Effective pair correlations of fractional powers of complex grid points - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Effective pair correlations of fractional powers of complex grid points

Résumé

Using a standard definition of fractional powers on the universal cover $\exp:S\to \mathbb{C}^*$ seen as an infinite helicoid embedded in $\mathbb{R}^3$, we study the statistics of pairs from the countable family $\{n^\alpha \, : \, n \in \exp^{-1}(\Lambda) \}$ for every complex grid $\Lambda$ and every real parameter $\alpha \in \, ]0,1[\,$. We prove the convergence of the empirical pair correlations measures towards a rotation invariant measure with explicit density. In particular, with the scaling factor $N\mapsto N^{1-\alpha}$, we prove that there exists an exotic pair correlation function which exhibits a level repulsion phenomenon. For other scaling factors, we prove that either the pair correlations are Poissonian or there is a total loss of mass. In addition, we give an error term for this convergence, with explicit dependence on parameters of the grid $\Lambda$.
Fichier principal
Vignette du fichier
complex_pair_cor_intpowers.pdf (4.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04352084 , version 1 (18-12-2023)
hal-04352084 , version 2 (10-09-2024)

Identifiants

Citer

Rafael Sayous. Effective pair correlations of fractional powers of complex grid points. 2024. ⟨hal-04352084v2⟩

Collections

UNIV-PARIS-SACLAY
36 Consultations
20 Téléchargements

Altmetric

Partager

More