Bayesian uncertainty analysis of inversion models applied to the inference of thermal properties of walls - Archive ouverte HAL
Article Dans Une Revue Energy and Buildings Année : 2021

Bayesian uncertainty analysis of inversion models applied to the inference of thermal properties of walls

Résumé

In this work, we propose a fully Bayesian uncertainty analysis of the indirect measurement of thermal properties of walls from in situ temperature and flux measurements, obtained with an active method, using a one dimensional transient thermal model. We show that this approach is able to take into account the uncertainty of the inputs of the thermal model and the uncertainty of the output observations, for a more reliable uncertainty estimation of the calibration parameters and any derived quantity. For this problem, we improve the classical Bayesian inversion model by taking into account underestimated uncertainty on reported output observations, which is a frequently encountered issue in practice. We provide some recommendations for a wider applicability of the method. We illustrate the principles of uncertainty evaluation of the Guide to the Expression of Uncertainty in Measurement in terms of a real case study to evaluate the thermal resistance of a multilayer wall placed in a climatic chamber. For this application, we compare results of the Bayesian inversion with classical steady-state results in comparable experimental conditions. We perform a sensitivity analysis to study the effect of duration, input uncertainties and excess variance prior, and we make recommendations. R code is made available that enables a Bayesian uncertainty evaluation of inversion models for related applications.
Fichier principal
Vignette du fichier
2021_article_Demeyer.pdf (1.88 Mo) Télécharger le fichier
2021_SM_Demeyer.pdf (131.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04353797 , version 1 (19-12-2023)

Identifiants

Citer

Séverine Demeyer, V. Le Sant, A. Koenen, N. Fischer, Julien Waeytens, et al.. Bayesian uncertainty analysis of inversion models applied to the inference of thermal properties of walls. Energy and Buildings, 2021, 249, pp.111188. ⟨10.1016/j.enbuild.2021.111188⟩. ⟨hal-04353797⟩
37 Consultations
37 Téléchargements

Altmetric

Partager

More