier in their differential λ-calculus
[ER03]. Eventually, they defined the operation of Taylor expansion which maps λ-terms to
infinite sums of resource terms — the latter are the terms of the resource λ-calculus, which
is the finitary, purely linear fragment of the differential λ-calculus. Each term of the sum
thus gives a finite approximation of the operational behaviour of the original term [ER08;
BM20, for a lightened presentation].

The strength of this tool is the strong normalisation property of resource terms, and
the fact that Taylor expansion commutes with normalisation: the normal form of the Taylor
expansion of a term is the Taylor expansion of the Böhm tree of this term [ER06]. This
Commutation theorem enables one to deduce properties of some λ-terms from the properties
of their Taylor expansion; typically, properties of the (possibly) non-terminating execution of
a λ-term, previously characterized by coinductive objects like its Böhm tree, are proved via
the Taylor expansion by mere induction. This approach has been successfully applied not
only to the ordinary λ-calculus [ER06; Oli18; Oli20; BM20], but also to nondeterministic
[BEM12; VA19], probabilistic [DZ12; DL19], call-by-value [KMP20], and call-by-push-value
[CT20] calculi, as well as Parigot’s λμ-calculus [Bar22].

In this paper, we aim to extend this formalism to the infinitary λ-calculus. Böhm trees
[Böh68; Bar77] were already a kind of infinitary λ-terms, but an infinitary calculus (having
infinite terms and infinite reductions) was first introduced in the 1990s by Kennaway, Klop,
Sleep and de Vries [Ken+95; Ken+97] and by Berarducci [Ber96]. Initially presented as
the metric completion of the set of λ-terms (considered as finite syntactic trees), the set
of infinite λ-terms has been reformulated as an ideal completion [Bah18], and maybe more
crucially as the “coinductive version” of the λ-calculus [Joa04; EP13; Cza14].
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Even if the “plain” infinitary λ-calculus does not enjoy confluence, several results of
confluence and of normalisation modulo “meaningless” terms have been established [Ken+97;
Cza14; Cza20], as well as a standardisation theorem using coinductive techniques [EP13].
Some normalisation properties have also been characterised using non-idempotent intersection
types [Via17; Via21].

These results are often only established in one of the different variants of the infinitary
λ-calculus. Indeed, Kennaway et al. identify eight variants depending on the metric one
chooses on syntactic trees (each of the three constructors of λ-terms can “add depth” to
the term), among which only three enjoy reasonable properties (in addition to the finitary
variant). Following the authors, they are called Λ001

∞ , Λ101
∞ and Λ111

∞ . In the following, we
will concentrate on the Λ001

∞ variant, that is the one where a term can have an infinite branch
only if its right applicative depth tends to infinity.

The motivation for choosing Λ001
∞ is that the normal forms of this calculus are the Böhm

trees which are, as we recalled above, strongly related to the Taylor expansion. In some
sense, Λ001

∞ is the “natural” setting to define and manipulate the Taylor expansion of ordinary
λ-terms, as we hope to advocate for. Indeed, it enables us to state Ehrhard and Regnier’s
Commutation theorem without any particular definition of the Taylor expansion of Böhm
trees, and then to prove some classical results that are preserved in Λ001

∞ , like characterisations
of head- and β-normalisation or the Genericity lemma.

Since we want to take advantage of the modern, coinductive approach of [EP13], we will
provide a definition of Λ001

∞ using coinduction. However, some technicalities arise from the
fact that this is not the “fully coinductive version” of λ-calculus and that one has to mix
induction and coinduction to manipulate terms and reductions in Λ001

∞ .
Such mixings are not new and have been appearing in various areas for several decades.

In particular, type systems featuring inductive and coinductive types have been presented in
the late 1980s by Hagino and Mendler [Hag87; Men91], and even Eratosthenes’ sieve can be
seen as an inductive-coinductive structure [Ber05]. A wide range of examples is provided by
Basold’s PhD thesis, which builds a whole type-theoretic framework for inductive-coinductive
reasoning [Bas18]. Several previous formalisations of mixed induction and coinduction had
been proposed, in particular in [DA09; Cza19; Dal16]. We will provide a mixed formal system
inspired by the latter.

Contributions and structure of the paper. In Section 2, we recall the definition of
the infinitary λ-calculus Λ001

∞ and discuss the setting we choose for this mixed inductive-
coinductive construction.

In Section 3, we extend the Taylor expansion of λ-terms to this calculus, and we show
our main result in Section 4: the reduction of the Taylor expansion provides a simulation
of the infinitary β-reduction (Theorem 4.21) by a (possibly infinite) superposition of finite
reductions. This adapts the results of the second author for the ordinary β-reduction [VA17;
VA19], with three important differences, induced by the infinitary nature of our setting:
(1) In [VA19], one step of β-reduction is simulated by a superposition of single steps of parallel

reduction on resource terms (reducing all the copies of the fired redex simultaneously in
each component). Here, since one step of infinitary β-reduction amounts to a possibly
infinite sequence of single β-reductions, we can no longer bound the number of reductions
to be performed on resource terms in the simulation. This forces us to consider the
reflexive and transitive closure of reduction, rather than parallel reduction, as the
underlying dynamics on resource terms.
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(2) Due to the previous point, establishing the simulation is more demanding. We first
obtain the simulation of finite sequences of reductions exactly as in [VA19]. Then we
exploit the fact that the depth of fired redexes in an infinite β-reduction must tend to
infinity, together with the strictly finitary nature of the reduction of resource terms (in
particular, the fact that the size of resource terms is nonincreasing under reduction): we
deduce the general simulation result by a kind of diagonal argument (see Section 4.5).

(3) Also due to the first point, we can no longer consider arbitrary infinite weighted sums of
resource terms as the target of Taylor expansion: reducing arbitrarily the components of
such a sum might yield infinite sums of coefficients (an example is given in Remark 3.17).
We thus choose to keep to a qualitative setting only, i.e. use boolean coefficients:
equivalently, we consider sets of resource terms, rather than sums.
Finally, in Section 5, we use this framework to prove the Commutation theorem (Theo-

rem 5.20). We show that this provides new proofs of the classical results of normalisation
(Lemma 5.16) and confluence (Corollary 5.23), as well as characterisations of solvability and
normalisation in Λ001

∞ similar to the ones known for the ordinary λ-calculus. We also show an
infinitary Genericity lemma (Theorem 5.30), adapting the technique introduced by [BM20].

2. The infinitary λ-calculus

2.1. The set Λ001
∞ of 001-infinitary λ-terms. The original definition of the infinitary

λ-calulus by Kennaway et al. [Ken+97] was topological. Finite terms were represented by
their syntactic tree, and the usual distance d on trees was defined on them by:

d(M,N) = 2−(the smallest depth at which M and N differ).

The space of infinitary λ-terms was obtained by taking the metric completion.
One can notice that this definition is dependent on the notion of depth. Indeed, the

authors defined eight variants of Λ∞, each one of them using a different notion of depth of
(an occurrence of) a subterm N in a term M :

depthabcN (N) = 0,

depthabcλx.M (N) = a+ depthabcM (N),

depthabc(M)M ′(N) = b+ depthabcM (N) if the occurrence is in M ,

depthabc(M)M ′(N) = c+ depthabcM ′(N) otherwise,

where a, b, c ∈ {0, 1}. This gives rise to eight spaces Λabc
∞ , where Λ000

∞ is the set of finite
λ-terms Λ and Λ111

∞ contains all infinitary λ-terms (notice that infinitary terms are not
necessarily infinite, since all finite terms also belong to the spaces defined). The depth of
all infinite branches in a term of Λabc

∞ must go to infinity, that is to say such a branch must
cross infinitely often a node increasing the depth. In particular, for the Λ001

∞ version we are
interested in, the only infinite branches allowed are those crossing infinitely often the right
side of an application. In Fig. 1, the left term is in Λ001

∞ whereas the right one is not (notice
that in the former term, the infinite branch also crosses infinitely many lambdas; this is not
forbidden, provided this infinite branch crosses infinitely many right sides of applications).

All versions enjoy weak normalisation, provided one identifies all “0-active” terms (i.e.
those terms such that every reduct contains a redex at depth 0) with a single constant ⊥.
For instance, in Λ000

∞ , this means identifying all non normalising terms; and in Λ001
∞ this
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Figure 1. Two infinitary terms, only the left one of which is 001-infinitary.

means identifying all non head-normalising terms. With this extended reduction, only three
versions enjoy confluence, and thus unicity of normal forms: Λ001

∞ , Λ101
∞ and Λ111

∞ . Their
respective normal forms are three already known notions of infinite expansions of a term,
namely Böhm trees [Bar77; Bar84, § 2.1.13], Lévy-Longo trees [Lév75; Lon83; Ong88] and
Berarducci trees [Ber96]. The two latter equate less terms than the unsolvable ones, and
thus provide a more fine-grained description of the computational behaviour of λ-terms.

As an alternative, the infinitary λ-calculus can be seen as the “coinductive version” of
the λ-calculus. If the set Λ of the λ-terms is built inductively on the signature:

M,N, . . . := x ∈ V | λx.M | (M)N, (σ)

given a fixed set V of variables (that is, it is the initial algebra of the corresponding monotonous
functor V + λV. − + (−)− : Set3 → Set), then the set Λ∞ of all infinitary λ-terms is
built coinductively on the same signature, as the terminal coalgebra of the same functor [for
a detailed reminder of these constructions, see for instance AMM18]. This construction is
summarised in the following notation, using fix-points:

Λ = µX.(V + λV.X + (X)X) Λ∞ = νX.(V + λV.X + (X)X).

This coinductive approach has been fruitfully exploited by Endrullis and Polonsky [EP13]
and Czajka [Cza14; Cza20] in the case of Λ111

∞ . We would like to use it in the case of Λ001
∞ , but

this implies mixing induction and coinduction in order to distinguish between the “allowed”
and “forbidden” infinite branches. Thus, using the same notation as above, we provide the
following definition.

Definition 2.1 (001-infinitary terms). Given a fixed set of variables V, the set Λ001
∞ of

001-infinitary λ-terms is defined by:

Λ001
∞ = νY.µX.(V + λV.X + (X)Y ).
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⊢ f

⊢ f∞

⊢ ▷ f∞

⊢ f∞ = (f)f∞

(a)

(a)

⊢ f∞

⊢ Y ∗ = λf.f∞

(b)

(a)

⊢ f∞

(a)

⊢ f∞

⊢ ▷ f∞

⊢ (f∞)f∞

(c)

(a)

⊢ f∞

⊢ (f∞)∞

⊢ ▷(f∞)∞

⊢ (f∞)∞

(d)

Figure 2. Some derivations corresponding to terms in Λ001
∞ . Notice that the

loops are correct because they cross a coinductive rule.

It is beyond the scope of this paper to describe a general framework for defining and
manipulating such a mixed inductive-coinductive set. One may consider the type-theoretic
system built by Basold in his extensive study of this question [Bas18]. As a somehow less
technological alternative, we interpret the binders µ and ν as the usual least and greatest
fix-point constructions in the lattice (P(Λ∞),⊆), or the initial algebra and terminal coalgebra
of the functors V + λV.− + (−)− and µX.(V + λV.X + (X)−) respectively.

Definition 2.1 can be unfolded using a mixed formal system (in such a system, simple
bars denote inductive rules and double bars denote coinductive rules). This reformulation,
inspired by [Dal16], provides a graphical description of terms in Λ001

∞ .

Definition 2.2 (001-infinitary terms, using a mixed formal system). Λ001
∞ is the set of all

coinductive terms T on the signature σ1 such that ⊢ T can be derived in the following
system:

(V)
⊢ x

⊢ M
(λ)

⊢ λx.M

⊢ M ⊢ ▷N
(@)

⊢ (M)N

⊢ M
(coI)

⊢ ▷M

Remark 2.3. To make the coinductive step explicit, we use the later modality ▷ due to
[Nak00] and named after [App+07]. This formalism could be condensed in the following
“mixed rule” (@′), in a rather unusual fashion:

⊢ M ⊢ N
(@′)

⊢ (M)N

Example 2.4. Have Y ∗ := λf.(f)(f)(f) . . . , which can be defined coinductively as Y ∗ :=
λf.f∞ where f∞ is the largest solution of the equation f∞ = (f)f∞. This corresponds to
the derivation in Fig. 2b. Similarly, one can show that (f∞)f∞ ∈ Λ001

∞ and (f∞)∞ ∈ Λ001
∞ ,

as derived in Figs. 2c and 2d.

Notation 2.5. Given M,N ∈ Λ001
∞ two terms and k ∈ N an integer, we define:

(M)N (k) := (. . . ((M)N) . . . )N︸ ︷︷ ︸
k terms

Nk := (N) . . . (N)︸ ︷︷ ︸
k − 1 terms

N

The corresponding trees are described in Fig. 3. Notice that the term N∞ introduced in the
previous example is coherent with this notation, whereas there is no possible (M)N (∞) in
Λ001

∞ .

1Notice that for any M , ▷M cannot be a term in Λ001
∞ , the only valid derivations being those producing

terms on the signature σ, i.e. ending with one of the first three rules.



Vol. 19:4 FINITARY SIMULATION OF INFINITARY β-REDUCTION VIA TAYLOR EXPANSION 34:7

@

@

@

M N

N

N

@

@

@

NN

N

N

Figure 3. The terms (M)N (k) and Nk.

2.2. What about α-equivalence? As one usually does when working with λ-terms, we
consider the terms up to α-equivalence (renaming of bound variables) in the following.
In particular, we will define substitution using Barendregt’s variable convention, that is
considering that any term has disjoint bound and free variables, which is usually achieved by
renaming conflictual bound variables with fresh ones [Bar84, § 2.1.13].

However, this requires some precautions in an infinitary setting since we could consider
an infinite term M such that FV (M) = V, which would prevent us from taking a fresh
variable. This obstacle can be overcome using some tricks, like taking a non-countable
variable set V , or ordering it to be able to implement Hilbert’s hotel — which is usually done
when the proofs are formalised using De Bruijn indices [Bru72; EP13; Cza20].

One can also use nominal sets [GP02; Pit13] to directly define the quotient of the
infinitary λ-calculus modulo α-equivalence as the terminal coalgebra for some functor. This
construction yields a corecursion principle allowing to define substitution and normal forms
for Λ111

∞ [Kur+12]. There is hope that the same tools could be applied to the specific case of
Λ001

∞ .
One more solution, which seems radical but which we believe is appropriate in practice,

is to restrict ourselves to infinitary terms whose subterms all contain a finite number of free
variables. This makes it easy to get fresh variables to implement Barendregt’s convention,
while preserving the strength of Λ001

∞ as a tool to study the infinite behaviour of finite λ-terms.
Indeed, all infinitary terms generated by reductions of finitary ones enjoy this property of
having finitely many free variables [Bar84, Thm. 10.1.23].2

For the sake of simplicity, we stick to the presentation using a single class of variables
(instead of relying on De Bruijn indices or nominal techniques), and assume without jus-
tification that it is always possible to obtain fresh variables. We believe this question is
completely orthogonal to the main matter of the paper anyway, and that our developments
could be adapted straightforwardly to any other formalisation of bound variables.

2.3. Finitary β-reduction. The finitary β-reduction is defined exactly as in the usual
λ-calculus. We just have to check that our definitions are consistent with the restrictions we
put on infinitary terms.

2Note that, writing Λ(Γ) for the set of λ-terms whose free variables are in the set Γ, it is clear that Λ is
the union of the sets Λ(Γ) where Γ ranges over finite sets of variables. By contrast, the union of the sets
Λabc

∞ (Γ) — again, for Γ finite — is a strict subset of Λabc
∞ , as introduced before.
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Definition 2.6 (substitution). Given N ∈ Λ001
∞ and x ∈ V , the substitution −[N/x] of x by

N is the operation on terms defined as follows:

x[N/x] := N

y[N/x] := y if y ̸= x

(λy.M)[N/x] := λy.M [N/x] by choosing y /∈ FV (N)

((M)M ′)[N/x] := (M [N/x])M ′[N/x]

Note that this definition is not merely by induction, since we consider infinitary terms.
To be formal, given a derivation of ⊢ M , we define a derivation of some judgement ⊢ M ′,
and then set M [N/x] := M ′. To do so, we build the derivation of ⊢ M [N/x] coinductively,
following the derivation of ⊢ M ; and inside each coinductive step, we proceed by induction
on the finite tree of rules other than (coI) at the root of the derivation of ⊢ M :
• Case (V). Either M = x, in which case we set M [N/x] := N and derive ⊢ M [N/x] just

like ⊢ N ; or M = y for some y ̸= x and we set M [N/x] := y and derive ⊢ M [N/x] by
(V).

• Case (λ). We have M = λy.M ′, where ⊢ M ′ and we choose y /∈ FV (N). The induction
hypothesis applies to the derivation of ⊢ M ′, which gives ⊢ M ′[N/x], and we derive
⊢ M [N/x] by (λ), setting M [N/x] := λy.M ′[N/x].

• Case (@). We have M = (M ′)M ′′ and the derivation:

...
⊢ M ′

...
⊢ M ′′

(coI)
⊢ ▷M ′′

(@)
⊢ M

As in the previous case, the induction hypothesis applies to the derivation of ⊢ M ′,
which gives ⊢ M ′[N/x]. Moreover, under the guard of rule (coI), we apply the construction
coinductively, which yields a derivation of ⊢ ▷M ′′[N/x] from the derivation of ⊢ ▷M ′′.
We then derive ⊢ M [N/x] by (@), setting M [N/x] := (M ′[N/x])M ′′[N/x].

Remark 2.7. The previous construction has the typical structure of the form of reasoning
we use in the next sections, and follows the definition of Λ001

∞ = νY.µX.(V + λV.X + (X)Y ):
it is “an induction wrapped into a coinduction”.

Although there is no standard notion of “proof by coinduction” — at least, one that
would be as well established as reasoning by induction — the only thing we do here is
producing coinductive objects — namely, derivation trees. The derivation trees we produce
are “legal”, since the coinductive steps correspond to occurrences of the coinductive rule (coI),
the syntactic guard being materialised by the later modality ▷.

Then, each coinductive step is reached by induction from the previous one, which
corresponds to the µX in Λ001

∞ . This is just a regular induction on the derivation separating
two coinductive rules. Notice that this induction has two “base cases”: when it stops on the
rule (V), and when it reaches a coinductive rule (coI).

This paper is about λ-calculus and not about foundations of reasoning with inductive-
coinductive types, so we will forget as much as possible about reasoning technicalities: we
keep a lightweight proof style, as classically done for inductive proofs and as described for
instance by [KS17] and [Cza19] for coinductive reasoning.

In the following, whenever we claim to define some object or to establish some result
“by nested coinduction and induction”, the reader should thus understand that we actually
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construct some possibly infinite tree (a term or a derivation), following the structure of some
input which is itself a possibly infinite tree. We then reason by cases on the root of the input
tree, assuming the result of the construction is known for immediate subtrees: to ensure that
this defines an object in the output type, it is sufficient to check that, each time we reach a
coinductive step in the input, we proceed with the construction under the guard of at least
one coinductive step in the output.

Definition 2.8 (finitary reduction −→β). The relation β0 is defined on Λ001
∞ by:

β0 :=
{
((λx.M)N,M [N/x]) , M,N ∈ Λ001

∞ , x ∈ V
}
.

The relation −→β is then defined on Λ001
∞ by induction as the contextual closure of β0,

namely:

M β0 N
(axβ)

M −→β N

M −→β N
(λβ)

λx.M −→β λx.N

M −→β N
(@lβ)

(M)P −→β (N)P

M −→β N
(@rβ)

(P )M −→β (P )N

2.4. Infinitary β-reduction. We extend our calculus with an infinitary β-reduction. As
already mentioned, an infinite reduction must “go to infinity”, that is to say that the depth
of fired redexes tends to infinity.

Notation 2.9. Given a relation −→, we denote −→? its reflexive closure and −→∗ its
reflexive and transitive closure.

Definition 2.10 (001-infinitary reduction −→∞
β ). The infinitary reduction −→∞

β is defined
on Λ001

∞ as the 001-strongly convergent closure of −→β , that is to say by the following mixed
formal system:

M −→∗
β x

(ax∞β )
M −→∞

β x

M −→∗
β λx.P P −→∞

β P ′

(λ∞
β )

M −→∞
β λx.P ′

M −→∗
β (P )Q P −→∞

β P ′ ▷Q −→∞
β Q′

(@∞
β )

M −→∞
β (P ′)Q′

M −→∞
β M ′

(coI∞β )
▷M −→∞

β M ′

Definition 2.10 provides an inductive-coinductive presentation of the notion of strongly
convergent reduction sequences defined by [Ken+97], in the specific setting of Λ001

∞ : the
only coinductive step occurs in argument position in the application rule, which is the
position where depth001 is incremented. In that we follow Dal Lago [Dal16], whereas the
fully coinductive approach of Endrullis and Polonsky [EP13] is limited to Λ111

∞ .

Example 2.11. The well-known Y = λf.(∆f )∆f , with ∆f = λx.(f)(x)x, satisfies Y −→∞
β

Y ∗. Indeed:
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Y −→∗
β λf.(∆f )∆f

(∆f )∆f −→∗
β (f)(∆f )∆f

f −→∗
β f

f −→∞
β f

(∆f )∆f −→∞
β f∞

▷(∆f )∆f −→∞
β f∞

(∆f )∆f −→∞
β f∞ = (f)f∞

Y −→∞
β Y ∗ = λf.f∞

Remark 2.12. Definitions 2.8 and 2.10 could, again, be formulated in terms of fix-points:

−→β := νY.µX.
(
β0 + λV.X + (X)Λ001

∞ + (Λ001
∞ )Y

)
−→∞

β := νY.µX.
(
−→∗

β + −→∗
β ; (λV.X) + −→∗

β ; (X)Y
)

where the functors act on relations, for instance λV.X = {(λv.x1, λv.x2) | v ∈ V, (x1, x2) ∈
X}, and the symbol ; denotes the composition of relations.

Lemma 2.13.
(1) −→∞

β is reflexive.
(2) −→∗

β ⊆ −→∞
β .

(3) −→∞
β is transitive.

Proof. (1) For any M ∈ Λ001
∞ , a derivation of M −→∞

β M is built straightforwardly by nested
coinduction and induction,3 following the structure of the derivation of ⊢ M .

(2) Immediate from the rules of Definition 2.10 and from the reflexivity of −→∞
β , by cases

on the reduct of −→∗
β . For instance, in the case of an abstraction:

M −→∗
β λx.P

(1)
P −→∞

β P

M −→∞
β λx.P

(3) To prove transitivity, we have to show a series of sublemmas:

if M −→∗
β M ′, then M [N/x] −→∗

β M ′[N/x] (i)

if M −→∗
β M ′ −→∞

β M ′′, then M −→∞
β M ′′ (ii)

if M −→∞
β M ′ and N −→∞

β N ′, then M [N/x] −→∞
β M ′[N ′/x

]
(iii)

if M −→∞
β M ′ −→β M ′′, then M −→∞

β M ′′ (iv)

if M −→∞
β M ′ −→∗

β M ′′, then M −→∞
β M ′′ (v)

if M −→∞
β M ′ −→∞

β M ′′, then M −→∞
β M ′′ (vi)

(i) and (ii) are immediate, respectively by nested coinduction and induction on M and
by case analysis on M ′ −→∞

β M ′′.
To prove (iii), proceed by nested coinduction and induction on M −→∞

β M ′.
• If M ′ = x and M −→∗

β x, use (i) to get M [N/x] −→∗
β x[N/x] = N −→∞

β N ′, and
conclude with (ii).

• If M ′ = y and M −→∗
β y, use (i) to get M [N/x] −→∗

β y[N/x] = y = y[N ′/x] and
conclude with (2).

3We recall that this proof scheme is discussed in Remark 2.7 — especially in its last paragraph.
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• If M ′ = λy.P ′, M −→∗
β λy.P and P −→∞

β P ′, use (i) to get M [N/x] −→∗
β λy.P [N/x],

use the induction hypothesis to get a derivation P [N/x] −→∞
β P ′[N ′/x] and conclude

with (ii).
• If M ′ = (P ′)Q′, M −→∗

β (P )Q, P −→∞
β P ′ and Q −→∞

β Q′, use (i) to get
M [N/x] −→∗

β (P [N/x])Q[N/x], get a derivation P [N/x] −→∞
β P ′[N ′/x] by induction,

and build Q[N/x] −→∞
β Q′[N ′/x] coinductively using (coI∞β ) as a guard. Conclude

with (ii).

To prove (iv), proceed by induction on M ′ −→β M ′′.
• If M ′β0M

′′, that is M ′ = (λx.Q′)R′ and M ′′ = Q′[R′/x], the last rules applied in
M −→∞

β M ′ are the following:

M −→∗
β (P )R

P −→∗
β λx.Q

...
Q −→∞

β Q′

P −→∞
β λx.Q′

...
R −→∞

β R′

▷R −→∞
β R′

M −→∞
β M ′ = (λx.Q′)R′

so M −→∗
β (P )R −→∗

β (λx.Q)R −→β Q[R/x] −→∞
β Q′[R′/x] = M ′′ using (iii), and

we can conclude with (ii).
• If M ′ = λx.P ′ and M ′′ = λx.P ′′ with P ′ −→β P ′′, then the last rule applied in
M −→∞

β M ′ is the following:

M −→∗
β λx.P

...
P −→∞

β P ′

M −→∞
β M ′ = λx.P ′

By induction, P −→∞
β P ′′, and apply the same rule to obtain M −→∞

β M ′′.
• The two remaining cases (@lβ) and (@rβ) are similar to the previous one.

(v) is obtained from (iv) by an easy induction.

Finally, we show (vi) by nested coinduction and induction on M ′ −→∞
β M ′′.

• If M ′′ = x and M ′ −→∗
β x, the result is immediate from (v).

• If M ′′ = λx.P ′′ with M ′ −→∗
β λx.P ′ and P ′ −→∞

β P ′′, then from M −→∞
β M ′ and

M ′ −→∗
β λx.P ′, use (v) to get M −→∞

β λx.P ′. This means that there is a P such that
M −→∗

β λx.P and P −→∞
β P ′. By induction, P −→∞

β P ′′, and we can derive:
M −→∗

β λx.P P −→∞
β P ′′

M −→∞
β M ′′ = λx.P ′′

• If M ′ −→∞
β M ′′ is derived by rule (@∞

β ) with premises M ′ −→∗
β (P ′)Q′, P ′ −→∞

β P ′′

and ▷Q′ −→∞
β Q′′, then: from M −→∞

β M ′ and M ′ −→∗
β (P ′)Q′ we obtain M −→∞

β

(P ′)Q′ using (v); in particular we obtain terms P and Q such that M −→∗
β (P )Q,

P −→∞
β P ′ and Q −→∞

β Q′; applying the induction hypothesis to P ′ −→∞
β P ′′ yields

P −→∞
β P ′′; to derive M −→∞

β M ′′ by rule (@∞
β ), it remains only to build a derivation

of Q −→∞
β Q′′ coinductively, under the guard of (coI).

Remark 2.14. A consequence of the reflexivity of −→∞
β is that it makes no sense to consider

“β∞-normal forms”. Thus, as in the finitary calculus, we will call β-normal forms the terms
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that cannot be reduced through −→β . Then, a β-normal form of a term M (for the infinitary
λ-calculus) is a term N in β-normal form such that M −→∞

β N .

3. The Taylor expansion of λ-terms

Introduced by Ehrhard and Regnier as a particular case of the differential λ-calculus [ER03],
the resource λ-calculus [ER08] is the target language of the Taylor expansion of finite λ-terms:
a λ-term is translated as a set of resource terms — or, in a quantitative setting, as a (possibly
infinite) weighted sum of resource terms.

In this section, we extend the definition of Taylor expansion to infinite λ-terms. Note
that this generalisation is very straightforward, and it does not require to extend the target
of the translation. Indeed, Ehrhard and Regnier have defined Taylor expansion not only on
finite λ-terms but also on Böhm trees, and our generalisation boils down to observe that
there is already enough “room” to accommodate all terms in Λ001

∞ .

3.1. The resource λ-calculus. First, let us recall the definition of the resource λ-calculus.
A more detailed presentation can be found in [VA19; BM20].

Definition 3.1 (resource λ-terms). The set Λr of resource terms on a set of variables V is
defined inductively by:

Λr := V | λV.Λr | ⟨Λr⟩Λ!
r

Λ!
r := Mfin(Λr)

where Mfin(X) is the set of finite multisets on X.
We call resource monomials the elements of Λ!

r.

To denote indistinctly Λr or Λ!
r, we write Λ

(!)
r . The multisets are denoted t̄ = [t1, . . . , tn],

in an arbitrary order. Union of multisets is denoted multiplicatively, and terms are identified
to the corresponding singleton: for example, s · [t, u] = [u, s, t]. In particular, the empty
multiset is denoted 1. The cardinality of a multiset t̄ is denoted #t̄.

Let (2,∨,∧) be the semi-ring of boolean values, and 2⟨Λ(!)
r ⟩ the free 2-module generated

by Λ
(!)
r . We denote by capital S, T (resp. S̄, T̄ ) the elements of 2⟨Λr⟩ (resp. 2⟨Λ!

r⟩).
By construction, an element of 2⟨Λ(!)

r ⟩ is nothing but a finite set of resource terms (resp.
monomials), so that we find it more practical to stick to the additive notation: e.g., we will
write s+ S instead of {s} ∪ S, and we write 0 for the empty set of terms or monomials. In
addition, we extend the constructors of Λ(!)

r to 2⟨Λ(!)
r ⟩ by linearity:

λx.
∑
i

si :=
∑
i

(λx.si)

〈∑
i

si

〉∑
j

t̄j :=
∑
i,j

⟨si⟩ t̄j

(∑
i

si

)
· T̄ :=

∑
i

si · T̄ .

Remark 3.2. We work in a qualitative setting, where s + s = s, in opposition with the
original quantitative setting where the semi-ring (N,+,×) allows to count occurrences of a
resource term (for instance, s+ s = 2s). This is similar to what is done by, e.g., Barbarossa
and Manzonetto [BM20]. Our choice is motivated by the fact that, as discussed in the
introduction, the treatment of infinitary reduction forbids us to consider Taylor expansion
with coefficients in an arbitrary semi-ring (see Remark 3.17 for further details): we thus
restrict to the qualitative version of Taylor expansion, which sends a λ-term to a (possibly
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infinite) set of resource terms. We then find natural to consider a qualitative variant of the
resource calculus itself as well.

Definition 3.3 (substitution of resource terms). If s ∈ Λr, x ∈ V and t̄ = [t1, . . . , tn] ∈ Λ!
r,

we define:

s⟨t̄/x⟩ :=


∑
σ∈Sn

s
[
tσ(i)/xi

]
if degx(s) = n

0 otherwise
where degx(s) is the number of free occurrences of x in s, x1, . . . , xn is an arbitrary enumer-
ation of these occurrences, and s

[
tσ(i)/xi

]
is the term obtained by formally substituting tσ(i)

to each corresponding occurrence xi.

A more fine-grained definition can be found in [ER03; ER08], where substitution is built
as the result of a differentiation operation: s⟨t̄/x⟩ :=

(
∂ns
∂xn · t̄

)
[0/x].

Definition 3.4 (resource reduction). The simple resource reduction 7−→r ⊂ Λ
(!)
r × 2⟨Λ(!)

r ⟩ is
the smallest relation such that for every s, x and t̄, ⟨λx.s⟩ t̄ 7−→r s⟨t̄/x⟩ holds, and closed
under:

s 7−→r S
(λr)

λx.s 7−→r λx.S

s 7−→r S
(@lr)

⟨s⟩ t̄ 7−→r ⟨S⟩ t̄

t̄ 7−→r T̄
(@rr)

⟨s⟩ t̄ 7−→r ⟨s⟩ T̄
s 7−→r S

(!r)
s · t̄ 7−→r S · t̄

This relation is extended to −→r ⊂ 2⟨Λr⟩ × 2⟨Λr⟩ by the rule:
s0 7−→r T0

(
si 7−→?

r Ti

)n
i=1

(Σr)∑n
i=0 si −→r

∑n
i=0 Ti

Remark 3.5. Some authors, like [BM20], prefer the following alternative:
s 7−→r S s /∈ T

(Σ′
r)

s+ T −→r S + T
Both versions define the same normal forms, but do not induce the same dynamics. In

particular, (Σ′
r) preserves the termination of −→∗

r even in the qualitative setting, whereas
(Σr) allows to reduce s to s+ S whenever s 7−→r S, which obviously prevents termination.

However, the assumption s /∈ T in (Σ′
r) forbids to reduce contextually in a sum, meaning

that with this rule, S −→∗
r S′ and T −→∗

r T ′ do not straightforwardly imply S + T −→∗
r

S′ + T ′.4 Hence our choice to use (Σr) instead: ensuring the contextuality of −→r gives rise
to a strong confluence result, as recalled in Lemma 3.9 — whereas the reduction defined by
(Σ′

r) is “only” confluent.5 This technical choice will play a crucial role in the following: see in
particular Remark 3.15 and Lemma 3.18.

4We could find no counterexample to this implication, but no proof either. Our best effort allowed us to
prove that S −→∗

r S′ and S ∩ T = ∅ imply S + T −→∗
r S′ + T .

5Using the fact that (Σ′
r) is a particular case of (Σr), and the fact that the reduction using (Σr) is

confluent and normalising, we do know that each S ∈ 2⟨Λr⟩ reduces to a unique normal form nfr(S), and
that nfr(S + T ) = nfr(S) + nfr(T ), whatever rule we choose. This is sufficient to obtain confluence, but the
proof is thus indirect for the version using rule (Σ′

r). By contrast, the proof sketch in [BM20] claims to rely
on a direct proof of local confluence, but it is not given in full: in particular the case of sums is not discussed.
It can be worked out, but it is not straightforward, again because of the lack of contextuality.
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Definition 3.6. The size | − | of resource terms is defined inductively by:

|x| := 1

|λx.s| := 1 + |s|
|⟨s⟩ t̄| := |s|+ |t̄|

|[t1, . . . , tn]| := 1 +

n∑
i=1

|ti|.

The size of a finite sum S ∈ 2⟨Λr⟩ is given by |S| := maxs∈S |s|. By convention, |0| := 0.

Lemma 3.7. Given s ∈ Λr and S ∈ 2⟨Λr⟩, if s 7−→r S then |S| < |s|.

Proof. We first show that for s ∈ Λr, x ∈ V and t̄ = [t1, . . . , tn] ∈ Λ!
r, |s ⟨t̄/x⟩| < |⟨λx.s⟩ t̄|.

• If degx(s) ̸= n, |s ⟨t̄/x⟩| = |0| = 0 and |⟨λx.s⟩ t̄| ⩾ 3.
• Otherwise, |s ⟨t̄/x⟩| = |s| − n+

∑n
i=1 |ti| and |⟨λx.s⟩ t̄| = |s|+ 2 +

∑n
i=1 |ti|, which leads

to the expected inequality.
We obtain the desired result on 7−→r by induction.

Remark 3.8. Observe that, as a corollary, we obtain |S′| ⩽ |S| whenever S −→r S′ in
2⟨Λr⟩, but this inequality is not strict in general; indeed, if S −→r S′ and |T | ⩾ |S| then
S + T −→r S

′ + T but |S′ + T | = |S + T | = |T |.
Nonetheless, the previous Lemma ensures the normalisation of −→r, using the multiset

order on the sizes of elements in a finite sum, as we now show.

Lemma 3.9 (normalisation and confluence of −→r).
(1) The resource reduction −→r ⊂ 2⟨Λr⟩ × 2⟨Λr⟩ is weakly normalising.
(2) This reduction is strongly confluent in the following sense: whenever there are S, T1, T2 ∈

2⟨Λr⟩ as below, there is a U ∈ 2⟨Λr⟩ such that:

S

T1 T2

U

r r

r
?

r
?

In particular, it is confluent.

Proof. We prove (1). For (2), the proof is exactly the same as that of [VA19, Lem. 3.11].
To each S =

∑n
i=1 si (assuming the si’s are pairwise distinct), we can associate the

multiset ∥S∥ := [|s1|, . . . , |sn|]. Lemma 3.7 entails ∥S′ + T∥ ≺ ∥s+ T∥ whenever s 7−→r S
′

and s ̸∈ T — where ≺ denotes the Dershowitz–Manna ordering [DM79] induced on Mfin(N)
by <, which is well-founded. This entails the strong normalisation property for the version
of −→r restricted to rule (Σ′

r), hence the weak normalisation of the more general version we
use.

Notation 3.10. For s ∈ Λ
(!)
r , we write nfr(s) for its normal form.
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3.2. The Taylor expansion. Just like the Taylor expansion of a function in calculus, the
Taylor expansion of a term is a weighted, possibly infinite sum of finite approximants. In
our qualitative setting, the weights vanish and the Taylor expansion can be seen as a mere
set of approximants (usually called the support of the full quantitative Taylor expansion).
However, we describe these sets using an additive formalism, to be consistent with the finite
sums as defined above.

Notation 3.11. A possibly infinite set {si, i ∈ I} ⊂ Λr will be denoted as
∑

i∈I si.
In particular, finite sets will be assimilated to the corresponding finite sums in 2⟨Λr⟩.
Accordingly:

• s ∈
∑

i∈I si means that s belongs to the given set (and equivalently, in the finite case, has
coefficient 1 in the given sum),

• unions of sets are also denoted with the symbols + and
∑

,
• the singleton {s} is assimilated to the 1-term sum s.

In the finitary setting, the definition of the Taylor expansion relies on the following
induction:

T (x) := x, T (λx.M) :=
∑

s∈T (M) λx.s,

T ((M)N) :=
∑

s∈T (M)

∑
t̄∈T (N)! ⟨s⟩ t̄, T (M)! := Mfin(T (M)).

In our setting, the principle of the definition is exactly the same: to collect the finite
approximants of an infinitary term, one just has to inductively scan the term. However,
there is no possible “structural induction” on coinductive objects, so that we need to define
explicitly an approximation relation.

Definition 3.12 (Taylor expansion). The relation ⋉ of Taylor approximation is inductively
defined on Λr × Λ001

∞ by:6

(ax⋉)
x ⋉ x

s ⋉ M
(λ⋉)

λx.s ⋉ λx.M

s ⋉ M t̄ ⋉! N
(@⋉)

⟨s⟩ t̄ ⋉ (M)N

(ti ⋉ M)ni=1
(!⋉)

[t1, . . . , tn] ⋉! M

The Taylor expansion of a term M ∈ Λ001
∞ is the set T (M) :=

∑
s⋉M s.

Again, it is practical to extend ⋉ to sums of resource terms: we write
∑

i si ⋉ M
whenever ∀i, si ⋉ M , so that T (M) ⋉ M and T (M) is the greatest set of resource terms
with that property. Note that, due to the shape of rule (!⋉), T (M) is infinite as soon as M
contains an application.

Remark 3.13. We could very well consider a quantitative version of Taylor expansion:
it poses no particular problem to define the coefficient of s in T (M) by induction on s,
following the original definition for ordinary λ-calculus [ER06]. Establishing a quantitative
version of our simulation result, taking coefficients into account, is another matter, because
the reduction of infinite weighted sums of resource terms is not always well defined: see
Remark 3.17 below.

6The relation ⋉ could be equivalently defined by induction on resource terms, rather than by a system of
derivations: derivations are actually directed by the syntax of resource terms.
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3.3. Reducing (possibly infinite) sets of resource terms. So far, we are only able to
reduce finite sums of resource terms (using −→r), but the Taylor expansion of a term is an
infinite sum in general. The following definition enables us to lift −→∗

r from Λr × 2⟨Λr⟩ to
P(Λr)× P(Λr).

Definition 3.14. Let X be a set, and −→ ⊂ X × 2⟨X⟩ a relation. We define a reduction
−̃→ ⊂ P(X)× P(X) by stating that A −̃→ B if we can write:

A =
∑
i∈I

ai , B =
∑
i∈I

Bi and ∀i ∈ I, ai −→ Bi,

where I is a (possibly infinite) set of indices and, for each i ∈ I, ai ∈ X and Bi ∈ 2⟨X⟩.

In the following, we consider the relation −̃→∗
r on sets of resource terms.

Remark 3.15. As a direct consequence of the definition, given two sets S,S ′ ∈ P(Λr), we
have S −̃→∗

r S ′ whenever we can write:

S ′ =
∑
s∈S

S′
s and ∀s ∈ S, s −→∗

r S
′
s. (i)

Note in particular that the length of each reduction s −→∗
r S

′
s might depend on s, and is not

bounded in general, which will be crucial in the following.

It turns out that condition (i) is in fact equivalent to the definition of S −̃→∗
r S ′.

Lemma 3.16. We have S −̃→∗
r S ′ iff condition (i) holds.

Proof. Due to the way we defined −→r from 7−→r, we have S −→∗
r S′ iff we can write

S =
∑n

i=1 si and S′ =
∑n

i=1 S
′
i with si −→∗

r S′
i for 1 ⩽ i ⩽ n. In particular s −→∗

r S′ iff
we can write S′ =

∑n
i=1 S

′
i with n > 0 and s −→∗

r S′
i for 1 ⩽ i ⩽ n — note that this latter

equivalence holds only because we consider finite sets of terms rather than formal sums, so
that s =

∑n
i=1 s.

Hence condition (i) holds iff we can write S =
∑

i∈I si and S ′ =
∑

i∈I S
′
i so that for

each i ∈ I, si −→∗
r S′

i, and furthermore for each s ∈ Λr, {i ∈ I, si = s} is finite. But this
finiteness condition is always fulfilled: Lemma 3.7 entails that |S′| ≤ |s| whenever s −→∗

r S
′,

and since moreover the free variables of S′ are also free in s, we obtain that {S′, s −→∗
r S

′}
is finite.

Observe that several steps in the previous proof rely implicitly on the contextuality of
−→∗

r , obtained thanks to rule (Σr), as stressed in Remark 3.5.

Remark 3.17. The proof of Lemma 3.16 also shows that −̃→∗
r is in fact a variant of the

relation on (possibly infinite) linear combinations of resource terms introduced by the second
author in a quantitative setting, in order to simulate the β-reduction of ordinary λ-terms
[VA17; VA19, Def. 5.4].

The only difference is that the underlying reduction on resource terms is the iterated
reduction −→∗

r rather than a parallel variant of −→r. Indeed, we want to simulate −→∞
β ,

which amounts to a possibly infinite sequence of β-reductions: as discussed in the introduction,
we cannot bound the number of reductions to be performed on resource terms in the simulation
of one step of −→∞

β , and we are forced to consider the reflexive and transitive closure of
resource reduction instead — the only point of parallel resource reduction was precisely to
avoid the need to consider −→∗

r in the simulation of a single β-reduction step.
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In particular, we do face obstacles to considering a quantitative version of reduction, as
studied in [VA19]. For instance, observe that the Taylor expansion of the 001-infinitary term
(λx.x)∞ contains each resource term of the shape

⟨λx.x⟩k [s] := ⟨λx.x⟩ [· · · [⟨λx.x⟩ [s]] · · · ]︸ ︷︷ ︸
k nested linear applications

where s is itself any fixed approximant of (λx.x)∞. Each ⟨λx.x⟩k [s] reduces to s (in k steps):
in particular,

∑
k∈N ⟨λx.x⟩k [s] −̃→∗

r

∑
k∈N s. If we were to take coefficients into account we

would have to deal with infinite sums of coefficients. This is precisely why we stick to the
qualitative setting.

Lemma 3.18.

(1) −̃→∗
r is reflexive and transitive.

(2) (−̃→r)
∗ ⊆ −̃→∗

r.

Proof. (1) Reflexivity is immediate: A =
∑

a∈A{a} with a −→∗
r a. For transitivity, consider

A −̃→∗
r B −̃→∗

r C, that is B =
∑

a∈ABa with a −→∗
r Ba, and C =

∑
b∈B Cb with

b −→∗
r Cb. From the latter, we have Ba −→∗

r

∑
b∈Ba

Cb for each a. Finally:

C =
∑
a∈A

∑
b∈Ba

Cb and ∀a ∈ A, a −→∗
r Ba −→∗

r

∑
b∈Ba

Cb,

that is A −̃→∗
r C.

(2) We have −→r ⊂ −→∗
r, from which we deduce −̃→r ⊂ −̃→∗

r, and finally (−̃→r)
∗ ⊆(

−̃→∗
r

)∗
= −̃→∗

r from (1).

Notation 3.19. For every S ∈ P(Λ
(!)
r ), we write its normal form ñfr(S) =

∑
s∈S nfr(s).

Observe that S −̃→∗
r ñfr(S), because s −→∗

r nfr(s) for each s ∈ S.

4. Simulating the infinitary reduction

The goal of this part is to simulate the infinitary reduction through the Taylor expansion,
that is to obtain the following result:

if M −→∞
β N , then T (M) −̃→∗

r T (N).

We first show that the result holds if M −→∗
β N (Lemma 4.2). Then we decompose −→∞

β

into finite “min-depth” steps −→∗
β⩾d followed by an infinite −→∞

β⩾d (Lemma 4.11), and we
refine this decomposition into a tree of (min-depth resource) reductions using the Taylor
expansion (Corollary 4.14). Finally, after having related the size and height of resource
terms, we conclude with a diagonal argument that enables us to “skip” the part related to
−→∞

β⩾d in each branch of the aforementioned tree (Theorem 4.21).
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4.1. Simulation of the finite reductions. As a first step, we want to simulate substitution
and finite β-reduction through the Taylor expansion. This follows a well-known path, similar
to the finitary calculus [VA17].

Lemma 4.1 (simulation of the substitution). Let M,N ∈ Λ001
∞ be terms, and x ∈ V be a

variable. Then:
T (M [N/x]) =

∑
s∈T (M)

∑
t̄∈T (N)!

s⟨t̄/x⟩ .

Proof. We proceed by double inclusion. First, we show that for all derivation u ⋉ M [N/x],
there exist derivations s ⋉ M and t ⋉! N such that u ∈ s⟨t̄/x⟩. We do so by induction on
u ⋉ M [N/x], considering the possible cases for M :
• If M = x then M [N/x] = N , hence u ⋉ N . Then we can set s := x and t̄ := [u].
• If M = y ̸= x then M [N/x] = y, hence u = y. Then we can set s := y and t̄ := 1.
• If M = λy.M ′ then M [N/x] = λy.M ′[N/x], hence we must have u = λy.u′ with u′ ⋉
M ′[N/x]. The induction hypothesis yields s′ ⋉ M ′ and t̄ ⋉! N such that u′ ∈ s′⟨t̄/x⟩.
Then we can set s := λy.s′.

• If M = (M ′)N ′ then M [N/x] = (M ′[N/x])M ′′[N/x], hence we must have u = ⟨u′⟩ ū′′ with
u′ ⋉ M ′[N/x] and ū′′ ⋉! M ′′[N/x]. Writing ū′′ = [u′′1, . . . , u

′′
n], this means u′′i ⋉ M ′′[N/x]

for 1 ≤ i ≤ n. The induction hypothesis applied to u′ ⋉ M ′[N/x] yields s′ ⋉ M ′ and
t̄0 ⋉! N such that u′ ∈ s′⟨t̄0/x⟩. The induction hypothesis applied to each u′′i ⋉ M ′′[N/x]
yields s′′i ⋉ M ′′ and t̄i ⋉! N such that u′′i ∈ s′′i ⟨t̄i/x⟩. Then we can set s := ⟨s′⟩ [s′′1, . . . , s′′n]
and t̄ := t̄0 · · · · · t̄n.

This concludes the first inclusion. Conversely, let us show that for all derivations s ⋉ M
and t̄ ⋉! N , s⟨t̄/x⟩ ⋉ M [N/x]. We proceed by induction on the derivation s ⋉ M :
• If s = x ⋉ x = M and t̄ = [t] ⋉! N , then s⟨t̄/x⟩ = t ⋉ N = M [N/x].
• If s = y ⋉ y = M and t̄ = 1 ⋉! N , then s⟨t̄/x⟩ = y ⋉ y = M [N/x].
• If s is a variable, but none of the previous two cases apply, then we have s⟨t̄/x⟩ = 0 ⋉
M [N/x] for free.

• If s = λy.s′ = λy.P = M with s′ ⋉ P , then by induction for any derivation t̄ ⋉! N ,
we have s′⟨t̄/x⟩ ⋉ P [N/x]. Applying the rule λ⋉ to each summand of s′⟨t̄/x⟩ gives
s⟨t̄/x⟩ = λy.s′⟨t̄/x⟩ ⋉ λy.P [N/x] = M [N/x].

• If s = ⟨s′⟩ s̄′′ ⋉ (P )Q = M with s′ ⋉ P and s̄′′ = [s′′1, . . . , s
′′
m] ⋉! Q. Fix t̄ ⋉! N .

For each v ∈ s⟨t̄/x⟩, there are monomials t̄0, . . . , t̄m such that t̄ = t̄0 · · · · · t̄m and
v ∈ ⟨s′⟨t̄0/x⟩⟩ [s′′1⟨t̄1/x⟩ , . . . , s′′m⟨t̄m/x⟩]. Observing that t̄i ⋉! N for 0 ≤ i ≤ m, the
induction hypothesis yields:
– s′⟨t̄0/x⟩ ⋉ P [N/x],
– and, for 1 ≤ i ≤ m, s′′i ⟨t̄i/x⟩ ⋉ Q[N/x].
We obtain v ⋉ (P [N/x])Q[N/x] = M [N/x] by applying the rules (@⋉) and (!⋉). Hence
s⟨t̄/x⟩ ⋉ M [N/x].

Lemma 4.2 (simulation of the finitary reduction). If M −→∗
β N , then T (M) −̃→∗

r T (N).

Proof. We first show the result for M −→β N , by induction on the corresponding derivation.
• Case (axβ). Take M = (λx.P )Q β0 P [Q/x] = N , then:

T (M) = T ((λx.P )Q) =
∑

s∈T (λx.P )

∑
t̄∈T (Q)!

⟨s⟩ t̄ =
∑

s∈T (P )

∑
t̄∈T (Q)!

⟨λx.s⟩ t̄.
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Since ⟨λx.s⟩ t̄ −→r s ⟨t̄/x⟩, we obtain from Lemma 4.1:

T (M) −̃→r

∑
s∈T (P )

∑
t̄∈T (Q)!

s⟨t̄/x⟩ = T (P [Q/x]) = T (N).

• Case (λβ). Take M = λx.P −→β λx.P ′ = N , with P −→β P ′. By induction, we have
T (P ) −̃→∗

r T (P ′), that is T (P ′) =
∑

s∈T (P ) S
′
s with s −→∗

r S
′
s. Then:

T (M) =
∑

s∈T (P )

λx.s and T (N) =
∑

s′∈T (P ′)

λx.s′ =
∑

s∈T (P )

λx.S′
s,

with λx.s −→∗
r λx.S

′
s, so T (M) −̃→∗

r T (N).
• Case (@lβ): similar to the previous one.
• Case (@rβ). Take M = (P )Q −→β (P )Q′ = N , with Q −→β Q′. By induction, we have
T (Q) −̃→∗

r T (Q′), that is T (Q′) =
∑

t∈T (Q) T
′
t with t −→∗

r T
′
t . Then:

T (M) =
∑

s∈T (P )

∑
t̄∈T (Q)!

⟨s⟩ t̄

and:

T (N) =
∑

s∈T (P )

∑
t̄′∈T (Q′)!

⟨s⟩ t̄′

=
∑

s∈T (P )

∑
k∈N

∑
t′1∈T (Q′)

· · ·
∑

t′k∈T (Q′)

⟨s⟩ [t′1, . . . , t′k]

=
∑

s∈T (P )

∑
k∈N

∑
t1∈T (Q)

· · ·
∑

tk∈T (Q)

⟨s⟩ [T ′
t1 , . . . , T

′
tk
]

=
∑

s∈T (P )

∑
t̄∈T (Q)!

⟨s⟩ [T ′
t1 , . . . , T

′
t#t̄
]

Yet for any t̄ ∈ T (Q) and for all ti ∈ t̄, ti −→∗
r T ′

ti , so ⟨s⟩ t̄ −→∗
r ⟨s⟩ [T ′

t1 , . . . , T
′
t#t̄
]. This

leads to T (M) −̃→∗
r T (N).

We conclude in the general case M −→∗
β N using Lemma 3.18.

4.2. A “step-by-step” decomposition of the reduction. Since an infinitary reduction
must reduce redexes whose depth tends to infinity, we want to decompose reductions into an
infinite succession of finite reductions occuring at lower-bounded depth (in the following, we
name these min-depth reductions, for reductions occuring “at a minimal depth”). As a side
consequence, we obtain a result of (weak) standardisation for Λ001

∞ .

Definition 4.3 (min-depth finitary β-reduction). The reduction −→β⩾d ⊂ Λ001
∞ × Λ001

∞ is
defined for all d ∈ N by the rules:

M −→β N
(axβ⩾0)

M −→β⩾0 N

M −→β⩾d+1 N
(λβ⩾d+1)

λx.M −→β⩾d+1 λx.N

M −→β⩾d+1 N
(@lβ⩾d+1)

(M)P −→β⩾d+1 (N)P

M −→β⩾d N
(@rβ⩾d+1)

(P )M −→β⩾d+1 (P )N
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Remark 4.4. It is easy to check that if M −→β⩾d N then M −→β N , and M −→β⩾d′ N
whenever d ⩾ d′. Moreover, one can show by induction on d that −→∗

β⩾d can be defined
directly by the following rules:

M −→∗
β M ′

(ax∗β⩾0)
M −→∗

β⩾0 M
′ (V∗

β⩾d+1)
x −→∗

β⩾d+1 x

M −→∗
β⩾d+1 M

′

(λ∗
β⩾d+1)

λx.M ′ −→∗
β⩾d+1 λx.M

′

M −→∗
β⩾d+1 M

′ N −→∗
β⩾d N ′

(@∗
β⩾d+1)

(M)N −→∗
β⩾d+1 (M

′)N ′

and the infinitary version to be defined below will follow the same pattern.

Definition 4.5 (min-depth resource reduction). The reduction 7−→r⩾d ⊂ Λ
(!)
r × 2⟨Λ(!)

r ⟩ is
defined for all d ∈ N by the rules:

s 7−→r S
(axr⩾0)

s 7−→r⩾0 S

s 7−→r⩾d+1 S
(λr⩾d+1)

λx.s 7−→r⩾d+1 λx.S

s 7−→r⩾d+1 S
(@lr⩾d+1)

⟨s⟩ t̄ 7−→r⩾d+1 ⟨S⟩ t̄

t̄ 7−→r⩾d+1 T̄
(@rr⩾d+1)

⟨s⟩ t̄ 7−→r⩾d+1 ⟨s⟩ T̄

s 7−→r⩾d S
(!r⩾d+1)

s · t̄ 7−→r⩾d+1 S · t̄

where d ∈ N. We also extend 7−→r⩾d to −→r⩾d ⊂ 2⟨Λr⟩ × 2⟨Λr⟩ in the same way as in
Definition 3.4 by adding a rule (Σr⩾d).

Lemma 4.6 (simulation of min-depth finitary reduction). Let M,N ∈ Λ001
∞ be terms, and

d ∈ N. If M −→∗
β⩾d N , then T (M) −̃→∗

r⩾d T (N).

Proof. By induction on −→∗
β⩾d. In the case (axβ⩾0), just apply Lemma 4.2. In the other

cases, the proof is analogous to the corresponding cases in Lemma 4.2.

Definition 4.7 (min-depth infinitary β-reduction). The reduction −→∞
β⩾d is defined for all

d ∈ N by the rules:

M −→∞
β M ′

(ax∞β⩾0)
M −→∞

β⩾0 M
′ (V∞

β⩾d+1)x −→∞
β⩾d+1 x

M −→∞
β⩾d+1 M

′

(λ∞
β⩾d+1)

λx.M ′ −→∞
β⩾d+1 λx.M

′

M −→∞
β⩾d+1 M

′ N −→∞
β⩾d N ′

(@∞
β⩾d+1)

(M)N −→∞
β⩾d+1 (M

′)N ′

where d ∈ N∗.

Lemma 4.8. Each relation −→∞
β⩾d is reflexive and transitive, and moreover such that

−→∞
β⩾d+1 ⊆ −→∞

β⩾d ⊆ −→∞
β .

Proof. Reflexivity and transitivity of −→∞
β⩾0 are derived from that of −→∞

β . Reflexivity of
each −→∞

β⩾d follows by induction on d: in the inductive step, we reason by induction on the
top-level (inductive only) structure of terms. Transitivity of each −→∞

β⩾d follows, again by
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a straightforward induction on d, and by induction on derivations of −→∞
β⩾d. The identity

−→∞
β⩾0 = −→∞

β is straightforward. The inclusion −→∞
β⩾1 ⊆ −→∞

β is proved by induction
on the derivations of −→∞

β⩾1, using the reflexivity and transitivity of −→∞
β . The inclusion

−→∞
β⩾d+1 ⊆ −→∞

β⩾d follows by induction on d, and then by induction on the derivations of
−→∞

β⩾d+1.

Lemma 4.9. If M −→∞
β M ′, then there exists a term M0 ∈ Λ001

∞ such that M −→∗
β

M0 −→∞
β⩾1 M

′.

Proof. We define M0 and the reduction M0 −→∞
β⩾1 M

′ by reasoning on the inductive layer
of the reduction M −→∞

β M ′.
• Case (ax∞β ), M −→∗

β x = M ′. We can set M0 := x −→∞
β⩾1 M ′, using the reflexivity of

−→∞
β⩾1.

• Case (λ∞
β ), M −→∗

β λx.P and M ′ = λx.P ′ with P −→∞
β P ′. The induction hypothesis

yields P0 such that P −→∗
β P0 −→∞

β⩾1 P ′, and we can set M0 := λx.P0 and obtain
M0 −→∞

β⩾1 M
′ by rule (λ∞

β⩾1).
• Case (@∞

β ), M −→∗
β (P )Q and M ′ = P ′Q′ with P −→∞

β P ′ and Q −→∞
β Q′. The induction

hypothesis applies to the first reduction, which yields P0 such that P −→∗
β P0 −→∞

β⩾1 P
′.

Rule (ax∞β⩾0) entails Q −→∞
β⩾0 Q′. We can set M0 := (P0)Q, and obtain M0 −→∞

β⩾1 M ′

by rule (@∞
β⩾1).

Lemma 4.10. If M −→∞
β⩾d M ′, then there exists a term Md ∈ Λ001

∞ such that M −→∗
β⩾d

Md −→∞
β⩾d+1 M

′.

Proof. We define Md and the reductions M −→∗
β⩾d Md −→∞

β⩾d+1 M ′ by induction on the
reduction M −→∞

β⩾d M ′. The case of rule (ax∞β⩾0) is given by the previous Lemma. All the
other cases are straightforward using the induction hypothesis.

Lemma 4.11. For all M,N ∈ Λ001
∞ such that M −→∞

β N , there is a sequence of terms
(Md)d∈N such that for all d ∈ N:

M = M0 −→∗
β⩾0 M1 −→∗

β⩾1 M2 −→∗
β⩾2 · · · −→∗

β⩾d−1 Md −→∞
β⩾d N.

Proof. We construct the sequence (Md)d∈N inductively, by applying the previous Lemma.

Remark 4.12 (standardisation for −→∞
β ). The decomposition of Lemma 4.11 can be slightly

improved: if M −→∞
β N , there exist M0,M1,M2, · · · ∈ Λ001

∞ such that, for all d ∈ N:

M = M0 −→∗
β=0 M1 −→∗

β=1 M2 −→∗
β=2 · · · −→∗

β=d−1 Md −→∞
β⩾d N

where −→β=d is defined as expected. This consequence is a weak counterpart to Curry and
Feys’ standardisation theorem for the λ-calculus [CF58]. Another, similar, standardisation
theorem has been proved for Λ111

∞ by Endrullis and Polonsky, using coinductive techniques
[EP13].

Sketch of proof. Using a classical result [Bar84, lemma 11.4.6] which can be easily adapted to
Λ001

∞ , M −→∗
β N can be decomposed into head and internal reductions: M −→∗

h M ′ −→∗
i N .

Using this, one can prove by induction on N that M −→∗
β=0 M1 −→∗

β⩾1 N . Indeed, we can
write either

N = λx1 . . . xm.(. . . ((y)Q1) . . . )Qn
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in case it is a head normal form, or

N = λx1 . . . xm.(. . . ((λz.P )Q0) . . . )Qn

if it has a head redex; and then by the definition of internal reduction we must have
respectively

M ′ = λx1 . . . xm.(. . . ((y)Q′
1) . . . )Q

′
n

or
M ′ = λx1 . . . xm.(. . . ((λz.P ′)Q′

0) . . . )Q
′
n

with Q′
i −→∗

β Qi for each i, and also P ′ −→∗
β P in the second case. In the case of a head

normal form, we obtain M ′ −→∗
β⩾1 N so we can set M1 := M ′ directly. In the other case,

we use the induction hypothesis on P ′, to obtain P1 such that P ′ −→∗
β=0 P1 −→∗

β⩾1 N , and
then set

M1 := λx1 . . . xm.(. . . ((λz.P1)Q
′
0) . . . )Q

′
n

so that M −→∗
β=0 M

′ −→∗
β=0 M1 −→∗

β⩾1 N .
Then one deduces that M −→∗

β⩾d N implies M −→∗
β=d Md −→∗

β⩾d+1 N , by induction
on the derivation of M −→∗

β⩾d N . Standardisation follows by applying this result to the
sequence of reductions obtained by Lemma 4.11.

We do not detail the proof (nor the definition of −→∗
β=d) further, because this standard-

isation result is not used in the following: at this point of the paper, the interested reader
already has all the tools to complete the construction.

4.3. Decomposing the decomposition. Each finite, min-depth reduction occuring in the
decomposition of Lemma 4.11 can be simulated by the Taylor expansion. Using this fact, we
can track the successive reducts of each approximant in the Taylor expansion of the original
term M , providing a decomposition of each T (Md) into finite sums of approximants.

Lemma 4.13 (additive splitting). Let S, T ⊂ Λr be sets, and d ∈ N. If S −̃→∗
r⩾d T then,

whenever we write S =
∑

i∈I Si where each Si is a finite sum, there exist finite sums Ti for
i ∈ I, such that T =

∑
i∈I Ti and ∀i ∈ I, Si −→∗

r⩾d Ti.

Proof. For each i ∈ I, write Si =
∑

j∈Ji si,j with si,j ∈ Λr, so that S =
∑

i∈I
∑

j∈Ji si,j .

Since S −̃→∗
r⩾d T and using Remark 3.15, there are finite sums Ts for s ∈ S such that

T =
∑

s∈S Ts and ∀s ∈ S, s −→∗
r⩾d Ts. Define, for each i ∈ I, Ti :=

∑
j∈Ji Tsi,j . It is

straightforward to prove that for all i ∈ I, Si −→∗
r⩾d Ti (by induction on the sum of the

lengths of reductions si,j −→∗
r⩾d Tsi,j for j ∈ Ji).

Corollary 4.14. Let M,N ∈ Λ001
∞ be terms such that M −→∞

β N , and (Md)d∈N given by
Lemma 4.11. If T (M) =

∑
i∈I si, then for each d ∈ N there exist finite sums (Td,i)i∈I such

that:
(1) ∀i ∈ I, T0,i = si,
(2) ∀d ∈ N, T (Md) =

∑
i∈I Td,i,

(3) ∀d ∈ N, ∀i ∈ I, Td,i −→∗
r⩾d Td+1,i.

Proof. For each i ∈ I, set T0,i := si and define Td,i by induction on d using the previous
lemma and the fact that T (Md) −̃→∗

r⩾d T (Md+1), which is a consequence of Lemma 4.6.
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4.4. Height of a resource term. We show a few properties of the interplay between the
size and the height (wrt. the 001-depth) of a term, that will play a crucial role in the main
proof.

Definition 4.15 (height of resource terms). The height h001(·) of resource terms is defined
inductively by:

h001(x) := 0

h001(λx.s) := h001(s)

h001(⟨s⟩ t̄) := max
(
h001(s), h001(t̄)

)
h001([t1, . . . , tn]) := 1 + max

1⩽i⩽n
h001(ti)

The height of a finite sum S ∈ 2⟨Λr⟩ is given by h001(S) := maxs∈S h001(s) — by convention,
h001(0) = 0.

Lemma 4.16. For all S ∈ 2⟨Λr⟩, h001(S) ⩽ |S|.

Proof. Show the result for s ∈ Λr by an immediate induction on s. Conclude by taking the
maximum over s ∈ S.

Lemma 4.17. Let S ∈ 2⟨Λr⟩ be a finite sum of resource terms and d ∈ N such that
d > h001(S). Then there is no reduction S −→r⩾d S′.

Proof. The result immediately follows from the fact that given d, s and S′, if s 7−→r⩾d S′

then d ⩽ h001(s). We prove this by induction on the derivation s 7−→r⩾d S′.

• Case (axr⩾0), d = 0 and the result is trivial.
• Case (λr⩾d+1), s = λx.u and S′ = λx.U ′ with u −→r⩾d+1 U

′. We conclude directly by the
induction hypothesis since h001(u) = h001(u).

• Cases (@lr⩾d+1) and (@rr⩾d+1) are similar to the previous one.
• Cases (!r⩾d+1), s̄ = [t] · ū and S̄′ = [T ′] · ū with t −→r⩾d T ′. By induction hypothesis, we

have d ⩽ h001(t), hence d+ 1 ⩽ 1 + h001(t) ⩽ max(1 + h001(t), h001(ū)) = h001(s̄).

4.5. The diagonal argument. Finally, we conclude by a sort of diagonal argument: T (N)
is shown to be the union of the Ti,di , each of these finite sums being finitely reached from
some si ∈ T (M). In that sense, we obtain a pointwise finitary simulation of the infinitary
reduction.

The key definition is somehow complementary to the min-depth reduction: it is the
Taylor expansion at (upper-)bounded depth, defined hereunder. Concretely, T<d(M) is the
sum of all approximants s ∈ T (M) such that h001(s) < d.

Definition 4.18 (bounded-depth Taylor expansion). For all d ∈ N, the relation ⋉<d of
Taylor approximation at depth bounded by d is inductively defined on Λr × Λ001

∞ by ⋉<0 := ∅
and by the following rules:
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(ax⋉<d+1)
x ⋉<d+1 x

s ⋉<d+1 M
(λ⋉<d+1)

λx.s ⋉<d+1 λx.M

s ⋉<d+1 M t̄ ⋉!
<d+1 N

(@⋉<d+1)
⟨s⟩ t̄ ⋉<d+1 (M)N

(ti ⋉<d M)ni=1
(!⋉<d+1)

[t1, . . . , tn] ⋉!
<d+1 M

The Taylor expansion of a term M ∈ Λ001
∞ at depth bounded by d is the set T<d(M) :=∑

s⋉<dM
s. We also write T !

<d(M) :=
∑

s̄⋉!
<dM

s̄.

It should be clear that we have s ⋉<d M iff s ⋉ M and h001(s) < d, so that we obtain
the following Lemma.

Lemma 4.19. Let M ∈ Λ001
∞ be a term, S ∈ 2⟨Λr⟩ a finite sum of resource terms, and

d ∈ N. If S ⊂ T (M) and h001(S) < d, then S ⊂ T<d(M).

Lemma 4.20. Let M,N ∈ Λ001
∞ be terms. If M −→∞

β⩾d N then T<d(M) = T<d(N).

Proof. We prove the result by induction on M −→∞
β⩾d N .

• Case (ax∞β⩾0), T<0(M) = 0 = T<0(N).
• Case (V∞

β⩾d+1), N = x = M so T<d+1(M) = x = T<d+1(N).
• Case (λ∞

β⩾d+1), M = λx.P −→∞
β⩾d+1 λx.P ′ = N , with P −→∞

β⩾d+1 P ′. By induction,
T<d+1(P ) = T<d+1(P

′) so T<d+1(M) = T<d+1(N) using the rule (λ⋉<d+1).
• Case (@∞

β⩾d+1), M = (P )Q −→∞
β⩾d+1 (P

′)Q′ = N , with P −→∞
β⩾d+1 P and Q −→∞

β⩾d Q′.
By induction, T<d+1(P ) = T<d+1(P

′) and T<d(Q) = T<d(Q
′), so T !

<d+1(Q) = T !
<d+1(Q

′)
by the rule (!⋉<d+1), and finally T<d+1(M) = T<d+1(N) by the rule (@⋉<d+1).

Theorem 4.21 (simulation of the infinitary reduction). Let M,N ∈ Λ001
∞ be terms. If

M −→∞
β N , then T (M) −̃→∗

r T (N).

Proof. Suppose M −→∞
β N . By Lemma 4.11, we obtain terms M0,M1,M2, . . . ∈ Λ001

∞ such
that, for all d ∈ N:

M = M0 −→∗
β⩾0 M1 −→∗

β⩾1 M2 −→∗
β⩾2 · · · −→∗

β⩾d−1 Md −→∞
β⩾d N.

Writing T (M) =
∑

i∈I si, Corollary 4.14 yields finite sums Td,i such that:
(1) ∀i ∈ I, T0,i = si,
(2) ∀d ∈ N, T (Md) =

∑
i∈I Td,i,

(3) ∀d ∈ N, ∀i ∈ I, Td,i −→∗
r⩾d Td+1,i.

For i ∈ I, define di := |si|+ 1 and Ti := Tdi,i. Using Lemma 4.16, for all d ∈ N, h001(Td,i) ⩽
|Td,i| ⩽ |si|. Thus, h001(Ti) < di.
• From Lemma 4.19 and Lemma 4.20, we have Ti ⊂ T<di(Mdi) = T<di(N) ⊂ T (N). Hence,∑

i∈I Ti ⊆ T (N).
• Take t ∈ T (N). From Lemma 4.19, t ∈ T<h(N) where h := h001(t) + 1. With Lemma 4.20,
t ∈ T<h(Mh) ⊂ T (Mh), so ∃i ∈ I, t ∈ Th,i. For all d ⩾ h, Th,i −→∗

r⩾h Td,i so, by
Lemma 4.17, t ∈ Td,i.

Notice that for all d ⩾ di, Ti −→∗
r⩾di

Td,i so using again Lemma 4.17, Td,i = Ti.
Thus, if we take d ⩾ max(h, di), we obtain t ∈ Ti. This leads us to T (N) ⊆

∑
i∈I Ti.
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Finally, T (M) =
∑

i∈I si, T (N) =
∑

i∈I Ti, and ∀i ∈ I, si −→∗
r Ti. This implies the

theorem.

Remark 4.22 (models of Λ001
∞ ). An important consequence of this simulation result is that

any model M of Λr is also a model of Λ001
∞ , as soon as it makes sense to consider infinite sets

of resource terms: it suffices to interpret any term M ∈ Λ001
∞ by JMKM :=

⊕
s∈T (M)JsKM.

This is in particular the case of the well-known construction of a reflexive object D in the
category MRel [BEM07].

5. Head reduction and normalisation properties

In this final part, we show several consequences of Theorem 4.21. Most of them are
unsurprising, which is good news: we want Λ001

∞ to be a convenient framework to consider
reductions and normal forms of the usual λ-terms. In particular, head- and β-normalisation
can be characterised in a similar fashion as in the finitary λ-calculus, and we prove infinitary
counterparts to well-known results such as the Commutation theorem and the Genericity
lemma.

5.1. Solvability in Λ001
∞ . The definition of Λ001

∞ is tightly related to head reduction: the
inductive/coinductive structure of 001-infinitary terms follows the head structure of terms;
and since −→β⩾0 contains head reduction, Lemma 4.11 entails that any −→∞

β -reduction
involves only finitely many head reduction steps.

The good properties of head reduction should thus be preserved when moving from
Λ to Λ001

∞ . This is indeed the case, as expressed by Theorem 5.6: a 001-infinitary term is
head-normalising if and only if the head reduction strategy terminates. As a consequence,
we will show that the notion of solvability is completely preserved in Λ001

∞ .

Lemma 5.1 (head forms). Let M ∈ Λ001
∞ be a term, then either

M = λx1 . . . λxm. (. . . (((λz.N)P )Q1) . . . )Qn

or:
M = λx1 . . . λxm. (. . . ((y)Q1) . . . )Qn

where m,n ∈ N, x1, . . . , xm, y, z ∈ V and N,P,Q1, . . . , Qn ∈ Λ001
∞ . In the first case, (λy.N)P

is the head redex of M . In the second case, M is in head normal form (hnf).
Similarly, a resource term s ∈ Λr can always be written s = λx1 . . . λxm. ⟨. . . ⟨⟨u⟩ t̄1⟩ . . . ⟩ t̄n

where u is either a (head) redex or a variable.

Proof. By induction, following the inductive structure of M (we do not need to cross any
coinductive rule here, and remain within the first “coinductive level” of M ; thus, the proof is
exactly the same as in the finitary case).

Definition 5.2 (head reductions). The head reduction is the relation −→h defined on Λ001
∞

so that M −→h N if N is obtained by reducing the head redex of M .
Similarly, the resource head reduction is the relation 7−→rh defined on Λr such that

s 7−→rh T if T is obtained by reducing the head redex of s. It is extended to −→rh on 2⟨Λr⟩
in the same way as −→r.
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Notation 5.3 (head reduction operators). If M ∈ Λ001
∞ we set: H(M) := N if M −→h N ;

and H(M) := M if M is in hnf.
Similarly, if s ∈ Λr we set: Hr(s) := T if s 7−→rh T ; and H(s) := s if s is in hnf. This

operator is extended to 2⟨Λr⟩ by Hr (
∑

i si) :=
∑

iHr(si).

Lemma 5.4 (simulation of the head reduction operator). Let M ∈ Λ001
∞ be a term, then

Hr(T (M)) = T (H(M)).

Proof. Direct consequence of Lemma 4.1.

Lemma 5.5 (termination of the resource head reduction operator). Let S ∈ 2⟨Λr⟩ be a sum
of resource terms, then there exists k ∈ N such that Hk

r (S) is in hnf.

Proof. Given S ∈ 2⟨Λr⟩, write S = S′ + Shnf where Shnf contains the terms of S in hnf.
By definition of Hr, we have Hr(S) = Hr(S

′) + Shnf with |Hr(S
′)| < |S′| from Lemma 3.7

whenever S′ ̸= 0, so that ∥Hr(S)∥ ≺ ∥S∥ in this case — with the notation of Lemma 3.9.
We conclude by the well-foundedness of ≺.

Now we provide a characterisation of head-normalising infinitary terms based on their
Taylor expansion. In a finitary setting, this result has been folklore for some time [Oli18;
Oli20].

Theorem 5.6 (characterisation of head-normalising terms). Let M ∈ Λ001
∞ be a term, then

the following propositions are equivalent:
(1) there exists N ∈ Λ001

∞ in hnf such that M −→∞
β N ,

(2) there exists s ∈ T (M) such that nfr(s) ̸= 0,
(3) there exists N ∈ Λ001

∞ in hnf such that M −→∗
h N .

Proof. Suppose (1), that is M −→∞
β N = λx1 . . . λxm. (. . . ((y)N1) . . . )Nn. In particular,

T (N) contains t0 = λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ 1⟩ . . . ⟩ 1, which is normal. Using Theorem 4.21,
there exists s ∈ T (M) and T ∈ T (N) such that s −→∗

r t0 + T which proves (2).
Now, suppose that (2) holds, that is s −→∗

r t0 + T with t0 in normal form. According to
Lemma 5.5, there is a k ∈ N such that Hk

r (s) is in hnf. Thus, using confluence, there exists
a U ∈ 2⟨Λr⟩ such that: t0 + T −→∗

r U and Hk
r (s) −→∗

r U . Since t0 is in normal form, t0 ∈ U .
Thus, Hk

r (s) ̸= 0, so there exists a term

λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ t̄1⟩ . . . ⟩ t̄n ∈ Hk
r (s) ∈ Hk

r (T (M)) = T (Hk(M)),

by Lemma 5.4. As a consequence, Hk(M) has shape λx1 . . . λxm. (. . . ((y)M1) . . . )Mn, which
shows (3).

Finally, (1) is as immediate consequence of (3).

A first notable consequence of the previous result is the equivalence of head-normalisation
and solvability. In the finitary λ-calculus, this is a well-known theorem [Wad76]. The following
proof, based on the Taylor expansion and inspired by [Oli20], is much simpler than the
original one.

Definition 5.7 (solvability). A term M ∈ Λ001
∞ is said to be solvable in Λ (resp. in Λ001

∞ ) if
there exist x1, . . . , xm ∈ V and N1, . . . , Nn ∈ Λ (resp. Λ001

∞ ) such that

(. . . ((λx1 . . . λxm.M)N1) . . . )Nn −→∗
β λx.x (resp. −→∞

β ).

Otherwise, M is unsolvable.
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Corollary 5.8 (characterisation of solvable terms). Let M ∈ Λ001
∞ be a term, then the

following propositions are equivalent:
(1) M is solvable in Λ001

∞ ,
(2) M is head-normalising,
(3) M is solvable in Λ.

Proof. Suppose (1), i.e. there exists x1, . . . , xm ∈ V and N1, . . . , Nn ∈ Λ001
∞ such that

(. . . ((λx1 . . . λxm.M)N1) . . . )Nn −→∞
β λx.x ,

which is in hnf. Then, according to Theorem 5.6, there is an

s ∈ T ((. . . ((λx1 . . . λxm.M)N1) . . . )Nn)

such that nfr(s) ̸= 0. This resource term has shape

s = ⟨. . . ⟨⟨λx1 . . . λxm.u⟩ t̄1⟩ . . . ⟩ t̄n
with u ∈ T (M) and t̄i ∈ T (Ni). We must have nfr(u) ̸= 0, which leads to (2), again with
Theorem 5.6.

Now, suppose (2). Theorem 5.6 gives M −→∗
h λx1 . . . λxm. (. . . ((y)M1) . . . )Mn. Then:

• if y = xi, then (M)(KnI)(m) −→∞
β I,

• otherwise, ((λy.M)KnI) I(m) −→∞
β I,

using Notation 2.5 and the usual terms I := λx.x and K := λx.λy.x. This shows (3).
The implication from (3) to (1) is direct, by Lemma 2.13.

5.2. Normalisation, confluence and the Commutation Theorem. We shall now
address the key properties of normalisation and confluence in Λ001

∞ . It is known since
Kennaway et al.’s seminal paper [Ken+97] that, even though the infinitary λ-calculi are not
strongly normalising (in any version Λabc

∞ , there is no strongly convergent reduction from the
term Ω to a normal form), the so-called β⊥-reduction is normalising and confluent in Λ001

∞ ,
Λ101

∞ and Λ111
∞ . This is a confluence “up to a set of meaningless terms”, which are forced to

reduce to a constant ⊥ (this technique was introduced by [Ber96] and [Ken+97; KOV96]; for
a summary, see [BM22, § 6.3]). In the case of Λ001

∞ , the meaningless terms are the unsolvable
ones.

In this part, we use the Taylor expansion and a new version of Ehrhard and Regnier’s
Commutation theorem to give a simple presentation of normalisation, confluence, and a few
other noteworthy corollaries.

First, we have to add the constant ⊥ to our language, and to update the definition of
the reductions and of the Taylor expansion correspondingly.

Definition 5.9 (λ⊥-terms). Given a set of variables V, the set Λ001
∞⊥ of 001-infinitary

λ⊥-terms is defined by:

Λ001
∞⊥ := νY.µX. (V + λV.X + (X)Y +⊥) .

Definition 5.10 (β⊥-reduction). The binary relation ⊥0 is defined on Λ001
∞⊥ by:

⊥0 := {(M,⊥), M is unsolvable} ∪ {(λx.⊥,⊥), x ∈ V} ∪ {((⊥)M,⊥), M ∈ Λ001
∞⊥}.

The β⊥-reduction −→β⊥ is the contextual closure of β0∪⊥0. The infinitary β⊥-reduction
−→∞

β⊥ is the 001-strongly convergent closure of −→β⊥.
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Recall that, as underlined in Remark 2.14, a β⊥-normal form is a term that cannot be
reduced through −→β⊥ (and not through −→∞

β⊥, which is reflexive), and that the β⊥-normal
forms of M are the β⊥-normal terms N such that M −→∞

β⊥ N .

Definition 5.11 (Taylor expansion for ⊥). The Tayor expansion is extended to Λ001
∞⊥ by

defining ⋉ exactly as in Definition 3.12. This means that there is no approximant of ⊥, and
thereby T (⊥) = 0.

Remark 5.12. Observe that T (M) = 0 iff M = ⊥ or M = λx.M ′ or M = (M ′)N with
T (M ′) = 0. In particular, if T (M) = 0 and M ̸= ⊥ then M contains a subterm of the form
λx.⊥ or (⊥)N .

The following result is an extension of Theorem 4.21, ensuring that adding the constant
⊥ does not break all our previous work.

Corollary 5.13 (simulation of −→∞
β⊥). Let M,N ∈ Λ001

∞⊥ be λ⊥-terms. If M −→∞
β⊥ N ,

then T (M) −̃→∗
r T (N).

Proof. If M is unsolvable then M ⊥0 ⊥, and there is no N in hnf such that M −→∗
β N .

From Theorem 5.6, it follows that ∀s ∈ T (M), nfr(s) = 0, that is to say T (M) −̃→∗
r T (⊥).

If M = λx.⊥ or M = (⊥)M ′, then T (M) = T (⊥) = 0. This extends Lemma 4.2 to the
β⊥-reduction: if M −→∗

β⊥ N , then T (M) −̃→∗
r T (N). The rest of the proof is analogous to

Section 4.

The next definition concerns Böhm trees. Based on an idea by Böhm [Böh68] and
formally defined by Barendregt [Bar77], Böhm trees were introduced as a notion of infinite
normal form for the usual λ-calculus, giving account of the (potentially) infinite behaviour of
λ-terms. They rely on a coinductive definition (probably the first one in the study of the
λ-calculus), and are the normal forms of Λ001

∞ .

Definition 5.14 (Böhm tree). The Böhm tree of a term M ∈ Λ001
∞ is the λ⊥-term BT (M)

defined coinductively as follows:
• if M is solvable and M −→∗

h λx1 . . . λxm. (. . . ((y)M1) . . . )Mn, then:

BT (M) := λx1 . . . λxm. (. . . ((y)BT (M1)) . . . ) BT (Mn) ,

• if M is unsolvable, then BT (M) := ⊥.
This definition is extended to Λ001

∞⊥ by setting BT (⊥) := ⊥.

Notice again that every coinductive call to BT (−) occurs in the right side of an applica-
tion, that is to say under a rule (coI) carrying the ▷ modality.

Lemma 5.15. Let M ∈ Λ001
∞⊥ be a term

(1) BT (M) is in β⊥-normal form.
(2) If M is in β⊥-normal form then BT (M) = M .

Proof. (1) By induction on the definition of −→β⊥, we show that for any λ⊥-terms M and
N , if M −→β⊥ N then M is not a Böhm tree: in the base case, it is sufficient to
observe that a Böhm tree is never a β-redex nor a ⊥-redex; the contextuality cases are
straightforward.

(2) By coinduction on the definition of BT (M), using the fact that a β⊥-normal term is
either solvable or equal to ⊥.
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Lemma 5.16 (weak β⊥-normalisation). Let M ∈ Λ001
∞⊥ be a term, then M −→∞

β⊥ BT (M).
Furthermore, if M ∈ Λ001

∞ and BT (M) ∈ Λ001
∞ , then M −→∞

β BT (M).

Proof. We build a derivation of M −→∞
β⊥ BT (M) coinductively. If M is either unsolvable

or ⊥, we have M −→?
β⊥ ⊥ = BT(M) by definition. Otherwise, we have

M −→∗
h λx1 . . . λxm. (. . . ((y)M1) . . . )Mn .

In this case, we apply m times rule (λ∞
β ), then n times rule (@∞

β ), and proceed coinductively
to build derivations of Mi −→∞

β BT (Mi) for 1 ≤ i ≤ m.
If BT (M) ∈ Λ001

∞ , then the first case of the construction never occurs, and we obtain
M −→∞

β BT (M) instead.

The following two technical lemmas, already well-known in a finitary setting [VA19,
Facts 4.17 and 4.15], will be useful to show the unicity of β⊥-normal forms.

Lemma 5.17. Let M ∈ Λ001
∞⊥ be a term in β⊥-normal form, then T (M) is in normal form.

Proof. By contraposition, if some s ∈ T (M) contains a redex then so does M .

Lemma 5.18 (injectivity, almost). Let M,N ∈ Λ001
∞⊥ be terms. If T (M) = T (N), and if

neither M nor N contain a subterm of the form λx.⊥ or (⊥)M ′, then M = N .

Proof. By nested induction and coinduction on the structure of M :
• If M = ⊥, then T (N) = T (M) = 0, hence N = ⊥ by Remark 5.12.
• Likewise, if M = x, then T (N) = T (M) = {x} so x ⋉ N , and thus N = x.
• If M = λx.M ′, then T (N) = T (M) = λx.T (M ′). By assumption, M ′ ≠ ⊥ so, by

Remark 5.12, there exists s ∈ T (M ′) and then λx.s ⋉ N . Thus, ∃N ′ ∈ Λ001
∞⊥, N = λx.N ′.

Furthermore, we must have T (M ′) = T (N ′) so, by induction hypothesis, M ′ = N ′ and
finally M = N .

• If M = (M ′)M ′′, then T (N) = T (M) = ⟨T (M ′)⟩ T (M ′′)!. By assumption, M ′ ≠ ⊥ so, by
Remark 5.12, there exist s ∈ T (M ′) and t̄ ∈ T (M ′′)!, and then ⟨s⟩ t̄ ⋉ N . Thus, there
exist N ′, N ′′ ∈ Λ001

∞⊥ such that N = (N ′)N ′′. The fact that T (M) ̸= 0 together with the
injectivity of (s, t̄) 7→ ⟨s⟩ t̄ ensure that T (M ′) = T (N ′) and T (M ′′)! = T (N ′′)!, hence
T (M ′′) = T (N ′′). We deduce M ′ = N ′ by induction and proceed coinductively to prove
M ′′ = N ′′.

Remark 5.19. The previous lemma does establish the injectivity of T (−) when restricted
to Λ001

∞ .

Now we have all the necessary material available, we can state the Commutation theorem,
as well as some corollaries. Contrary to its original formulation [see ER06, p. 193], no specific
definition of T (BT (M)) is needed here thanks to the extension of the Taylor expansion to
infinitary λ⊥-terms.

Theorem 5.20 (Commutation theorem). For all term M ∈ Λ001
∞⊥, ñfr(T (M)) = T (BT (M)).

Proof. From Lemma 5.16, we know that M −→∞
β⊥ BT (M). Using the simulation theorem

(Corollary 5.13), we deduce that T (M) −̃→∗
r T (BT ((M))), which itself is in normal form

because BT (M) is, using Lemmas 5.15 and 5.17. This is the desired result (via Notation 3.19).
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From the Commutation theorem we can deduce the following two results, originally
proved in [Ken+97] and later reformulated as a particular case of confluence modulo any set
of strongly meaningless terms [Cza20; BM22].

Corollary 5.21 (unicity of β⊥-normal forms). Let M ∈ Λ001
∞⊥ be a term, then BT (M) is its

unique β⊥-normal form. Furthermore, if M ∈ Λ001
∞ and BT (M) ∈ Λ001

∞ , then the latter is
the unique β-normal form of M .

Proof. Suppose there is an N ∈ Λ001
∞⊥ in β⊥-normal form such that M −→∞

β⊥ N . Then
by Lemma 5.15 and Theorem 5.20, T (N) = T (BT (N)) = ñfr(T (N)) = ñfr(T (M)) =
T (BT (M)). Since neither BT (M) nor N (that are in β⊥-normal form) can contain a
subterm of the form λx.⊥ or (⊥)P , we can apply Lemma 5.18 and obtain N = BT(M).

Remark 5.22. For terms M,N ∈ Λ001
∞ , write M =T N whenever ñfr(T (M)) = ñfr(T (N)),

and M =B N whenever BT (M) = BT (N). Theorem 5.20 entails that M =B N implies
M =T N . The proof of the previous corollary can be adapted to obtain the reverse implication:
if M =T N then T (BT (M)) = T (BT (N)) by Theorem 5.20, and then Lemma 5.18 entails
BT (M) = BT (N).

This means in particular that all the models mentioned in Remark 4.22 are sensible, i.e.
they equate all unsolvable terms.

Corollary 5.23 (confluence of the β⊥-reduction). The reduction −→∞
β⊥ is confluent.

Proof. Given M,N,N ′ ∈ Λ001
∞⊥:

M

N

N ′ BT (N ′)

BT (N)
β⊥
∞

β⊥
∞

β⊥
∞

(Lem. 5.16)

β⊥
∞

(Lem. 5.16)

(Cor. 5.21)

Another consequence is the following characterisation of normalising terms, which again
is an infinitary counterpart to some folklore finitary result. Whereas the finitary case relies
on positive resource terms (terms with no occurrence of the empty multiset 1), we have to
refine this concept by considering d-positive terms, that is terms with no occurrence of 1 at
depth smaller than d.

Definition 5.24 (d-positive resource terms). Given an integer d ∈ N, the set Λ+d
r of

d-positive resource terms is defined inductively as follows:
• Λ+0

r := Λr,
• if d ⩾ 1, Λ+d

r := V | λV.Λ+d
r |

〈
Λ+d
r

〉
Λ!+d−1
r with Λ!+d

r := Mfin(Λ
+d
r ) \ {1}.

Corollary 5.25 (characterisation of normalising terms). Let M ∈ Λ001
∞ be a term, then the

following propositions are equivalent:
(1) there exists N ∈ Λ001

∞ in β-normal form such that M −→∞
β N ,

(2) for any d ∈ N, there exists s ∈ T (M) such that nfr(s) contains a d-positive term.

Proof. Suppose (1), that is to say BT (M) ∈ Λ001
∞ by Corollary 5.21. In particular, M is

solvable. By induction on d ∈ N:
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• Case d = 0. By solvability of M and Theorem 5.6 there is an s ∈ T (M) such that
nfr(s) ̸= 0, i.e. it contains a (0-positive) term.

• Case d ⩾ 1. Since M is solvable, M −→∗
β λx1 . . . λxm. (. . . ((y)M1) . . . )Mn and BT (M) =

λx1 . . . λxm. (. . . ((y)BT (M1)) . . . ) BT (Mn), with Mi −→∞
β BT (Mi) and BT (Mi) ∈ Λ001

∞ .
By induction, for every i there is an si ∈ T (Mi) such that nfr(si) contains a (d−1)-positive
ti. Then by Theorem 4.21 there are s ∈ T (M) and S, T ∈ 2⟨Λr⟩ such that:

s −→∗
r λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ [s1]⟩ . . . ⟩ [sn] + S

−→∗
r λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ [t1]⟩ . . . ⟩ [tn] + T

where λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ [t1]⟩ . . . ⟩ [tn] is in normal form and d-positive.
Conversely, we suppose (2) and establish BT (M) ∈ Λ001

∞ by nested induction and
coinduction on BT (M) ∈ Λ001

∞⊥. First note that (2) ensures that ñfr(T (M)) ≠ 0. Then
Theorem 5.6 entails that M is solvable, so

M −→∗
h λx1 . . . λxm. (. . . ((y)M1) . . . )Mn .

Now fix d ∈ N: (2) ensures that we can find s ∈ T (M) and t ∈ nfr(s) so that t is
(d+ 1)-positive. By Theorem 4.21, t ∈ T (BT (M)) so it has the shape

t = λx1 . . . λxm. ⟨. . . ⟨⟨y⟩ t̄1⟩ . . . ⟩ t̄n
where t̄i ∈ Λ!+d

r , i.e. each t̄i contains a normal and d-positive ti,1. By Theorem 4.21 again,
there are si ∈ T (Mi) such that ti,1 ∈ nfr(si). We have thus proved that (2) is valid for each
Mi. We proceed coinductively to establish BT (Mi) ∈ Λ001

∞ .

If the finitary case, normalisation is also equivalent to the termination of the left-parallel
reduction strategy, which plays the same role as the head strategy in Theorem 5.6 [Oli20,
Thm. 4.10]. In our setting, there is of course no finite reduction strategy reaching the
normal form of a term. A characterisation of the 001-normalising terms, called hereditarily
head-normalising (hhn) in the literature, has been shown by Vial by means of infinitary
non-idempotent intersection types [Via17; Via21], thus answering to the so-called “Klop’s
problem”. However, there is no hope for an effective characterisation, since hhn terms are
not recursively enumerable [Tat08].

5.3. Infinitary contexts and the Genericity Lemma. To conclude this paper, we use the
previous results to extend to Λ001

∞ a classical result in λ-calculus, the Genericity lemma [Bar84,
Prop. 14.3.24]. A similar extension has been proved using completely different techniques
[KOV96, § 5.3; Sal00, Thm. 20]. The intuition behind this lemma is that an unsolvable
subterm of a normalising term cannot contribute to its normal form (it is generic). This
justifies that unsolvables are taken as a class of meaningless terms — in fact, the unsolvables
are the largest non-trivial set of (formally defined) meaningless terms [SV11; BM22].

Definition 5.26 (context). The set Λ001
∞ L∗M of 001-infinitary contexts is defined by:

Λ001
∞ L∗M = νY.µX. (V + λV.X + (X)Y + ∗)

where ∗ is a constant called the “hole” (contexts are not quotiented by α-equivalence).
Given a context C ∈ Λ001

∞ L∗M and a term M ∈ Λ001
∞ , we denote as CLMM the term

obtained by substituting M for each occurrence of ∗ in C — like C[M/∗], but possibly
capturing the free variables of M .



34:32 R. Cerda and L. Vaux Auclair Vol. 19:4

Definition 5.27 (resource context). The set ΛrJ∗K of resource contexts is defined, as in
Definition 5.26, by adding the constant ∗ to Λr (again, without quotienting by α-equivalence).

Given a resource context c ∈ ΛrJ∗K and a resource monomial t̄ ∈ Λ!
r, we denote as cJt̄K

the sum of resource terms obtained by substituting each occurrence of ∗ in c with exactly
one element of t̄, or 0 if the cardinality of t̄ does not match the number of occurrences of ∗ —
again, like c ⟨t̄/∗⟩, but possibly capturing the free variables of t̄.

The Taylor expansion is extended to T : Λ001
∞ L∗M → P(ΛrJ∗K) by setting T (∗) := {∗}.

Lemma 5.28. Let C ∈ Λ001
∞ L∗M be a context and M ∈ Λ001

∞ be a term. Then:

T (CLMM) =
{
cJ t̄ K, c ∈ T (C), t̄ ∈ T (M)!

}
.

Proof. Direct consequence of Lemma 4.1.

Lemma 5.29 (characterisation of T by the d-positive elements). Let M,N ∈ Λ001
∞ be terms.

If for any d ∈ N there exists a d-positive sd ∈ T (M) ∩ T (N), then M = N .

Proof. Under the hypothesis, we establish M = N by nested induction and coinduction on
the structure of M .
• Case M = x. For d = 0, ∃s0 ∈ T (M) ∩ T (N). Since s0 ∈ T (M), s0 = x so N = x too.
• Case M = λx.M ′. Suppose ∀d ∈ N, ∃sd ∈ T (M) ∩ T (N). Since sd ∈ T (M), sd = λx.s′d

for some d-positive s′d. sd ∈ T (N), whence N = λx.N ′ for some N ′, and s′d ∈ T (N ′). By
induction, M ′ = N ′, so M = N .

• Case M = (M ′)M ′′. Suppose ∀d ∈ N, ∃sd ∈ T (M)∩T (N). Since sd ∈ T (M), sd = ⟨td⟩ ūd
for some td ∈ Λ+d

r and ūd ∈ Λ
!+(d−1)
r . Furthermore sd ∈ T (N), whence N = (N ′)N ′′ for

some N ′ and N ′′ such that td ∈ T (N ′) and ūd ∈ T (N ′′)!. Since ∀d ∈ N, td ∈ T (M ′)∩T (N ′)
the induction hypothesis gives M ′ = N ′. Moreover, ∀d ∈ N, by (d + 1)-positivity of
sd+1, ūd+1 must contain at least one element ud+1,1, which is d-positive and such that
ud+1,1 ∈ T (M ′′) ∩ T (N ′′). Thus we can proceed to establish M ′′ = N ′′ coinductively.

Using the previous work, we can state and show the infinitary Genericity lemma —
without any further hypotheses than in the finitary setting. Our proof is a refinement of
the (finitary) proof by Barbarossa and Manzonetto [BM20, Thm. 5.3]. As stressed by the
authors, the key feature of the Taylor expansion here is that a resource term cannot erase
any of its subterms (without being itself reduced to zero). However, in the infinitary setting,
a term is in general not characterised by a single element of its Taylor expansion, which
motivates the above characterisation by d-positive elements.

Theorem 5.30 (Genericity lemma). Let M ∈ Λ001
∞ be an unsolvable term and CL∗M be a

context in Λ001
∞ . If CLMM has a β-normal form C∗, then for any term N ∈ Λ001

∞ , CLNM −→∞
β

C∗.

Proof. Suppose CLMM −→∞
β C∗ in β-normal form. Then:

∀d ∈ N, ∃s ∈ T (CLMM), ∃td ∈ Λ+d
r , td ∈ nfr(s) by Corollary 5.25

hence

∀d ∈ N, ∃c ∈ T (C), ∃m̄ ∈ T (M)!, ∃td ∈ Λ+d
r , td ∈ nfr(cJm̄K) by Lemma 5.28.

Write m̄ = [m1, . . . ,mn] with n := deg∗(c). By unsolvability of M and Theorem 5.6, for
each 1 ≤ i ≤ n, mi −→∗

r 0, so by confluence (Lemma 3.9) there is a Td ∈ 2⟨Λr⟩ for each
d ∈ N such that:
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cJm̄K

cJ[0, . . . , 0︸ ︷︷ ︸
n times

]K

td + Td

r
∗

r ∗
r

∗

If ∗ appeared in c, then n = deg∗(c) ⩾ 1 and cJ[0, . . . , 0]K = 0, which is impossible. Thus,
there is no occurrence of ∗ in c, and cJ1K is (the α-equivalence class of) c.

Now, take any N ∈ Λ001
∞ . By Lemma 5.28, cJ1K ⋉ CLNM. Since cJ1K −→∗

r td + Td

we have td ∈ ñfr(T (CLNM)) = T (BT (CLNM)) by Theorem 5.20. Similarly, since we had
taken td ∈ nfr(s) for some s ⋉ CLMM, td ∈ T (BT (CLMM)) = T (C∗), recalling that
BT (CLMM) = C∗ by Corollary 5.21.

There is a d-positive td ∈ T (BT (CLNM)) for any d ∈ N, so we can apply Corollary 5.25
and deduce that BT (CLNM) ∈ Λ001

∞ . Since in addition we have td ∈ T (C∗), we obtain
BT (CLNM) = C∗ by Lemma 5.29 and CLNM −→∞

β C∗ by Lemma 5.16.

6. Conclusion

Summary. As the main result of this paper, we showed that the resource reduction of
Taylor expansions simulates the infinitary β-reduction of Λ001

∞ terms (Theorem 4.21). This
could be expected from Ehrhard and Regnier’s Commutation Theorem, which tightly relates
normalisation of the Taylor expansion and normal forms of Λ001

∞⊥ (aka. Böhm trees), but
remains remarkable in that it enables to simulate an infinitary dynamics with a finitary one.

Using this fact, we were able to give simple proofs of well-known properties of Λ001
∞⊥

like confluence (Corollary 5.23), weak normalisation (Lemma 5.16), unicity of normal forms
(Corollary 5.21). We also extended to infinitary terms several λ-calculus results like the
Commutation Theorem (Theorem 5.20), the characterisations of head- and β-normalisation
through Taylor expansion (Theorem 5.6 and Corollary 5.25), and we provided a new proof of
the infinitary Genericity Lemma (Theorem 5.30).

As we already underlined, we believe that these results suggest that Λ001
∞⊥ is a reasonable

extension of Λ to consider when adressing head-normalisation and Taylor expansion issues.
In particular, we were able to express the Commutation Theorem without any technical
patch for the treatment of Böhm trees and reduction towards them.

Further work. The question naturally arises whether the converse of Theorem 4.21 is also
true, that is whether M −→∞

β N whenever T (M) −̃→∗
r T (N). Similar issues have been

successfully addressed in the setting of the algebraic λ-calculus [Ker19; KV23], which suggests
such a conservativity result is within reach.

It is in fact possible to show that for ordinary λ-terms M,N ∈ Λ, T (M) −̃→∗
r T (N)

implies M −→∗
β N . In the infinitary setting, however, the conjecture fails: we were able to

design terms A, Ā ∈ Λ001
∞ such that T (A) −̃→∗

r T (Ā), and such that there exists no reduction
A −→∞

β Ā. These results are the subject of a separate paper [CV23].
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One could also ask whether the Taylor expansion can be further extended to the Λ101
∞

and Λ111
∞ infinitary calculi, looking for a counterpart to the Commutation Theorem involving

Lévy-Longo and Berarducci trees. We believe this can be done with only minor adaptions in
the case of Lévy-Longo trees, but not in the case of Berarducci trees.

Indeed, recall that Böhm trees can be seen as maximal directed sets of finite λ⊥-terms
in β⊥-normal form, i.e. in hnf [Bar84, Sec. 14.3]. The crucial observation by [ER08] is that
such terms are isomorphic to affine resource terms in normal form, the isomorphism mapping
the elements of BT (M) to the affine elements of T (BT (M)).
• It is easy to design a resource calculus extending this property to Lévy-Longo trees (and

the corresponding β⊥-normal forms, namely weak head normal forms): one should add a
constructor approximating an abstraction with unknown body as follows

Λr := V | λV. • | λV.Λr | ⟨Λr⟩Λ!
r

Λ!
r := Mfin(Λr)

so that we could set T (λx.M) := λx.T (M) + λx.• in order to take into account the
possibility to encounter an infinite chain of abstractions.

• On the other hand, the notion of β⊥-normal form corresponding to Berarducci trees (top
normal forms) does not immediately enjoy such a property because there is no “top-level”
syntactic characterisation of top normal forms: (M)N is in tnf if M does not reduce to
an abstraction, which can only be checked by reducing M at an unknown depth.

Thus, designing a Taylor approximation for the Λ111
∞ calculus, if possible, seems to require

more advanced techniques.

Finally, we have limited our study to a qualitative setting only: as explained in Re-
mark 3.13, it is not difficult to extend the definition of Taylor expansion with appropriate
coefficients; but as explained in Remark 3.17, a quantitative version of our simulation result
seems out of reach, if only because the reduction of infinite weighted sums of resource terms
is not well defined in general. Nonetheless, we conjecture that the Commutation theorem
also holds in a quantitative setting.

Indeed, in their seminal results [ER06; ER08], Ehrhard and Regnier exploited a uniformity
property to show that the normalization (rather than an arbitrary reduction) of a sum of
resource terms obtained by Taylor expansion does not generate sums of coefficients: each
term occurring in the normal form is generated by a single term of the original sum. It is
then possible to deduce the quantitative Commutation theorem from the qualitative one:
this was essentially the path followed by Ehrhard and Regnier, and revisited by Olimpieri
and the second author [OV22]. In the latter work, the qualitative Commutation theorem
was established quite straightforwardly, by proving that Taylor expansion commutes with
a variant of hereditary head reduction (the reduction strategy underlying the definition of
Böhm trees). Moreover, by contrast with arbitrary reduction of resource terms, the latter
reduction strategy does enjoy the uniformity property. We do believe that this alternative
approach can be adapted to the infinitary setting, in order to deal with quantitative Taylor
expansion: we leave this for future work.
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