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Abstract.16

In this work, we propose a fully Bayesian uncertainty analysis of the indirect17

measurement of thermal properties of walls from in-situ temperature and flux18

measurements, obtained with an active method, using a one dimensional transient19

thermal model. We show that this approach is able to take into account the uncertainty20

of the inputs of the thermal model and the uncertainty of the output observations, for21

a more reliable uncertainty estimation of the calibration parameters and any derived22

quantity. For this problem, we improve the classical Bayesian inversion model by taking23

into account underestimated uncertainty on reported output observations, which is a24

frequently encountered issue in practice. We provide some recommendations for a wider25

applicability of the method. We illustrate the principles of uncertainty evaluation of the26

Guide to the Expression of Uncertainty in Measurement [BIPM et al., 2008a] in terms27

of a real case study to evaluate the thermal resistance of a multilayer wall placed in a28

climatic chamber. For this application, we compare results of the Bayesian inversion29

with classical steady-state results in comparable experimental conditions. We perform30

a sensitivity analysis to study the effect of duration and input uncertainties and we31

make recommendations. R code is made available that enables a Bayesian uncertainty32

evaluation of inversion models for related applications.33
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1. Introduction34

In the context of building energy management or retrofit interventions, thermal35

resistance of walls is used in standard heat transfer models as a parameter for36

building performance simulations [Iglesias et al., 2018]. Due to the cost of wall thermal37

characterization, tabulated values for thermal properties are typically used as inputs of38

the energy models [Iglesias et al., 2018].39

The in-situ measurement of the thermal resistance of walls should, for instance,40

contribute to decrease the gap between actual and predicted consumption to have41

more reliable energy-savings strategies or to have a more reliable assessment of the42

effectiveness of retrofit interventions [Simon et al., 2018].43

The present study is part of the French National Research project named RESBATI44

whose main objective is to develop a portable measurement device for evaluating the45

thermal resistance of opaque building walls on site. The result of the thermal resistance46

measurement should be provided with its uncertainty [Ha et al., 2020]. The active47

method (a thermal gradient inside the wall is created by a step heating excitation applied48

on a face) chosen in the project allows to estimate the thermal resistance of a building49

wall in all seasons, for any type of building and use (occupied or otherwise) in quite a50

short measurement time (less than three days) which improves on classical steady-state51

or dynamic methods [François et al., 2020], [Ha et al., 2020]. In this paper, we consider52

that the thermal resistance of a wall is measured indirectly from in-situ temperature53

and flux measurements. This is an inverse problem classically encountered in building54

physics [Rouchier, 2018].55

To carry out the identification method, a direct model (here a thermal model)56

is embedded in a simulator η(X, θ) whose inputs are the calibration parameters θ57

(called primary unknowns in [Kaipio and Fox, 2011]), and the experimental conditions58

X, see Figure 1. In practice, [Kaipio and Fox, 2011] mention that it is very seldom that59

the primary unknowns θ are the only input unknowns. The vector X gathers all the60

uncertainty sources, called here input parameters, having an effect on the measurement61

result of the thermal resistance and that can be modeled by a probability distribution.62

In the following, the uppercase notation X denotes a random vector, whereas the63

lowercase x denotes a particular observed value of X. In this paper, we have chosen64

a one-dimensional transient thermal model as a good approximation of the physical65

phenomenon with a low computational cost. Since the thermal model does not take66

into account lateral flux in the building wall, the user has to make sure that the flux is67

close to 1D, which makes the simulator fit for purpose.68

The identification process, illustrated in Figure 1, also called calibration or69

inversion, consists to find the values θ̂ of the input calibration parameters of the70

thermal model so that the output η(x, θ̂) is as closed as possible to the experimental71

values y(x) obtained in the experimental conditions x. The classical techniques72

for solving the minimization problem pertaining to inversion are based on least73

squares methods (e.g. Levenberg-Marquardt algorihm), maximum-likelihood (ML) and74
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Figure 1. Schema of a calibration (inversion) procedure.

Bayesian analysis. A description and a comparison of these inversion techniques can75

be found in [Rouchier, 2018] and [Kaipio and Fox, 2011]. In Bayesian statistics, the76

inverse problem is regularized statistically through the modeling of prior distribution77

[Kaipio and Fox, 2011]. Prior distributions represent prior degrees of belief on the78

(usually) unique but unknown values of the inputs which are turned into posterior79

degrees of belief (posterior distributions) via the Bayes formula when observations are80

available. The reader interested in generalities about Bayesian statistics can refer to81

[Gelman et al., 2013] and [Box and Tiao, 1992].82

Bayesian inversion requires advanced computational tools like Markov Chain83

Monte Carlo methods (MCMC) to sample from the posterior distributions84

[Metropolis et al., 1953], [Chib and Greenberg, 1995], [Robert and Casella, 2013]. For85

a tutorial on the class of MCMC algorithms classically used for Bayesian inversion (the86

Metropolis-Hastings algorithm) the reader is referred to [Klauenberg and Elster, 2016].87

Recently, Bayesian calibration using in-situ measurements has been widely used for88

the inference of thermal properties and their associated uncertainties. To cite a few,89

[Berger et al., 2016] tackled the estimation the thermal conductivity and the internal90

convective heat transfer coefficient of a wall with 3 layers from one year experimental91

data, [Iglesias et al., 2018] addressed the estimation of the thermal resistance and the92

heat capacity of unit area of a homogeneous wall based on 7 days of measurements,93

[Thébault and Bouchié, 2018] considered the estimation of the HLC with the ISABELE94

method, [Simon et al., 2018] tackled the estimation of the thermal conductivity and the95

heat capacity of the wall based on 8 days measurement campaign, [Rodler et al., 2019]96

addressed the estimation of the thermal conductivity and the volumetric heat capacity97

from a few days measurements.98

This paper focuses on uncertainty propagation in inversion models. A widespread99

approach is to consider input uncertainty sources as negligible or small enough to be100

aggregated with uncertainties on the outputs [Perrin and Durantin, 2019]. Such an101

approach is followed e.g. in [Simon et al., 2018] and [Berger et al., 2016]. However,102

if the input uncertainties are not negligible or even if there is no information about103

these input uncertainties, ignoring these uncertainties may result in biased estimated104

calibration parameters [Perrin and Durantin, 2019]. The difficulty that arises for105

uncertainty propagation is that there is usually no close functional form to describe106

the relation between the uncertainty sources and the estimate of the calibration107
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parameters [Wang and Zabaras, 2004]. Many approaches have been developped to108

create approximate relationships through which uncertainties are propagated. An109

example of uncertainty propagation using the variance-covariance matrix of estimated110

parameters with the ordinary least squares (OLS) method and a (thermal) model111

reduction can be found in [François et al., 2020]. The analytical expression of112

the outputs in function of the initial and the boundary conditions, e.g. using113

discretized heat transfer equations as in [Iglesias et al., 2018] provides the ”missing”114

relationship between the uncertainty sources and the estimates of the calibration115

parameters (obtained as Bayesian estimates of non linear regression parameters116

in [Iglesias et al., 2018]). [Thébault and Bouchié, 2018] and [Gori and Elwell, 2018]117

establish posterior relationships between the estimated parameters taken as the118

maximum at posteriori (MAP) and the uncertain inputs (e.g. posterior profile at MAP).119

Although the Bayesian approach conceptually allows to take into account measurement120

uncertainty in both inputs and outputs, [Perrin and Durantin, 2019] point out that little121

work has been done to uncertainties on inputs. The recent work by [Rodler et al., 2019]122

combines Metropolis-Hastings with Monte Carlo sampling from the uncertainty sources123

in an attempt of full Bayesian inversion.124

The goal of the paper is to provide guidance on input uncertainty propagation in125

Bayesian inversion for the in-situ estimation of thermal parameters from temperature126

and flux measurements using a 1D thermal model. In this paper, we assume that127

the steps of review of the uncertainty sources, selection of the most influential and128

finally the prior quantification and modeling of uncertainty attached to all of them129

has been done before performing the Bayesian uncertainty analysis of the inversion130

problem. We show that uncertainty propagation of the experimental conditions through131

the inversion model can be performed by a fully Bayesian analysis of the inversion132

problem by posterior sampling from the joint prior distribution of the calibration133

parameters and the uncertain experimental conditions, following an approach similar to134

[Demeyer et al., 2021] and [Higdon et al., 2004]. The results are calculated with Markov135

Chain Monte Carlo methods (MCMC) and an introduction to these methods is given.136

Among the various simulation studies [Ha et al., 2020] and experimental works137

carried out within the RESBATI project, the use case of this paper focuses on the138

thermal measurements obtained on a IWI (Inner Wall Insulation) test wall built within139

the project and circulated between LNE and CSTB. Here, we compare results from140

the Bayesian analysis of the thermal measurements obtained in an energy room at141

LNE with the results from the steady-state guarded hot box method at CSTB and we142

perform a sensitivity analysis to study the effect of measurement duration and the level143

of uncertainty.144
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2. Bayesian calibration under uncertainty145

2.1. General formulation146

Denoting y = (y1, ..., yN) the vector of output measurements, X = (X1, ..., XN) where147

Xi = (Xi1, ..., Xid)
T , the N × d matrix of uncertain input variables and θ the vector of148

calibration parameters, the fully Bayesian inversion model writes149

y = η(X, θ) + ε (1)

X ∼ π(X) (2)

θ ∼ π(θ) (3)

where η(X, θ) = (η(X1, θ), ...η(XN , θ)) denotes the vector of simulation outputs, ε =150

(ε1, ..., εN) denotes the vector of output measurement error, π(X) and π(θ) denote151

respectively the prior distributions of X and θ.152

The unknown vector X is classically represented with an error in variable model (see

[Perrin and Durantin, 2019]) as a deviation from a known central value x (see discussion

section 2.5)

X = x+ ζ (4)

where ζ = (ζ1, ..., ζN) denotes the matrix of input measurement error and x = (x1, ..., xN)153

denotes the matrix of input observations.154

The random variables εi and ζi, for i = 1, ..., N , are commonly modeled as centered155

Gaussian variables with known covariance matrix denoted Σε and Σζ respectively156

[Perrin and Durantin, 2019]. Furthermore θ, ε and ζ are assumed statistically157

independent.158

2.2. Modeling excess variance159

Model (1) assumes that output observations are equivalent to the calibrated simulations,160

their difference being explained by the reported measurement uncertainties. In practice,161

an excess variability of the yi with respect to (w.r.t.) the variability explained by the162

measurement uncertainty may be observed. Under the assumption that the simulator163

is fit for purpose, not taking into account excess variance may lead to biased estimates164

of the calibration parameters.165

Under the hypothesis that the excess variability is due to a missing term in

the uncertainty budget ‡, we propose to model the excess variability (also called

heterogeneity of data) with an adjustment factor σ > 0 as in [Bodnar and Elster, 2014]

and [Mana et al., 2012]

y = η(X, θ) + σε (5)

‡ In this paper, we assume that the excess variability of the time-varying thermal measurements yi
where i indexes time, comes from a missing influential source of uncertainty or from varying, not

controllable, conditions during the recording period (noise).
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The parameter σ is related to the Birge ratio, that is often used in metrology to166

enlarge quoted uncertainties when combining inconsistent measurement results on the167

same measurand [Bodnar and Elster, 2014]. As shown in [Mana et al., 2012], the Birge168

ratio can be interpreted as the most probable value of such an adjustment factor.169

According to [Bodnar and Elster, 2014], it can be assumed that σ2 follows a priori

an inverse chi-squared distribution σ2 ∼ InvChi2(ν0, s
2
0), in which case the marginal

distribution of observations w.r.t σ2 is multivariate t-distributed

y ∼ tν0
(
η(X, θ), s20Σε

)
(6)

A poorly informative prior for σ2, centered on 1, can be obtained with ν0 = 2 and170

s20 = 2.171

Remarks172

• The prior degree of freedom ν0 can be viewed as allowing ”uncertainty on the173

uncertainty” contained in Σε which comes to considering reported uncertainties as174

point estimates of the unknown standard deviations.§ The assumption that the175

missing source of uncertainty is common to all measurements translates into ν0176

being common to all measurements.177

• Additive random effects ‖ could be used to model excess variance if measurement178

results yi were obtained from uncertainty analyses performed independently, for179

instance by various teams or with different measurement devices. They have become180

common practice for instance when building consensus estimates in meta-analysis181

and interlaboratory comparisons [Bodnar et al., 2017]. For such applications,182

individual degrees of freedom νi are taken into account when they are available,183

see [Toman and Possolo, 2009].184

2.3. Bayesian inference185

In order to perform a full Bayesian analysis of the inversion problem, calibration186

parameters θ are augmented with the latent variables X and the heterogeneity variance187

parameter σ2. The Bayes formula provides the joint posterior distribution for (θ,X, σ2)188

π(θ,X, σ2|y) ∝ l(y|η(X, θ), σ2)π(θ)π(σ2)π(X) (8)

§ For instance, the GUM uses the so-called Welch-Satterthwaite formula to estimate the degrees of

liberty associated with a measurement result assuming it is t-distributed.
‖ The conventional random effects model considers the following model for the output observations

y = η(X, θ) + λ+ ε (7)

where λ = (λ1, ..., λN ) gathers for instance the team effects under the assumptions that λi ∼iid N(0, σ2),

εi ∼ N(0, u2i ) and that the λi and the εi are independent.
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where l(y|η(X, θ), σ2) is the likelihood, π(θ), π(σ2), π(X) are the prior distributions of189

θ, σ2 and X respectively, assumed independent. The prior distribution π(θ) is usually190

based on expert knowledge or tabulated values. The prior distribution for σ2 can be191

chosen as poorly informative when the dataset is large. In order to account for the input192

uncertainty sources X, π(X) is a data-driven prior distribution based on (4).193

In this paper, the quantity of interest is the joint posterior distribution π(θ,X|y)194

obtained by integrating the joint posterior distribution out σ2
195

π(θ,X|y) =

∫ +∞

0

π(θ,X, σ2|y)dσ2 (9)

For a well-chosen prior distribution π(σ2), a closed form expression can be computed196

for (9). For instance, using σ2 ∼ Inv − chi2(ν0, s
2
0) yields197

π(θ,X|y) ∝ π(θ)π(X)lint(y|X, θ) (10)

where lint(y|X, θ) = tν0 (η(X, θ), s20Σε)198

2.4. Posterior simulation with Markov Chain Monte Carlo algorithms199

Integrals (8), (9) or (10) are usually intractable and require simulation methods like200

Markov Chain Monte Carlo (MCMC) methods. MCMC methods provide a flexible and201

powerful tool for sampling from an arbitrary distribution. These methods construct a202

sequence of dependent values which form a Markov chain with stationary distribution203

equal to the sought posterior distribution. The Metropolis-Hastings (MH) algorithm204

[Metropolis et al., 1953], [Chib and Greenberg, 1995] constitutes a popular class of205

MCMC methods. The interesting feature of the MH algorithm is that it only requires to206

know the posterior distribution up to a proportionality constant, i.e. the right-hand part207

of Eq.8 or Eq.10, which makes it particularly suited for calibration problems. The MH208

algorithm can be used in conjunction with the Gibbs algorithm if conditional posterior209

distributions are tractable for a subset of parameters (the so-called Metropolis-within-210

Gibbs algorithm). The sequence of values is considered after a burn-in period and often211

the chains are thinned (i.e. only each 10th value is used) to decrease the autocorrelation212

of the chains.213

The Metropolis Hastings algorithm for sampling from the posterior distribution

of (θ,X) given y in (10) is given in algorithm (1). The initialization step (line

1) provides a starting point for the iterative algorithm which can be sampled

from the prior distributions or near a best physical point if available or obtained

from computational techniques based e.g. on the gradient (Lagrange,...). At each

iteration l, a (multidimensional) candidate (θ(c), X(c)) is sampled (line 5) and the

corresponding output of the thermal simulation η(θ(c), X(c)) is computed (line 6). The

acceptance/rejection step lines 8, 9 and 10 is based on the ratio of posterior distributions
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(known up to the same constant, that disappears in the ratio)

α =
π(θ(c), X(c)|y)

π(θ(l−1), X(l−1)|y)
(11)

A candidate point with ratio α < 1 has probability α to be selected which214

corresponds to P (u < α) where u ∼ Unif(0, 1). If a candidate is accepted, the candidate215

is the new point of the chain, otherwise the previous point is added to the chain. It is216

important to note that at each iteration an element is added to the chain, being either217

the candidate or the previous point. For computational reasons, the log-posteriors are218

used (line 2 for the log-posterior of the starting point and line 7 for the log-posterior of219

the candidate point).220

Algorithm 1 Metropolis-Hastings algorithm for Bayesian calibration under uncertainty
Input: measurements xi, yi, ti ;

Output: M samples from the posterior distribution π(θ,X|y) according to (10);

1: initialize:
(
θ(1), X(1), η(1) = η(X(1), θ(1))

)
;

2: compute a = ln(π(θ(1), X(1)|y));

3: repeat

4: l← l + 1;

5: sample θ(c) ∼ Nd(θ
(l−1),Σ

(l−1)
θ ) and X(c) ∼ NN

(
X(l−1),Σ

(l−1)
X

)
;

6: generate η(c) = η(X(c), θ(c)) ;

7: compute b = ln(π(θ(c), X(c)|η(c)));
8: let α = min (exp(b− a), 1) and u ∼ Unif(0, 1);

9: if α ≥ u then θ(l) = θ(c) and X(l) = X(c);

10: else θ(l) = θ(l−1) and X(l) = X(l−1);

11: a← b

12: until l = M

2.5. Discussion221

The Bayesian approach allows a flexible modelling of the prior distributions π(X)222

and π(θ) due to the use of MCMC simulation methods, among which the Gaussian,223

Student, rectangular, triangular and trapezöıdal distributions that are commonly224

used to represent uncertainty on input quantities e.g. in metrology (see GUM-225

S1 [BIPM et al., 2008b]). For instance, the Gaussian distribution can be used226

to model inputs resulting from an uncertainty propagation (e.g. following the227

GUM propagation of variance [BIPM et al., 2008a]) like the solar aperture and the228

volumetric flowrate. Generally, the prior on θ consists in a rectangular distribution229

defining bounds inside which the unknown value is supposed to lie, to improve230

the computational efficiency of the inversion method. For example, the bounds231

associated with thermophysical properties of material can usually be found in literature232
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[Heo et al., 2012], [ASHRAE, 2017]. More generally, guidelines for assessing the233

uncertainty of inputs used in building energy models can be found in [Macdonald, 2002]234

and [Heo et al., 2012].235

To account for complex uncertain inputs like those related to time (e.g.236

occupancy, weather, usage...), a discrepancy term δ(x), function of these inputs, is237

usually added to (1) [Heo et al., 2012] and π(X) is modeled as a Gaussian Process238

[Rasmussen and Williams, 2006], [Santner and Notz, 2003]. A complete Bayesian239

framework for modelling an additional discrepancy term in inversion is proposed in240

[Higdon et al., 2004], [Kennedy and O’Hagan, 2001]. In this paper, due to the active241

method, temperature and flux measurements are likely to be non-stationary time242

processes that would require modeling using e.g. Gaussian processes functions of both243

x and y. For simplicity, we choose to model the uncertain time varying inputs and244

outputs following (4) and (1) respectively and to leave the thorough modeling of input245

and output time series and their associated uncertainties in Bayesian inversion as a246

perspective of this work. Indeed, for the analysis of the real case study, such further247

work did not prove necessary.248

In this paper, we propose a fully Bayesian approach of inversion problems to249

propagate uncertainties of input parameters during the inversion procedure, which comes250

to treat all parameters as calibration parameters in classical Bayesian inversion. Such251

an approach is even recommended as a baseline of any Bayesian inversion procedure in252

[Higdon et al., 2004]. Indeed, according to [Higdon et al., 2004], even if we believe that253

the true physical value is known, allowing a slight deviation from the true physical value254

(similar to representation (4)) may produce an empirically better model of the reality.255

Furthermore, estimations of the calibration parameters may not even be interpreted as256

estimates of the true physical values of these parameters [Higdon et al., 2004]. Rather,257

they are by nature a ’best fit’ estimate of θ depending on the many hypotheses (among258

which that the thermal model is a perfect fit of the physical phenomenon) and the259

experimental conditions involved in the whole process.260

In this paper, the use of an active method on a short period (24 hours) allows to limit261

bias due to the sensitivity of the inversion procedure to the environmental conditions.262

Indeed, the effect of occupancy, weather and usage are potentially the most influential263

on the measure of thermal parameters (or more generally the energy performance) but264

also the most uncertain [Goffart et al., 2017]. If any, model approximation (assumed265

small) is taken into account in the free variance parameter σ2 used to capture the excess266

variance with respect to the reported uncertainties, with the aim of limiting bias of the267

estimated calibration parameters due to modeling.268
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3. Application to the in-situ estimation of the thermal resistance of a wall269

3.1. Motivation and context270

The thermal resistance R (m2 K W−1) of the enveloppe of a building is an indicator of271

the thermal performance of the building. Within the RESBATI project, a measurement272

method of the thermal resistance of opaque walls has been developed to produce in-situ273

results with an associated uncertainty in less than three days.274

In order to evaluate the performance of the method, a test wall of dimensions 2275

meters by 2 meters with inner wall insulation (IWI) was built. The insulation layer276

is made of EPS (expanded polystyrene). In this application, we compare the results277

obtained by the active method on the test wall placed in an energy room at LNE, France278

(see sections 3.2 and 3.5.3), with results obtained with the steady-state guarded hot box279

method [ISO 8990:1994, 1994] at CSTB, France (see section 3.5.2). For this application,280

the steady-state guarded hot plate method [ISO 8302:1991, 1991] (see section 3.5.1) is281

used to estimate the thermal resistance of the insulation layer (EPS). The description282

of the experimental conditions of each method is given.283

3.2. Description of the energy room REBECCA at LNE284

The energy room at LNE is a climatic chamber inside another climatic chamber. It285

is composed of an internal cell with the dimensions of a dwelling (3.42 m of side on286

2.29 m high, surface of the test specimen 7.83 m2). The latter is surrounded by 4287

climatic chambers in which it is possible to modify the temperature between −7 ◦C288

and 35 ◦C and to generate any type of transient regime (hot cold, cycle, etc.). The289

four surrounding boxes (front cell, guard, floor and ceiling) can be controlled separately290

(Figure 2). The REBECCA (Research and Testing of Buildings and Heat Emitters291

under Artificial Climate) cell is built to reproduce the principle of a guarded hot box292

test but with more room inside to install additional devices. The front panel is equipped293

with the specimen to be studied. In order to ensure that the entire heat flow passes294

through the test specimen, the 5 walls of the inner cell in contact with the thermal guard295

are insulated with Vacuum Insulated Panels having a thermal resistance greater than296

10 m2 K W−1. The test can be carried out under steady state condition, which occurs297

after a long period of time, or in a transient way like temperature ramp.298

3.3. Description of the measurement process with the active method299

The test wall is installed in the REBECCA cell and an active method is used to produce300

faster in-situ results using a heating module, temperature and flux sensors placed on301

the wall, as displayed in Figure 3.302

The active method uses a prototype built by the laboratory CERTES (Centre303

d'Études et de Recherche en Thermique, Environnement et Systèmes, Université Paris304

Est Créteil, France) within the RESBATI project. The prototype is a cube of 60 cm305

of side. One side is open; in the opposite side 24 DC halogen spots of 20 W are306



Bayesian uncertainty analysis of inversion models applied to the inference of thermal properties of walls11

Figure 2. Schematic diagram of the energy room called ’REBECCA’ at LNE, France,

from [Koenen et al., 2019].

positioned. The maximum electrical power is 480 W that can be adjusted depending on307

the test scenario. The four remained faces are insulated with reflective material with308

a low emissivity. In the front side in contact with the IWI, a heat flow meter with309

thermocouples is positioned. The IWI is then heated by the halogen spots. The heat310

flow that goes in the wall through the heat flow sensor and the surface temperatures of311

the wall are measured every 2 s. A step heating excitation which can reach several days312

is used for all experiments. A schematic description and a view of the experimental set-313

up are presented in Figure 3 and Figure 4. A number of 30 thermocouples are positioned314

along the heat flow meter to validate the one dimension hypothesis.315

The heat flow sensors were calibrated in the LNE guarded hot plate at different316

mean temperatures T (mean of external and internal temperatures) and temperature317

difference ∆T between the internal and external temperatures. All thermocouples were318

calibrated at LNE. A test lasts 24 h after steady state condition is achieved. This can319

continue several days depending on the thermal properties of the walls.320

The RESBATI device induces a constant power of 105 W. The external cell was321

cooled at 0 ◦C and the internal room was heated at 20 ◦C in order to obtain a temperature322

difference ∆T of 20 ◦C between the two sides of the wall. The heat flow going through323

the wall in the RESBATI area is measured continuously and reaches around 10 W m−2324

after 10 h and remains constant afterwards.325

In this application, the standard uncertainty (evaluated at LNE) associated with the326

inner and outer surface temperatures (Tsi and Tse respectively) is u(Tsi) = u(Tse) =327

0.5 ◦C and the standard uncertainty associated with the absorbed flux qint is u(qint) =328
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3%qint W m−2.329

Figure 3. Schematic view of the experimental setup (side view, face view), from

[Koenen et al., 2019].

Figure 4. View of the active method prototype, from [Koenen et al., 2019].

The thermal resistance of a multi-layer wall is measured indirectly from temperature330

and flux measurements after the identification of the parameters θ of a thermal model331

η(X, θ) (here with X = (Tse, qint), see section 3.4) using the Bayesian approach332

described section 2. A 1D transient thermal model solved with a finite element333

method in space and a Euler implicit time integration scheme was chosen in this334

study that takes the heat capacity of unit area cwi (J m−2 K−1) and the thermal335

conductivity ki (W m−1 K−1) of each layer i as calibration inputs gathered in the vector336

θ = {cwi, ki}i=1,...,I where I = 4 is the number of layers.337

The thermal resistance of the wall is expressed as the sum of the thermal resistance
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Ri of each layer

R =
I∑
i=1

Ri,withRi =
li
ki

(12)

where li (m) is the thickness of layer i (in this study, li is considered known, see values338

in Table 7). The estimate of the thermal resistance and its associated uncertainty are339

obtained with the Monte Carlo method applied to (12) using the samples from the340

posterior distributions of the ki. In particular, R2 denotes the thermal resistance of the341

insulation layer.342

Comments on the identifiability of the thermal parameters With this choice of thermal343

model and the low number of used sensors, we numerically observe that only the344

joint distribution of the input thermal parameters is identifiable but not its individual345

constituents (various combinations of values for cwi and ki could produce close thermal346

resistance values). This is a common situation in inversion problems, see the point347

of [Higdon et al., 2004] discussed in section 2.5, which is overcome here by considering348

that the thermal resistance (here, the quantity of interest) is identifiable but a priori349

not the cwi and ki taken individually. It is thus important to take samples from the joint350

posterior distribution to perform the Monte Carlo estimation of the thermal resistance.351

Still, from virtual testing and model-based sensitivity analysis, the thermal352

conductivity of the insulation layer k2 should be identifiable for this application. Thus,353

the comparison of the posterior distribution of k2 with an experimental result (e.g.354

obtained with GHP) could be used as an indication of the ability of the method to355

estimate the thermal resistance of the insulation layer (calculated as R2 = l2/k2), see356

section 3.5.3. Besides, in this study, the thickness of the layers of the wall is assumed to357

be known, but in general the thickness should be estimated as well with prior knowledge358

e.g. based on approximate measurements or from the design of the wall. More generally,359

identifiability issues are tackled with the use of informative prior distributions.360

3.4. Review of uncertainty sources to specify X361

In order to perform a sound uncertainty analysis, the first step is to deeply analyse362

the measurement process by performing the most exhaustive review of the uncertainty363

sources pertaining to it (even those that are not quantifiable). This is a demanding364

brainstorming step involving both experts of the field and statisticians. The classical tool365

for such a task is the Ishikawa diagram, which is used in the GUM [BIPM et al., 2008a]366

to review the sources of uncertainty involved in a measurement process.367

Figure 5 displays an instance of an Ishikawa diagram pertaining to the measurement368

process of the thermal resistance of a wall using the RESBATI prototype. Uncertainty369

sources are divided into five categories shortly described thereafter.370

Means: refers to all the uncertainty sources involved with the measurements (sensors,371

reference materials, standards), here limited to sensors;372
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Method: refers to all uncertainty sources related to the measurement procedure and373

the data analysis which consists here in an identification method;374

Wall/Enveloppe: refers to the object of the measurement, here the wall; for this375

application, the thermo-physical properties are the calibration parameters of the376

thermal model (see Figure 1);377

Environment: refers to the variations of the experimental conditions during the378

process, here in the energy room;379

Operator: refers to the uncertainty arising from the interpretation and the380

implementation of the procedure by operators involved in the whole process.381

Figure 5. Ishikawa diagram for the thermal resistance.

Figure 6 describes the uncertainty sources pertaining to the identification model i.e382

to the thermal model and the inversion procedure.383

In practice, only the most influential quantifiable uncertainty sources X are kept384

for the uncertainty analysis. Such a selection can be performed with sensitivity385

analysis methods [Saltelli et al., 2004] and/or by experts based on prior knowledge386

or information. It is important to note that the combined effect of unquantifiable387

uncertainty sources, assumed to vary randomly when repeating measurements, can be388

taken into account when processing measurements.389

Here, we choose to focus only on X = (Tse, qint) as an example of uncertainty390

propagation associated with temporal measurements.391

3.5. Results for IWI test wall392

In this section, we compare the estimates of the thermal resistance of the IWI wall393

obtained with the active method using the Bayesian inversion under uncertainty with394
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Figure 6. Ishikawa diagram for the identification model.

those obtained with the steady-state guarded hot box at CSTB, France in comparable395

experimental conditions (T = 10 ◦C and ∆T = 20 ◦C). As discussed section 3.3, many396

calibration parameters are not identifiable but the thermal conductivity of the insulation397

material k2 should be identifiable. The comparison of the posterior distribution of k2398

with the experimental result obtained by LNE using the guarded hot plate method is399

also used as an indication of the performance of the Bayesian inversion method. Indeed,400

the thermal resistance of the insulation layer (calculated as R2 = l2/k2) is far the most401

important contribution to the global thermal resistance of the IWI wall. A sensitivity402

study is performed to show the effect of duration and input uncertainties on the results403

of the Bayesian inversion.404

3.5.1. Guarded hot plate results The guarded hot plate apparatus [ISO 8302:1991, 1991]405

determines steady-state thermal transmission properties of flat slab specimens having a406

low thermal conductivity. It uses the one-dimensional steady-state thermal conductivity407

equation. The relative standard uncertainty associated with GHP results is evaluated408

around 0.5%.409

To conduct the measurement, we have cut two specimen of 600×600 mm from IWI410

coming from the same batch than those used to build the test wall. The measurements411

in the guarded hot plate were done at T = 10 ◦C mean temperature and ∆T = 15 ◦C.412

The result is computed as a mean over 8 hours after the steady state is reached. Results413

are displayed in Table 1. Tabulated values for the plasterboard and the cinderblock are414

given in Table 2.415

3.5.2. Guarded hot box results The guarded hot box [ISO 8990:1994, 1994] assesses the416

thermal performance of walls at full scale. The wall to be tested is positioned between417

two ambient conditions: one hot and one cold. Here, the complete wall 2 × 2 m was418

measured in a GHB at CSTB, France at T = 10 ◦C and ∆T = 20 ◦C. The result419

is computed as a mean over 10 hours after the steady state is reached. Under these420

conditions, the thermal resistance of the specimen wall using the GHB is given by the421
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Layer Heat capacity of unit area Thermal conductivity Thermal resistance

cw /J m−3 K k /W m−1 K−1 R /m2 K W−1

EPS cw2 = 1.35× 104 k2 = 0.031 R2 = 3.85

EPS + Plasterboard - - 3.9

Table 1. Measured thermal performance on GHP.

Layer Heat capacity of unit area Thermal conductivity Thermal resistance

cw /J m−3 K k /W m−1 K−1 R /m2 K W−1

Plasterboard cw1 = 7.30× 104 k1 = 0.250 0.05

Cinderblock cw3 = 9.25× 104 k3 = 0.850 0.2

Table 2. Tabulated thermal performance values.

95% coverage interval defined by 4.08± 0.86 m2 K W−1, see details in Appendix A.422

3.5.3. Active method coupled with Bayesian inversion Measurements recorded every423

two seconds for 24 hours are displayed in Figure 7 for the surface temperatures y = Tsi424

and Tse and in Figure 8 for the absorbed flux qint (X = (Tse, qint)). It can be observed425

that the absorbed flux becomes constant after 10 hours. For computational issues,426

measurements are sampled every 300 seconds for a total of N = 289 measurements.427

A sensitivity analysis is performed to show the effects of duration and experimental428

uncertainties on the estimation of both the thermal conductivity k2 of the insulation429

layer (EPS) and the estimation of the global thermal resistance R.430

Table 3 describes the three uncertainty configurations (”no input uncertainty”,431

”low level”, ”medium level”) considered in the study. It is important to note that432

u(Tsi) = u(Tse) in all configurations due to the experimental setting. The case ”no433

input uncertainty” corresponds to the classical modelling where the input uncertainty434

is not taken into account but the output uncertainty is set to its experimental value435

u(Tsi) = 0.5 ◦C. The case ”low level input uncertainty” corresponds to the case where436

all experimental uncertainties would have been underestimated. The case ”medium437

level uncertainty” corresponds to taking into account all the experimental values of438

uncertainties provided by LNE. This configuration is recommended a priori.439

The effect of duration is studied for the recommended ”medium level of uncertainty”440

and the effect of uncertainty is studied for the duration 24 hours. The resulting labels441

used in the legends of Figures 9, 10 and 11, are displayed in Table 4.442

To conduct the Bayesian analysis, uniform prior distributions are assigned to the443

calibration parameters, whose bounds are displayed in Table 5. The resulting prior444

for the thermal resistance is obtained with Monte Carlo simulations from (12) and445

displayed as the grey histogram in Figure 10. The prior distribution for the excess446
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Figure 7. Surface temperature measurements for the IWI wall placed in the energy

room REBECCA at LNE, France.

Figure 8. Absorbed flux measurements for the IWI wall placed in the energy room

REBECCA at LNE, France.
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variance parameter is chosen as π(σ2) ∼ InvChi2(ν0, s
2
0) with ν0 = 2 and s20 = 0 to make447

it poorly informative as explained in section 2.2. Prior distributions of uncertain inputs448

in the vector X = (TseT , qTint)
T are modeled following (4) with449

Σζ =

(
ΣTse 0

0 Σqint

)
(13)

where ΣTse = diag({u2(Tse)}N) and Σqint
= diag({u2(qint)}N) are the diagonal matrices450

of dimension N × N of reported variances of Tse and qint respectively. Similarly, the451

covariance matrix of output observations y is chosen diagonal as Σε = diag({u2(Tsi)}N).452

The MCMC procedure described in Algorithm 1 was run for each case from Table453

4 with 50000 iterations, a burn-in of 20000 iterations and a thinning of 30 iterations.454

For each case, we controlled that the acceptance rate falls between 15% and 30%. For455

the ”no input uncertainty” case the number of parameters is 8 (number of calibration456

parameters), whereas in the two other cases the propagation of input uncertainties457

involves 2N additional parameters corresponding to the elements of vector X, for a458

total of 586 parameters.459

Level of uncertainty u(Tsi) u(Tse) u(qint)

/◦C /◦C /W m−2

no input uncertainty 0.5 - -

low level 0.1 0.1 1%qint
medium level 0.5 0.5 3%qint

Table 3. Description of uncertainty configurations.

Duration

Level of uncertainty 12h 24h

no input uncertainty - 24h no uncertainty

low level - 24h T001 Q1pct

medium level 12h T005 Q3pct 24h T005 Q3pct

Table 4. Labels used in the legends of plots resulting from the choice of duration and

uncertainty configurations.

Results for the thermal conductivity of the insulation layer (EPS, Expanded Polystyrene)460

Figure 9 shows the effect of duration on the estimation of the thermal conductivity k2461

for the medium uncertainty level. The comparison with the guarded hot plate result462

(GHP, see section 3.5.1) displayed as the black dashed Gaussian distribution shows that463

the posterior estimate of k2 is biased for 12 hours whereas the posterior estimate for 24464
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Layer Thickness Thermal conductivity k Heat capacity of unit area cw

/m /W m−1 K−1 /J m−2 K−1

Plasterboard l1 = 0.013 0.2 ≤ k1 ≤ 0.4 7× 105 ≤ cw1 ≤ 8× 105

EPS l2 = 0.120 0.02 ≤ k2 ≤ 0.04 1× 104 ≤ cw2 ≤ 3× 104

Cinderblock l3 = 0.150 0.7 ≤ k3 ≤ 1.2 8.5× 105 ≤ cw3 ≤ 2× 106

Exterior coating l4 = 0.015 0.5 ≤ k4 ≤ 1.2 1× 106 ≤ cw4 ≤ 2× 106

Table 5. Caracterisation of each layer: thickness (assumed known in this application)

and bounds for the uniform prior distributions of the thermal parameters, found in the

literature.

hours is unbiased (the posterior distribution of k2 is centered on the GHP best estimate).465

In other words, for 24 hours, the estimate of the thermal conductivity of the insulation466

material (k2) is consistent with the physical value assessed with the guarded hot plate467

method.468

Figure 9. Histograms of the posterior samples for k2 obtained after 12 hours and

24 hours and plots of the Gaussian distribution associated with the guarded hot plate

(GHP) result and the prior distribution.

Table 6 gives the posterior estimates for all the uncertainty configurations. It can469

be observed that for 24 hours, all posterior results are consistent with the GHP result470

(the best estimate of the GHP 0.031 is included in the 95% Bayesian credible intervals).471
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It is important to note that the number of significant digits provided on the GHP472

result does not allow to compare the posterior results in terms of bias because all rounded473

posterior mean results are unbiased equal to 0.031. So the comparison with the GHP474

result does not allow to study the effect of uncertainty but globally says that the Bayesian475

methodology provides unbiased estimates of k2 (w.r.t GHP result) and then of R2 for a476

24 h observation.477

Duration u(Tsi) u(Tse) u(qint) k̂2 u(k̂2) Shortest 95%

/h /◦C /◦C /W m−2 /W m−1 K−1 /W m−1 K−1 CI /W m−1 K−1

24 0.1 - - 0.0309 0.0001 [0.0307, 0.0311]

24 0.5 - - 0.0309 0.0001 [0.0307, 0.0311]

24 0.1 0.1 1%qint 0.0309 < 0.0001 [0.0307, 0.0310]

12 0.5 0.5 3%qint 0.0337 0.0003 [0.0333, 0.0342]

24 0.5 0.5 3%qint 0.0310 < 0.0001 [0.0308, 0.0312]

Table 6. Results of the sensitivity study for the thermal conductivity k2.

Results for the thermal resistance of the wall Figure 10 displays the results for the478

global resistance of the wall obtained with the guarded hot box method (GHB, see479

section 3.5.2) represented by a Gaussian approximation with 95% coverage interval480

(dashed vertical bars), the estimate of R2 from the GHP result (see Table 1) and its481

95% coverage interval (in black) and the posterior estimates of the thermal resistance482

and their associated 95% credible intervals (represented with horizontal turquoise and483

yellow dashes) obtained with the active method for the medium level of uncertainty for484

12 hours and 24 hours respectively. Note that the histogram plot of the prior distribution485

shows that the prior for the global thermal resistance of the wall is consistent with the486

GHB result.487

The 95% coverage interval for the GHB result covers all results (even those488

incomplete for only 12 hours) which means that the comparison which the GHB result489

cannot be used alone to evaluate the performance of the Bayesian method in the490

various configurations. We can underline that active solicitation coupled with Bayesian491

technique, which was developed for in-situ application, can lead to identification results492

as accurate as those obtained in GHP.493

The ability of the Bayesian method to provide an unbiased estimate of R2 was494

demontrated previously. Since R2 represents 95% of the expected global thermal495

resistance R, the fact that the posterior estimate of the global resistance for 24 hours is496

closed to the best estimate of the GHB makes highly credible the ability of the Bayesian497

method to also provide an unbiased estimate of R for 24 hours.498

The comparison with the thermal resistance of the EPS R2 obtained from the GHP499

estimate of k2 (black line) also shows that the estimate of the thermal resistance obtained500

after 12 hours (blue line) nearly allows to retrieve the thermal resistance of the EPS.501
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It is important to note that the comparison with the GHB result does not allow502

to study finely the effect of uncertainty in terms of resulting bias on the global thermal503

resistance.504

Results of the sensitivity study in terms of the global thermal resistance are505

displayed in Table 7. We observe that the posterior uncertainty is similar (with two506

significant digits) for the configurations involving 24 hours records.507

Finally, the plot of the posterior distribution of the thermal resistance of the wall for508

24 hours and medium input uncertainty is displayed in Figure 11 with its 95% credible509

interval.510

3.5.4. Remarks For both experiments conducted in a climatic chamber with similar511

controlled environmental conditions, the active method developed in the RESBATI512

project allows to estimate the thermal resistance with a relative uncertainty of less513

than 2% instead of 10% for the guarded hot box.514

More generally, for in-situ measurements, the use of an active method should lessen515

the influence of uncontrolled environmental conditions so that, in practice, the same516

modelling should be used for in-situ measurements than for measurements obtained in517

the climatic chamber. Precisely, a sharp modelling is not required for the complex input518

quantities like weather, occupation,...519

Duration u(Tsi) u(Tse) u(qint) R̂ u(R̂) Shortest 95%

/h /◦C /◦C /W m−2 /m2 K W−1 /m2 K W−1 CI /m2 K W−1

24 0.1 - - 4.064 0.014 [4.039, 4.091]

24 0.5 - - 4.072 0.014 [4.045, 4.101]

24 0.1 0.1 1%qint 4.083 0.014 [4.054, 4.107]

12 0.5 0.5 3%qint 3.759 0.025 [3.712, 3.808]

24 0.5 0.5 3%qint 4.058 0.014 [4.031, 4.087]

Table 7. Results of the sensitivity study for the global thermal resistance.

4. Conclusion and discussion520

This paper presents a Bayesian approach for the indirect measurement of thermal521

parameters of a wall from thermal measurements obtained with thermocouples and522

fluxmeters using an active method. This work is part of the ANR RESBATI project523

whose main objective is to develop a portable measurement device for evaluating the524

thermal resistance of opaque building walls on site. The case study chosen in this paper525

concerns the analysis of measurements performed on an internal wall insulation (IWI)526

built within the project. The work takes advantage of the experimental work performed527

on the wall for its global thermal caracterisation in a guarded hot box and for the528
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Figure 10. In grey: prior distribution of R, in chocolate: Gaussian distribution

associated with the GHB estimate of R and its 95% coverage interval, in black: GHP

estimate of R2 and its 95% coverage interval, in turquoise: Bayesian estimate of R

after 12 h with the medium uncertainty level and its 95% credible interval, in yellow:

Bayesian estimate of R after 24 h with the medium uncertainty level and its 95%

credible interval.

thermal caracterisation of the insulation layer performed with a guarded hot plate, for529

assessing the performance of the Bayesian uncertainty analysis.530

The fully Bayesian approach is particularly suited for uncertainty quantification,531

especially when prior knowledge is available, and is used here for its ability to propagate532

input uncertainties in an inversion problem, which is in practice an issue rarely addressed533

with no consensus methodology so far up to our knowledge. The advocated uncertainty534

propagation approach is easy to apply since it consists in treating all uncertain inputs535

as calibration parameters and thus requires only a small adaptation of existing MCMC536

algorithms, for a slightly higher computational cost. For instance, in the case study, we537

experienced that the computational cost comes primarily from the duration.538

Under the experimental conditions of the climatic chamber equipped with calibrated539

thermocouples and fluxmeters, this study demonstrates the efficiency of the Bayesian540

analysis of the measurements obtained with an active method to produce unbiased (w.r.t541

the guarded hot plate method) estimates of the thermal conductivity of the insulation542

layer (EPS) for 24 hours with a low associated standard uncertainty (less than 2%).543

Nevertheless, smaller observation time, e.g. 12h, has lead to a biased identification.544

In this application, it appears that the impact of uncertainties is quite small and545

cannot be interpreted in terms of resulting bias w.r.t. a reference value. In particular,546
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Figure 11. Plot of the posterior distribution of the global thermal resistance of the

IWI wall obtained with the active method, and its associated 95% credible interval for

24 hours observations (vertical dashed lines).

due to the experimental settings we were not able to quantify the impact of input547

uncertainties on the estimated thermal parameters.548

For setting input uncertainties, we recommend to perform calibrations and/or549

verifications of measurement means. If no input uncertainties are available, this study550

confirms the recommendation from the literature to set a small uncertainty on input551

parameters to help reducing bias.552

The general formulation of the methodology makes it easily applicable to other553

types of walls and insulation. In this respect, one of the perspectives of the RESBATI554

project is to address sustainable materials like bio-sourced materials and raw earth555

considering a hygro-thermal model.556
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[Thébault and Bouchié, 2018] Thébault, S. and Bouchié, R. (2018). Refinement of the isabele method654

regarding uncertainty quantification and thermal dynamics modelling. Energy and Buildings,655

178:182 – 205.656

[Toman and Possolo, 2009] Toman, B. and Possolo, A. (2009). Laboratory effects models for657

interlaboratory comparisons. Accreditation and Quality Assurance, 14:553–563.658

[Wang and Zabaras, 2004] Wang, J. and Zabaras, N. (2004). Hierarchical bayesian models for inverse659

problems in heat conduction. Inverse Problems, 21(1):183–206.660

[XP ISO/TS 28037:2013, 2013] XP ISO/TS 28037:2013 (2013). Détermination et utilisation des661
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Appendix A. Details on GHB uncertainty evaluation at CSTB, France663

The estimated U value for the IWI wall for a mean temperature T =10 ◦C is

U = 0.245 W m−2 K (A.1)

The global thermal resistance is

R =
1

U
(A.2)

Denoting u(U) the standard uncertainty associated with U , GUM [BIPM et al., 2008a]

uncertainty propagation gives

u(R) =
u(U)

U2
= 0.43 m2 K W−1 (A.3)

Equivalently, the 95% coverage interval associated with R is

4.08± 0.86 m2 K W−1(k = 2) (A.4)

The following describes the uncertainty evaluation of U . The specimen is installed664

on a surrounding wall, the measurement zone is larger than the sample surface so that,665

in steady state conditions, a part of the heating power injected in the measurement zone666

φin is split between :667

• A thermal flow through the metering box, φout, controlled to be neglectable by668

controlling the guarded zone temperature equal to the measuring zone temperature.669

The residual thermal flow through the metering box is then controlled to be670

neglectable by measuring it using a thermopile (φout = 0 W);671

• A thermal flow through the specimen φsp;672

• A thermal flow through the surrounding wall φsur;673

• A thermal flow through thermal bridge between the sample and surrounding wall674

φedge;675

The thermal flow through the specimen is then obtained by

φsp = φin − φsur − φedge (A.5)

The U value is then obtained by676

U =
φsp

Asp (θn,i − θn,e)
(A.6)
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where Asp is the surface of the specimen, θn,i and θn,e are the environment

internal/external temperatures included by air temperature (θc,i, θc,e) and radiant

temperature viewed by the specimen (θr,i, θr,e) temperatures:

θn,i = Fc,iθc,i + (1− Fc,i) θr,i (A.7)

θn,e = Fc,eθc,e + (1− Fc,e) θr,e (A.8)

where Fc,i and Fc,e are convective fractions.677

Radiant temperatures (θr,i, θr,e) are described in Annex A of NF EN ISO 12567-1678

[NF EN ISO 12567-1:2013, 2013] as an explicit function of surface temperatures of the679

specimen (θs,i, θs,e) and the baffle (θb,i, θb,e) panel situated in front of each side.680

The thermal flow through the surrounding wall φsur and convective fractions Fc,i681

and Fc,e are obtained using a calibration process as described in NF EN ISO 12567-682

1 [NF EN ISO 12567-1:2013, 2013]. This calibration consists in using homogeneous683

insulated calibration panels as specimen. The thermal resistance of these calibration684

panels have been measured using guarded hot plate method so that their R-values are685

well known. Measuring surface temperatures during the calibration test in the guarded686

hot box make possible determining both Rsur (and then φsur) as a function of average687

support wall temperature, and convective fractions as a function of thermal flow through688

the specimen, using linear regression techniques. The linear regression coefficients are689

then used to predict φsur, Fc,i and Fc,e during all experiment. The uncertainty on this690

prediction is estimated using less squares methods [XP ISO/TS 28037:2013, 2013].691

The uncertainty on the thermal flow through thermal bridge between the

sample and surrounding wall φedge is estimated by simulating each junction

[NF EN ISO 10211:2017, 2017]. A sensibility analysis has been provided on each

unknown input: thermal conductivity of wood element for instance may vary between

0.13 to 0.18 W/(m.K). The possible variation interval of the calculated psi-values,

estimated with this sensibility analysis, is then used to define a uniform law with

standard deviation:

uψedge
=
ψedgemax − ψedgemin√

3
(A.9)

Finally, all errors are propagated using GUM recommendations [BIPM et al., 2008a].692

Appendix B. R code693

The R code associated with the low and medium uncertainty levels implementing 1 is694

given in the Supplementary material.695
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Figure A1. Notations for uncertainty propagation in GHB at CSTB, France.


