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Abstract: Using a standard definition of fractional powers on the universal cover
exp : S — C* where S is the standard infinite helicoid embedded in R?, we study the
statistics of pairs at various scalings from the countable family {n® : n € exp~'(A)}
for every complex grid A and every real parameter o €]0,1[. We prove the con-
vergence of the empirical pair correlation measures towards a rotation invariant
measure with explicit density. In particular, with the scaling factor N +— N1~
we prove that there exists an exotic pair correlation function which exhibits a level
repulsion phenomenon. For other scaling factors, we prove that either the pair cor-
relations are Poissonian or there is a total loss of mass. We give an error term for
this convergence.

Keywords: pair correlations, level repulsion, fractional power, lattices, convergence
of measures.

MSC: 11J83, 11K38, 11P21, 28A33.

1 Introduction

Let G be a locally compact metric additive group. In order to comprehensively
understand the distribution of a countable family (u;);c; in G, an essential aspect
involves analysing the statistics of the spacings between selected pairs of these points,
seen at various scalings. The approach consisting in taking all pairs into account
is the study of pair correlations. More precisely, let ¢ : [0, +o0[ — GY be a scaling
function, and h : I — [0, +o0] be a height function (i.e. a nonnegative function that
every set {i € I : h(i) < N} is finite). Our focus lies on the asymptotic of the
multisets Fy = {¢(IN)(u; — u;) b r(i),n()<n,iz; 88 N — 0.

These problems initially occurred in physics, especially in quantum chaos, which
has lead to a purely mathematical point of view of pair correlations. See for instance
[ , , ] for questions directly linked to quantum physics. Determin-
ing the behaviour of pair correlations for a deterministic numerical sequence may
present an intriguing challenge, see the papers | , ,

: ]. For instance, when a > 0 is small enough, the sequence ({n }nen,
where {-} denotes the fractional part function, exhibits a behaviour commonly called
Poisson pair correlations, as proven by C. Lutsko, A. Sourmelidis and N. Technau
in their paper | |, as well as in the special case o = l, as shown by D. El-Baz,
J. Marklof and I. Vinogradov in | ].

In our setting, the metric group G will then be (C,+). Recall that a complex
Z-lattice is a discrete additive subgroup of C generating C as a real vector space,
and that a complex subset A is called a Z-grid if there exist a (unique) Z-lattice A
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and a complex number z € C such that A = z + A. The spaces Latc of complex
Z-lattices, and Gridc of complex Z-grids, are endowed with the Chabauty topology
(since lattices and grids are closed subsets of C). In this introduction, all grids
and lattices are assumed to be unimodular (i.e. of covolume 1 such as the lattice
Z[1]). In what follows, we fix a real number « €]0,1[ and a unimodular Z-grid
A € Gride. We have chosen to widen our focus, working with grids instead of
lattices only, since grids have become trendy in number theoretical issues, see for

instance [ , , , , |. Let v €]0,1[, that we use as a
parameter for the scaling in this introduction. To conduct a much more involved
study than the paper | ] on the pair correlation statistics of the real sequence

(n®)nen, we will define a sequence of measures for the pair correlations of the "«
powers" of grid points in A. In this introduction, we present the case a = % where
b € N — {0}. In this particular case, the study we conduct can be simplified and
translated to the statistics of scaled differences N7 (v — u) where u, v are b-th roots
of grid points with norm less than N. Such a scaling factor N7 is a usual choice, see
[ , |. In other words, we study the sequence of empirical pair correlation
measures given by

%N = m 2 Z AN"Y(v—u)v

n,meN, n#m u,veC*
0<|nl|,|m|<N ul=m,vb=n
where, for all complex number z € C, we denote by A, the Dirac mass at z. We de-
note by Leb¢ the Lebesgue measure on C, and we define the nonnegative measurable
function p = p_ _ 5 by
7’77

( 0 if v>1-aq,
(2 —«
Pz 3 2
Yl _4—2a 2 .
WM e 2 p|7=e i y=1-a.
pel
\ |p|<%

We use the notation D(zg,7) = {z € C : |z — 2| < r} for open disks. For all Radon
measures py, for N € N, and p on C, the sequence (uy)nen is said to vaguely
converges towards p if for every continuous functions f : C — C with compact
support, we have the convergence uy(f) — u(f). In this case, we write puy — p.

Theorem 1.1. We have the following vague convergence, as N — o0,
%N N 1% Lebc .

This result will be proven effective in the following sense: let f € C!(C), choose
A > 1 such that supp f < D(0, A) and assume that v = 1 — «. Then, we have a
rate for this convergence, given by the estimate, as N — oo,

() = [ 1Gpte) e+ 0 (FU Lzt 1)y,
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Theorem 1.1 indicates that p describes the pair correlations of a = % powers of grid
points. This is essentially a particular case of Theorem 2.1, the main result of the
present paper which holds for every real number a € )0, 1[ and for which we give an
error term in Remark 4.2. The proof of Theorem 1.1 using Theorem 2.1 and some
counting lemma is done at the very end of Section 4.

Figure 1: The graph of the function p restricted to the disk D(0,1) in the case
a=31v=1-a=2and A =Z[i].

In other words, the pair correlations for the b-th roots of grid points have a
constant density if v < 1 — « (we say that these pair correlations exhibit a Poisson
behaviour), have an exotic density if v = 1 — v and there is a total loss of mass if
v > 1 — a. This phase transition phenomenon frequently appears in the study of
pair correlations, see for instance [ , , ]. We must insist here that we
are not looking for any pseudorandom behaviour: the set A is a typical example of
a well distributed set (when seen from afar), and we are interested in the way the
function z — z® (which is transcendental if o ¢ Q) modifies this set at the level of
pair correlations, since of course this function does not preserve gaps.

The study of pair correlation in a noncompact setting has already been fruitful
in various fields. On G = R, the lengths of closed geodesics in negative curvature
have Poisson pair correlation or converge to an exponential probability measure
(depending on the scaling factor) | , . Still on G = R, for real points
«a, 3 verifying some diophantine condition, the image of Z? by the quadratic form
(z,y) — (z—a)?+ (y— B3)? also exhibits a Poisson pair correlation | ] (see also
[ | for a related result in higher dimension). On the group G = (K, +) where
K is a p-adic field with integer ring denoted by &, the pair correlations of squares
of integers {2% : z € O} has also been studied in | | and has a behaviour which
can arguably be called Poisson.

In Section 2, we first define a more general setting for pair correlations than the
one of Theorem 1.1, using the universal cover C of C* and dividing it into levels:
this novel technical step which will allow us to retrieve some algebraic properties
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of integer powers for fractional ones, giving us technically handy geometric inter-
pretations of the studied pairs throughout the paper. Then, we state Theorem 2.1,
which is the main theorem in this paper and of which Theorem 1.1 is a special case,
as well as a version using separated levels, namely Theorem 2.8, and we end this
section by proving the main lemmas we will use for the proof of the latter theorem.
In Section 3, we prove Theorem 2.8, using a linear approximation, an approximation
of Riemann sums after appropriate changes of variable defined locally (depending
on the levels introduced in Section 2), an averaging argument over levels (which
is necessary to avoid discrepancy as illustrated in Figure 2), and various counting
results. In Section 4, we give an upper bound on the number of pairs which were
counted out by separating the grid points into levels in Section 2, allowing us to
straightforwardly derive Theorems 2.1 from Theorem 2.8. The change of variable
step is inspired by the unfolding technique, illustrated in [Mar02, § 2.1]. But this
paper cannot be reduced to the unfolding technique, in particular for obtaining the
error terms.

T T T
—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Figure 2: The complex points N (ng —mi_z) of only "one level" (with the notations

of Section 2.1, these are the points N2 (nl:0] — m[5:01)) inside the disk D(0, 3), for
lattices points m,n € Z[i] with 0 < |m|, |n] < N = 20.

One may consider to generalise Theorem 1.1 to any discrete set of constant den-
sity instead of a complex grid, and we expect the error term given after Theorem 1.1
(or the more precise version given in Remark 4.2 for Theorem 2.1) to be particularly
more complicated to compute.



2 The main statement and technical lemmas

In all this paper, we fix a €]0,1[ as well as A a Z-grid in C (not necessarily uni-
modular). We denote by A its underlying Z-lattice. We set

S={(re“,w):r>0,weR}cCxR

A standard way in complex analysis to define a power function is to use the Riemann
surface S. On the universal cover exp : C — C* of C*, we set Ag = exp~!(A), which
consists of infinitely many copies of the grid A (minus the origin if A contains 0): for
every t € R, the map exp restricts to a bijection Agn{z : t <Im(z) <t+27} — A.
We use the identification z — (exp(z),Im(z)) between the universal cover C and
the helicoid S. The set Ag is then identified with {(n,w) : ne€ A, w e arg(n)} < S.
We define the o power function on this surface by

Pow,, : S — S
(re™, w) — (r

-, aw),
which corresponds to the multiplication by a on the universal cover C. We are then
interested in pair correlations of the countable set Pow,(Ag). Let m¢ (resp. mgr)
denote the projection on the complex (resp. real) coordinate of C x R. To focus on
the complex part of such three dimensional vector differences, we flatten them and we
study the statistical distribution of the complex differences 7¢(Pow, (n) — Pow,(m))
for all m,n € Ag such that |mr(n — m)| < 27. This condition is introduced for the
points m and n to be on the same "copy' of C* in its universal cover C. This is
not a constraint since we multiply all differences Pow,(n) — Pow,(m) by a scaling
factor going to infinity and evaluate the related measures on a compactly supported
function: after rescaling, pairs of points failing to satisfy this condition uniformly
give rise to differences in C x R escaping all compact subsets. Let ¢, 1 : N — 0, +oo[
be two functions converging to +00, which we respectively call the scaling factor
and the renormalization factor. Throughout this paper, we fix A € [0, 4] and we
assume the following convergence and formula

() o)

2) vV = (

— A€ [0, +m] as N — oo,
N2—a
$(N)
Compared to the case of the introduction, taking into account all directions of

noncompactness in S < C x R, the need for two new integer parameters N’ and N”
emerges. We are interested in the multi-index sequence of empirical pair correlation

2
) for all N e N.



measures whose formula is given for all N, N', N” € N — {0} by

1
%Ol’A/ "= A T owq (n)—Poweq (m
NNCNT NS NTY(N) mneg:n#m $(N)(mc(Powa(n)—Powa (m))
| (n—m)| <2
0<|mc(m)|,|mc(n)|[<N
=27 N'<mr(m),mr(n) <27 N”

1
(3) = / 1 Z Z A<;$(N)(exp(oas)—exp(ozr))~
(N + N )¢(N) m,neA,n#m  reexp~!(m), scexp~t(n)
0<|m|,|n|<N [Im(r)—Im(s)|<2m

=27 N'<Im(r),Im(s)<2wN"

Let covol; be the covolume of A, i.e. the area of any fundamental parallelogram of
A. Set P, 5 the nonnegative measurable function of formula

( 0 it A= +oo,
v

it A\=0,

a?(2 — «) covol%
pa,ﬂ,)\ E2ndh 2 4-20

ate (’f\‘) DY |5 if Ael0,+oof.

(1 — ) covoly

pel
\ |p|<%

The next two results will be proven at the end of Section 4.

Theorem 2.1. We have the vague convergence, as min{N, N' + N"} — oo,
A *
'%]C:/',N/,N” - pa’/'\‘,)\ Leb(c .

For an error term in this convergence, see Remark 4.2. In the case a €0, 1] nQ,
we write its irreducible form a = § and obtain the following result.
Theorem 2.2. We have the vague convergence, as N — o0,

a A %
b
N,O,b p%7A Leb(c .

Remark 2.3. Theorem 2.2 is not an immediate consequence of Theorem 2.1 since
N+ N" =0+ b does not go to infinity.
2.1 Separation into levels

We use the notation R, = [0, +0o[. For every real number j3, every integer k and
every nonzero complex number z, we begin by defining the level-k 8 power of z as

2R = 2|BetPr  where wy, is the representative in [27k, 27(k + 1)[ of arg(2).

In other words, for every z € C — R, we set zl#* — eBlosl2)+27k) " where the
map log : C — R, — C is the branch of the logarithm with branch cut R, and
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Figure 3: On the left, the helicoidal Riemann surface S. On the right, an illustration
of the points (dots) 7 € exp~}(A) = C. The (dotted and plain) two-headed arrows
correspond to pairs of grid points appearing in the definition of the empirical pair
correlation measure %ﬁ‘,’}\,, ~»- The distinction between dotted and plain two-headed
arrows will be explained before Theorem 2.4.

verifying log(—1) = i, and we extend this definition to C* in an "upper' continuous
way, namely when Im(z) = 0. For the particular case k = 0, we use the notation

2P = 2189 This nonstandard choice of branch cut is handy for the following formula:
for all z,2z" € C* and all k € Z,

PALR zZ\5 z\ [8:—1]
S8R T (;) o (;) ’
depending on the sign of the difference w —w’ of the argument representatives w of z
and w’ of 2/, both taken in [0, 27| . In comparison, taking the principal branch of the
logarithm to define these power functions would have required to separate between
3 cases, whether the difference w — w’ belongs to | — 2w, —7|, | — w, 7] or |m, 27].

With the formula 27 = e#1°8(2) we obtain the linear approximation, as z — 0 with
the restriction Im(z) > 0,

(4) (1+2)* =1+ az + Ou(|2]).

Note that the image of C* by the level-k 3 power function z — z[%*l is the semi
open angular sector {z € C* : arg(z) € [2mkf3,2n(k+1)8[ mod 27}, in other words
the sector of angle 237 centred at the argument 27(k + 5)8 mod 27.
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We define the multi-index sequence of level separated empirical pair correlation
measures by

1 N"—1
a,Alvl
(5) ‘%N,N’,N” - (N/ + N”)w(N) Z Z A(;S(N)(n[o‘vk]—m[avk])'

k=—N' n,meA, n#m
0<|nl|,|m|<N

In comparison to the definition %ﬁ‘,/]\v, v from the beginning of Section 2, in the

measure Zv\ N, N N,, we do not take into account pairs of points illustrated with dotted
arrows in Flgure 3. Recall that the scaling and renormalization factors ¢ and
verify the convergence (1) and the formula (2).

Theorem 2.4. We have the following vague convergence of positive measures, as
min{N, N' + N"} — oo,
a, A vl %
‘@N,N/,NN pa,K,A Leb(c .

o] kil

L.

10 05 g9 5 1.0

0.
—0.5_10 _10-0.500

Figure 4: The empirical distribution obtained for the measure N?V[,]Alfvul with NV = 70

and N’ + N” = 3 in the case A\ = 1, using a smoothing process of the library SciPy
of Python.

A qualitative illustration of this convergence is shown by comparing Figure 4 to
Figure 1, in the exotic case A = 1. Since the modulus function | - | from C to R
is continuous and proper and since the function p_ ; , is invariant under rotation,

the hypotheses of Theorem 2.4 also imply the vague convergence, as the minimum
min{N, N' + N"} — oo,

N"—1

v + N” Z Z A¢ N)nleck] —pplackl| — QWTpa’K’A(T)dT.

—N’' nymeA,n#m
0<\n| \m\<N

As an illustration of the latter convergence, a radial profile is drawn on Figure 5, in
the exotic case A = 1.
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Figure 5: The empirical radial distribution of % 1% N ]\l,‘f,l for N'+ N” = 3 and different

values of N (N = 10 in pink, N = 30 in N = 50 in ,and N = 80 in
blue) using the scaling factor N — N 5 (and renormalization factor N — N?), and
the limit density r — p%,Z[i],l(r) (in red).

We denote by diamy the minimal diameter over all fundamental parallelograms
of A and by sysj the systole (or Minkowski’s first minimum) of the Z-lattice K, that
is to say

sysy = min{|p| : pe K,p # 0} > 0.

We mention that the diameter diamy is comparable to the quantlty A thanks to

the second theorem of Minkowski.

Remark 2.5. In the exotic case A € ]0, +-00[ , one can notice that we have p_z, =0
on the open disk C'(0, aAsysy). This property is called a level repulsion pheno}n’enon.
The fact that the radius aAsys; of this level repulsion disk converges to +co as
A — +00 can be interpreted as a continuity result between the cases A €0, +o0[
and A = 400. Such a continuity observation may also be made between the cases
A €]0, +oo[ and A = 0, since Gauss counting argument (more precisely, its version
for 3 = = stated in Lemma 2.10) indicates that, for all A €]0, +co[,

™

|2l 2(2 — a) covol%

Remark 2.6. Notice that p_ ; , is rotation invariant and, if A € ]0, +-00[ , the points

of discontinuity of p,, 5 , constitute the union of circles | J 5o, C(0, aAlp|). By com-

parison, extending the definition of %ﬁl}v}v}v,, to the simplistic case o = 1, choosing

the scaling factor N +— 1 (hence A = 1) and the renormalization factor N — N2,
a standard Gauss argument and a Riemann sum approximation grants the vague



convergence, as N — o0,

AN L « T
'%N,N/,N” = ﬁ Z An—m - Z AP'

covoly 4
n,meN, n#m A peA—{0}
0<nl.Jm|<N

In particular, the limit measure is not rotation invariant: we lose some symmetry
in this extreme case a = 1.

Remark 2.7. Upon an appropriate rescaling in terms of «, a continuity statement
can be made between the cases a €]0,1] and a = 0. We impose the scaling factor
#(N) = N'= (hence A = 1) for this remark. Up to rotation, we can assume that the
grid A contains no nonzero point on the branch cut R, of the log function involved
in the definition of a-powers with levels. For all k € Z, all n, m nonzero grid points
in A and all integer N € N, notice that we have the convergence, as o — 07,

1

(6) NIl leH) s N(log(n) — log(m)).

We set 1
A,lo
‘%N g — ﬁ Z AN(log(n)—log(m))'

n,meN, n#m

0<nl,|m|<N
which is (up to the choice of a branch cut for the logarithm function) the empirical
pair correlation measure studied in [ , § 3] for logarithm of grid points. Using
Theorem 2.4 and the fact that z — 2 is continuous and proper for the top con-
vergence arrow, the convergence (6) for the left-hand convergence arrow, and the
dominated convergence theorem for the right-hand convergence arrow, we obtain
the following diagram of vague convergence:

ALlvl * z 2
> 2 a,/\, . 2 — = ~. Lebe = « ~ (az)dz
( & )N N min(N,N/+ N")—o0 ( o )P x5 Lebe Pain(@z)
a «
l " l *
o+ 0"
Alog Els o 2
‘%N covolg Z peA |p| dz.

Ip|<|z|

The bottom convergence arrow missing to this diagram has been proven in | ,
Theo. 3.1].

In order to state an effective version of Theorem 2.4, we will use the space
CX(C) of continuously differentiable functions of two real variables f : C — C, with
the standard notations |f|o = sup,.c|f(2)] and |df|o = sup..c|ldf(2)], where
| - | is the operator norm on the space of R-linear applications from C to C. We
use Landau’s notation: for two sets of parameters & and &' with &' < &, for
functions F,G : N — C depending on (at least) the parameters in &', we write
F(N) = O /(G(N)) if there exists some constant cg > 0, depending only on &’
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and some integer Ny, depending on all the parameters in &2, such that, for all
N = Ny, we have the inequality |F(N)| < co|G(N)|. In our study, each time we
will use Landau’s notation, a test function f € C}(C) will have been fixed, a bound
A on the size of its support will have been taken (i.e. supp f < D(0, A)) and our
sets of parameters will always be & = {a, A, ¢, 9, A} and &’ = {a}, {A} or {a, A}
(hence using the notation O,, Op or O, ). It is important to keep in mind that
the rank Ny may only depend on the parameters in &. In particular, it does not
depend on the parameters N', N” || f|o, ||df]l«, nor on any other index temporarily
fixed in the proof of a lemma or a theorem.

For all f € C}(C) and A > 1, if A = +00 we set Errppos(a, A, f, A) = 0, and
otherwise we define

Errrpos(o, A, f, A)

O (A1 Flio + 1f o) (42 + oo + ) if A =0,

10—8«a 8—6a
1

Oan ((IFllee + ldflec) (X + 1) 7= (A0 | 5425 — 1 + 4 + 5Aax)) i Ae]0,+oo].

Theorem 2.8. Let f € C(C) and choose A > 1 such that supp f = D(0, A).

o If \ = 40, then there exists an integer Ny which depends on o, A and A, such that for all
N = Ny and all N',N" € N, we have :%’J(f,/]\v}v}vu(f) =0.

o IfAe[0,+[, as N — o0, we have
BN () = L F(2)pa 50 (2) dz + Brrrnos(a, A, £, A).

Remarks 2.9. By a standard approximation argument of a function in C?(C) by functions
in C}(C), Theorem 2.4 is an immediate consequence of Theorem 2.8.

e For a version of the error term in Theorem 2.8 with explicit dependence on parameters of
the grid A (but not on the power parameter «), see [Say].

a

e In the case a = § € Q, for all integers N € N and k € Z — {0}, we have the periodicity

2 A vl 2 A vl
Bt _ B i CO .
formula %Mo,k,b = %Mo,b . This implies that we have, as N — o0,

Al
b 9 N .
ZNob Po i) Lebe.

2.2 Counting lemmas

Set sys), = min{|m| : m € A,m # 0} > 0. This quantity is not commonly used for studying grids,
except when the grid is a lattice, in which case sys, is the usual systole. It will be useful for many
computations throughout this paper. The next lemma is a well known result which will be useful
in order to explicitly compute the limit function Poix 38 well as to bound error terms for Theorem
2.8.

Lemma 2.10. For every real number 8 > 0, there exists a constant Cg p > 0 such that, for all
=1,
$B+2

2T
B
ml|” — <Cgprx
‘ 7%/\ Il covoly (3 + 2 B
0<|m|<z

B+1

11



For every real number 8 > —2, we have the (less explicit) estimate, as x — 0,

or  xft?
B _ 0) ( B+1 1)
Z Im| covoly (3 + 2 MG +

meA
0<|m|<z

In the case B = —2, we have the following estimate, as x — 40,

1 27
T og(x).
Z |m[?  covoly og(%)

meA
0<|m|<z

For every real number f < —2, we have the convergence

Z Im|? < 0.

meA—{0}
Proof. We recall Abel’s summation formula: for every real sequence (ag)g>1, all real numbers
1 < 2o < 2 and all function f : [xg, +o0[ — R of class C! on ]zg, +o0[, we have the equality

T

(7) Y af=( Y a)f@- (Y a)fe)- | (¥ a)rod

ro<k<z 1<k<z 1<k<zg To  1<k<t

Let z = 1 and .% be a closed fundamental parallelogram of A containing 0 with minimal diameter.

For the case § = 0, we follow the standard Gauss counting argument. Set A, = {meA : 0 <
Im| < z} and By = |J,,c4, (m + F), so that we have the equality Lebc(B,) = Card(A,) covoly.
The definition of diamj yields the inclusions

(8) D(0,z — diamz) < B, < D(0,z + diamy),

where the closed disk D(0,z — diam 5) is empty if z < diamy;. Computing the Lebesgue measure
of these disks gives

9)

max{0,z — diamy}* < Card(4,) <

(x + diaumfx)2

covol; covol

which is even valid in the case 0 < z < 1 and implies the lemma in the case 5 = 0.
Assume B > 0. Consider the sequence (a;, = Card{m € A : k—1 < |m| < k})k>1. We have
the following inequalities

2 ar(k —1)% < Z Im|? < Z apk”.

1<k<z meA 1<k<[z]
0<|m|<z
Let |-] denote the lower integral part on R. Applying Abel’s formula (7) to f : t > t% then
[t (t—1)7 with zg = 1, together with the case § = 0 to estimate Y, _, -, ar = Card(4,)),
this proves the lemma in the case 5 > 0.
Assume €] —2,0[. Then we have the inequalities

(10) 2 apk? < Z |m|? < Z ap(k —1)%.

2<k<x meA 2<k<[z]
1<|m|<z

Applying Abel’s formula (7) to f : ¢t — % then f : t — (¢t — 1)? with o = 2, this proves the
estimate, as x — 0,

Sl or P2 o (LT diam% )
m|” = — — 22 .

= covoly (3 + 2 A\ covol x

1<|m|<z
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B Tr(1+diam%)

Combining this with the inequality > men |m|? < sys) coming from Equation (9),

covol ¢
0<|m|<1 A
the lemma is proven in the case § €] —2,0[.
The case 8 = —2 directly comes from the inequalities (10) and the same application of Abel’s

formula, since then the only diverging term is equivalent to, as x — o0,

T
T 5, 27
— t t) ~ 1
L covolz r'e® covol; og(2)

in both cases where f is given by ¢t — t% or by t — ﬁ

For the case 8 < —2, using the case § = 0 from Equation (9), we can directly compute

> mlP = X mffe Y mf

meA meA meA
0<|m|<z 0<|m|<3diamy 3diam ; <|m|<z
1 .
< 0pa(l) + f (I2] — diam)? dz = 04 (L).
COVOIK C—D(0,2diamy)

which gives an upper bound independent of x for the sum. O
Another helpful tool is given in the next lemma: it will allow us to count grid points that are
near a given straight line.

Lemma 2.11. Let g : Ry — Ry be a nonnegative piecewise continuous function and set Ly =
{x+iy : x>0,y eR and |y| < g(x)}. Then, for all N € N, we have the inequality

N . )
1+ diamy 1219 + diam
Card(A A D(0,N) n Lg) <4 Z ( iam ) (max,_1,41 9 1amA).

= covol x

Proof. Fix N € N—{0}. For every = € {1,..., N}, let m, denote the real number maxp,_, ;) g and
consider the rectangle R, = [z — 1, z] 4+ i[—my, m,]. We have the inequality

N
Card(A " D(0,N) n L,) < Z Card(A n Ry).

r=1
Wi Ry : " R: - —
1 z—1 T N

. (liamk

For each z, let us denote by Ry the diam ;-neighbourhood of R, for the infinity norm |z, =

max{|Re(z)|, |Im(2)|} (so that R, isa rectangle, see Figure 2.2). Using Gauss counting argument,
the inequality between the Euclidean norm and the infinity norm then yields the inequality, for all
xe{l,...,N},

Card(A n R,) covol; < vol(R,) = (1 + 2diamy)(2m, + 2diamy).
Summing over x € {1,..., N} proves the lemma. O
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2.3 Symmetry lemma

By the change of variable p = n — m, we can rewrite the definition (5) as follows

N"-1

W 2 X 2 Ap(N)((mp) ekl —mleh])

k=—N' peX—{0}

(11) By =

meA
0<|m+p|,/m|<N

For any number z € C*, recall the notation z* = z[®9 for its level-0 a power. Let 6 : C* — R
denote the projection of the argument function onto [0, 27r[ For all nonzero complex numbers z, 2/,
o, k] p

the definition of their level-k a power yields the formula £ ,[Q T = (?)[O"l] where | = [%f(zvj =
0 or — 1 depending on the sign of 8(z) — 0(z'), 1ndependently of k. Set

I ={(m,p) e A x (A= {0}) : 0 < |m|,|m+p| <N and 0(m + p) > 6(m)}
and Iy, = {(m,p) € A x (A—{0}) : 0 < |ml|,|m+p| <N and 6(m + p) < 8(m)}.

In other words, putting aside the case 6(m +p) = 6(m) for now, the set I; (resp. I;) contains the
indices (m,p) in Equation (11) verifying the formula, for all k € Z,

(m + p)lH

o] 1+

(m + p)lek] _ ﬁ)[a,q])
look] m :

p
=1+ 2y (resp.
(1+ m) (resp

Let e%’lo\‘,”?\;tlv,, (resp. %JO\‘,IJ\VTN,,) denote the part of %ﬁ,ll\v}v}w with indices in I3 (resp. in Iy) in
Equation (11). One can notice a one-to-one correspondence between I3; and I given by the map
(m,p) — (m + p, —p). This yields the formula

(12) %10\1]111\\}:]\7” = (Z > _Z)*%]?/:/]\\;tl\/”'

The next lemma indicates that the contribution of the indices (m, p) which do not belong to I5; nor
Iy is negligible. Combined with the formula (12), we will be able to derive the vague convergence

A,lv] A
%]O\‘, N,VN,, from the one of ,%’X‘, NZJ’” N

Lemma 2.12. Let f € C}(C) and choose A > 1 such that supp f = D(0, A). We have the estimate,
as N — o,

RN () = B N (F) + AN () + O (1:;|(J]‘V|;c ((Adf\(ijlv—)a) . 1) 2)

Proof. The difference 2y /]\V}V}V,,( - (%K/}V,‘F N (f) + %ﬁ‘,/]\w_ N (f)) is

N"-1

Z Z Z f(¢(N)((m + p)[a,k] _ m[a,k]))
k=—N’pex_ {0} 0<\mf§>€|fm|<N
0(m+p)=0(m)

(13) W

Fix k € Z. Our goal is then to count pairs of points (m,p) € A x (K —{0}) verifying the inequalities
0 < |m|,|m + p| < N, the equality of arguments §(m + p) = 6(m) and the inequality |¢(N)((m +
p)lekl —mlek| < A We denote by Iy 4 the set of such indices (m,p) (which indeed does
not depend on k thanks to the formula z[®* = e?27kaze)  Tet (m,p) € Iy 4 We denote by
w = 0(m) = O(m + p) their common argument in [0, 27[. The function z — z[**] is regular when
we restrict it to the segment [m,m + p]: the complex valued function g : t — (m + pt)l**] =

ia(wt2rk) .
& Pl Tt is

(|m| + t|p|)*ei*@+27k) is differentiable and its derivative is given by ¢’ : ¢ > Tl r=e -

14



alp|

= Tmgp[i=a The mean value inequality

minimal in modulus when ¢ = 1, for which we have |¢’(1)]
then grants us

alpl

A o o
g = |m ) —mle M) = 1g(1) = g(0)] > oo

¢(N)

From this, we derive the main inequality that we will use to count such pairs of points, namely

ANt=e
14 D .
(14 e
. . . l1-a
As N — oo, Equation (9) indicates that there are only O, (Covlolx (ﬁg(N) + diam ) ) points p € A

verifying the inequality (14). Let us fix such a point p. Then, for the points 0, m and m + p to be

aligned, the nonzero grid point m + p has to be chosen on the ray from 0 to p. Since moreover it

has to be in the closed disk D(0, N), there are at most gy% ways to choose the point m + p. This
sysx

counting argument yields, as N — o,

19 a0 - 0, (1 X (A0 wams)) =0 V(A7) +1)')

The triangle inequality applied to Equation (13) gives the estimate stated in the lemma. O

Remark 2.13. Since the renormalization factor is given by (N) = (](;’(2]:;; )2, in the case A = 0 of
Theorem 2.8, the estimate of Lemma 2.12 becomes

%a,/\,lvl (f) _ %a,A,-&- (f) _1_% (f) +0 (AQHfHOO>
N,N’,N" - N,N’,N" N, N/ N a’A N .

2.4 Linear approximation

Thanks to Lemma 2.12 and the symmetry formula (12), for every f € C}(C), we can focus on the

asymptotic behaviour of the sequence (Zy /]\V,Jr N (f)) N, N7 N7en, whose formula can be rewritten

N"—-1

W PIEINNCE ymleH(@+ £y 1),

=N (m.p)el};

(16) BN (f) =

Define another sequence of positive measures by

N"-1
+ _
KN N/ N = W Z Z A¢’(N) o s
=N (m,p)erf;

The next result is a linear approximation lemma.

Lemma 2.14. Let f € CX(C) and choose A > 1 such that supp f < D(0,A). We assume that

¢(1]y()1 —> A€ [0,+0[. Then we have, as N — 0,
N N—>©

A? A%2p(N A3 N)?
BN D) = 10 o) = O (108 (g + “oaca) + 11 (g * s

Proof. Fix k € Z. For all (m,p) € I;, we want to bound from above the quantity

a7 FmEH((1+ £)7 1)) = f(p(n)— ).

m

15



By the hypothesis supp f < D(0, A), in order for the latter quantity not to be equal to 0, the index
(m,p) has to verify (at least) one of the two inequalities
Alm|t=« Da A
18 p—7F—— or |(1+—) -1 < —F—F—F.

Let IK,)A be the subset of I;{, consisting of such indices. Let (m,p) € IK,)A. Note that the inverse

of the map z — 2 is Lipschitz continuous on a small neighbourhood of 1 = 1% in the image of

z — z%. This neighbourhood may be taken to be D(1,1) n {z € C : Im(z) = 0} n (2 — 2%)(C*),
1

2«

which is convex and where (z — 2%)~! has its derivative’s norm lesser than . Then, as a

consequence of Equation (18), since |m|(:2)(N) < %yg“éb(N) — 0 as N — o0, we have the estimate, as
sysg
N — oo,
D A
19 2o, (A
19 ! = O o)

(Recall that, thank to the definition of O,, the latter estimate is uniform over any temporarily
fixed variable, in particular over (m,p) € I;{,) 4). One may notice that Equation (19) implies that
m + p and m are not independent grid points: they have to be close together since p has to verify

Ip| = O (A[;'Z]‘\l,;a ). With the consequential estimate |p| = O, ( %), we use the Gauss counting

argument from Equation (9) (summing over A with z = O, (%)) to deduce a result that we

will use twice in the remaining part of the proof: as N — oo, we have the estimate (uniformly for
every grid point m € A),

- AN1-« 2
(20) Card{pe A — {0} : (m,p) € I§ 4} = Oan ((7 + 1) )
’ $(N)
Recall the linear approximation (4) as z — 0 with the restriction Im(z) = 0. In order to apply it
to most fractions z = £ we have to take out the indices (m,p) for which Im(Z) < 0 holds. For
that matter, we first notice that for all (m,p) € Iy, 4, the inequality Tm(£) < 0 holds if, and only
if, we have 0(m + p) — 6(m) €], 2x[ (since Im(£) = Im(™+2)). We denote by IR the set of

these indices. Then, by use of Equation (19), for all indices (m,p) € I}Q,‘r’}%, we have the estimate,
as N — oo,

|£| - |L+p —1 =+ P\ gitom+p)-6(m)) _ 1] = |eiOm+p)=0(m) _ 1| + O, (L)
m m m

Im|*¢(N)
48 tp)=0(m) 0 tp)=0(m) A
=le —e |+Oa<7|m|a¢(N))
o 0(m+p)—0(m) A

Using this, we claim that the quantity (m +p)—6(m) which belongs to |, 27| since (m,p) € I}if’j‘}_‘,

has to be close to 27. Since the image of 6 is [0, 27|, this will imply that 8(m + p) has to be close
to 2w while 6(p) has to be close to 0. In other words, both grid points m + p and m have to be
close to the real positive ray R, — {0}. Using the concavity of the sinus function on [0, 5], we can
derive the following estimate from Equation (21) (and using again Equation (19)), as N — oo,

6(m + p) —6(m)
2

_\r A

- 1521+ 0 (pam)

(22) thus 27 — (0(m +p) — 0(m)) = Oq, (maf;(]\[)>

2 (2 — (0(m + p) — B(m)) < 2sin ( )

which proves the claim.
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As an immediate consequence, the same estimate holds for 2 — 6(m + p) and for 6(m). We
choose a constant C,, > 0 to make the Landau’s notation explicit so that 6(m) < O“W’ then
we set the function gy : z — x tan (Ca#h\f))' For N large enough so that C’aﬁ < Z, the map
gn is well defined over [1, +oo[ and is nondecreasing. Applying Lemma 2.11 with gy gives us the
estimate, as N — o0,

C, A
Card{mE(A—{O})ﬁD(O’N) H0m) < [m|*¢(N )}
o 0+ diamg RV tan(Ca ygiyy) + diamy)
covol ¢
AN
Oa.n (N(W + 1))'

Multiplying this bound by the number of lattice points p described in Equation (20) gives us the
following estimate for counting these bad indices, as N — o0,

AN
Pion + 1)3).

Thus, the restriction to these bad indices in the error term 2%, v, (f) = pk yv o (f) is estimated
by, as N — o0,

Card(I5%) = O (N(

(23)

ANl et
N (f|OON( o(N) + 1) )
“ Y(N)
We set IgOOd = IJT,A - Ibad Using the mean value theorem, for all (m,p) € I3 Zd, since

Im(Z) = 0by definition of T go% and using the uniform estimate (19), the quantity (17) is bounded
by

o pa ap, pl?
(24) Jdf Lo b lml* | (14 7)" =1 = 2] = Ou (1l (M) ).

2
It remains to bound from above the sum Sy a4 = Z(m p)erEeed ITJLII)%' For that matter, we use
2 N,A

the estimates (19) (in the form |p|? = O, (%)) and (20) then we apply again Lemma 2.10
(summing over A, with 8 = —a and z = N), which gives us an upper bound for the sum Sy 4 as

follows

1 A2 2—2a 5
Sn,.a < Z Oa ( ud )Card{pe A—{0} : (m,p) € Ig’OOd}

o mfre B(N)?
0<|m|<N
1 A2 AN 2
< H;A e O‘*(¢<N)2)OavA(( S(N) +1))
0<|m|<N
AQ(A(;\(TV)Q + 1) 1
0 (o) X e
0<|m|<N
ARNZO (AT o 1)?
= Oan < H(N)2 ) '

This estimate together with the one over I}{,"fj given in Equation (23), and the bound given in
Equation (24) gives us, as N — o0,

() N ()
b(N)¢(N) »(N)
17

A2|df oo N2 (AN L 1) | oo N(ANSE 4 1)8
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Since the renormalization factor is given by the formula ¢ (N) = (%)2, the latter estimate can

be simplified (using the inequality (a + b)* < 2%(a* + b¥) for real numbers a,b > 0 and k € N) and
finally rewritten, as N — oo,

A? N A3 N)?
B (D) = o) = Ot (A1 gy + ) + ke (g + i)

O
Remark 2.15. If A = 0, the error term in Lemma 2.14 becomes, as N — o0,

Al A3
TN oo () = oo (1) = O (107 3 g5+ 1o )

A flloo + lldf |0 )
= Oan ( Nag(N) )

2.5 Riemann sum approximation

The last lemma is a standard Riemann sum approximation. Again, let .% be a closed fundamental

parallelogram of A containing 0 and of diameter diamj.

Lemma 2.16. Let 6 € C* and F be a finite subset of A. Then, for every function f € C*(C), we
have the inequality

‘\5|2covolx Z f(md) ff f(z)dz| < Card(F)|5|3de‘ U 8(m+7)|oodiamg.
meF U §(m+7) mer

meF

Proof. Notice that, for all m € F, we have Leb¢(6(m + 7)) = covoly; = |6]* covolg. A direct
application of the mean value inequality for f on the convex sets 6(m + .%) and then summing
over m € F' ends the proof. O

We now have enough tools to prove our effective theorem.

3 Proof of Theorem 2.8

We have three different regimes for the scaling factor and the proof will be divided accordingly.
Recall that the renormalization is given by the formula ¢¥(N) = (%)2 Let f € C}(C) and
choose A > 1 such that supp f < D(0, A).

3.1 Regime o) P +0o0

1—
N Ny

Compared to both other regimes where we get an asymptotic bound for the speed of convergence,
this one is particular as we will asymptotically prove the equality %%’IJ\\;}VJI\,,,( f) = 0 representing a
drastic loss of mass at infinity. For that reason, we will not use whole lemmas from Section 2 but
only elements of their proof. For N large enough (independently on N’, N”), we will first prove
the equality %K/}V,Jr n#(f) =0 (hence %’j’\‘,j}vf v (f) = 0 by symmetry), then we will take care of the
diagonal terms (m, p) € Iy, that is to say those which verify mT"’p € R.
Fix k € Z. Recall that the set I3 is defined so that, for all indices (m,p) € I, the formula
(m + p)leokl — ookl = ookl (1 4+ )@ — 1) holds. Our goal is to prove that, for N large enough
independently on k, we have the inequality
Pya g, A
|(1+m) 1|/ \m\o‘(b(]\/‘)
18



Using the notation IK,)A from the proof of Lemma 2.14, the indices (m, p) € IK, failing to verify the
former inequality are in this set I;{,’ 4 by Equation (18). Thus it is sufficient to prove that, for N

large enough, we have I3 , = @. For all (m,p) € I}, 4, we can use the estimate |p| = Oq( (;\(rjlv)a)
that follows from Equation (19). Thanks to the convergence % — 0 as N — o0 and the
inequality [p| > sysy for all p € A — {0}, we have indeed Iy = @ for N large enough. For
such ranks N and for all N', N” € N, this immediately gives the equahty RN N N, N,,( f) = 0. With

the same condition on the ranks N, N’ and N”, the equality %N N v (f) = 0 follows from the
symmetry described in Equation (12).
The same argument, this time using the set of indices Iy 4 defined in the proof of Lemma 2.12

and the estimate (14), gives the result over the diagonal terms. After summing over IJJ{,’ AVly qu
Iy 4, we have finally proven the equality, for N large enough and for all N " N" eN,

AN (f) = 0.

3.2 Local changes of variables

3.2.1 Riemann sums argument

In the two other regimes for the scaling factor ¢, thanks to the symmetry equation (12) and to
Lemmas 2.12 and 2.14, it is sufficient to study the behaviour of the sequence (11 nv o (f)) NN N7eN
defined by the formula that we recall

N"—1
o(N)a
ufv,Nf,Nu(f)=W DI f(ﬁ),

E=—N' cX_q0r meA
A o er

where I, = {(m,p) € A x (K —{0}) : 0 < |m|,|m + p| < N and 6(m + p) > 6(m)}.. In order for
an index (m,p) to contribute to this sum, it has to verify, as N — oo,
P A AN~
hence |p| < .
L < A0

In order to see the measure py n/, n» as a weighted Riemann sum over the lattice .K, we will use
the open angular sector (illustrated in Figure 7)

) ml = Tl o)

Cpi={z€C* : arg(z) e 0(p) — (1 — )27 |k, k + 1] +27Z},

the ray Ly, = {z € C* : arg(z) = 9(p ~} and the family of change of variables (hy,x)
defined by

hp,k : Cp,k s (C* — LpJC ‘
z - |z|_ﬁ6_ﬁ with arg(z) =wr €0(p) — (1 — )27 |k, k + 1].

pel, keZ

In other words, these changes of variables are restrictions to Cj, i of the maps

(26)  hpg: 2 exp ( — L (log(ae 0@ 2m st D=0y | i(6(p) — 2 (k + 1)(1 — a))))
—

where log is the nonstandard branch of the logarithm on C—R defined in the beginning of Section
2.1. Let pe A—{0} and k € Z. The map hy, ;, is biholomorphic and computing its derivative using

. h
the formula (26), gives us Ay, ; : 2 — —ﬁw whose modulus is z — 1|27 T==. We set
Wp k= Z A _syap
1—a,k
meN, m¢R ml I
(m.p)el}
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allowing us to decompose the measure up N7, into sums where k and p are fixed, then apply a
different change of variables on each part. The condition m ¢ R, is introduced so that the points
iff\i )(fff] all belong to Cp 1 and not only to its closure. In order to add or remove this condition at

will, notice the inequality

+ 1

(27) Card(A n D(0,N) nR,) <
sysx

For all m € A such that (m,p) € I}; and m ¢ R, the change of variable h,, is designed for the
following computation:

¢(N)ap) _ (¢(N)alp\

mll—onk] Im|1-

)
p,k

)

hp k( (ei(G(P)*(lfa)(0(m)+27rk)))

— (EN)alply -y - iom -(0-0) 0 127K _ (N )ap) T m

Il
where we recall the notation 2~ & = z[~7a0], Consequently, we have the formula

(28) (hp k) swp s = Z Amsy,, Where oy, = (¢(N)ap)_ﬁ.
meA, mgR
(m.p)ely;

Using Equation (27), the condition m ¢ R, in the latter formula can be removed up to an extra

wN

In order to compare every measure (hy x)xWwpr With a weighted Riemann sum, we have to
establish which part of C is occupied by the indices m in its definition. Recall that I]\L, denotes the
subset of A x (A — {0}) with conditions 0 < |m/, |m + p| < N and 6(m + p) > 6(m). Putting aside
the condition |m + p| < N for the moment, we claim that such indices m approximately occupy
a half-disk (depending on p), namely half of the closed disk D(0, N). Let B, denote the complex
band [—1,0]p + R;. More precisely, we claim that, modulo the complex subset B, n D(0, N), the
set

error term of order O ( ), thus we forget about it until Equation (35).

Dy, ={2€C*—{-p} : |z2| < N and 0(z + p) > 6(z)}

is the half-disk centred at the origin, of radius N and with the argument condition 6(z) €16(p) —
m,0(p)[ +27Z. The claim follows from a straightforward study of (the sign of) the function z —
6(z + p) — 6(z) which is continous on C — (Ry U (—p + R.)), which can be computed explicitly on
the circle C(0, |p|) and whose zeros belong to the line Rp. See Figure 6 for a summary of this study.
A quantitative comparison between Dy, and the associated half-disk will be stated in Equation
(32).

In order to remove the condition |m 4 p| < N in I3; and to compute the associated error term,
first notice that failing this condition implies that N — |p| < |m| < N. Using Lemma 2.10 twice
(summing over A with 8 = 0, first with x = N then with x = N — |p|), we obtain, as N — oo with
N = |pl,

N2 - (N — 2 1 + diam?
Card(AnDyp—{meA : (m,p)e[j\r,})=7r( ( [pD°) +0( AN)
covol;

= Oa ((pl + N).

covol z

Thanks to the inequality |p| < % from Equation (25), the condition N > |p| in the latter
estimate is verified for N large enough, uniformly on such indices p. Using Lemma 2.10 (summing
over A with 8 =0 and x = %), we can replace the condition (m,p) € I}; by me A n Dy, in
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Dy p .
P/ Dy
1y T : |
L N,p p
/0 1 /101
// B[}’
/
/
Dy
Figure 6: An illustration of a set Dy, with 6(p) > m, and Dy, with 6(p’) <
the definition of pn nv N7 (f) up to the error term, as N — oo,
XSl O(N)ap

ﬂE,N/,NN(f) - W Z 2 Z f(m)

k=—N' peA {0} meANDN, p

AN'—> AN'—@
(29) -0 A<f|°°(¢<zv>+1)< (V) )QN).
’ ()
This invites us to define the measures
a}ch = Z A swyap

E——
meN, m¢R mlt ]

meAnDy ,

and ﬁj{,yN,’N,, = (N’+N71”W(N) QZ:}V, Zpefx—{o} Wp,k- Using Equations (27) and (29), we obtain an

error term, as N — o0,

<faﬁ&”uxw$VN+wa)
U) o )

Let .% be a fundamental domain of A containing 0 and of diameter diamz;. An approximation

(30) ﬁE,N/,N"(f) - H?\},N/,Nu(f) =04,

of Dy, is given by 5N,p = Umeanpy, (m +F). We apply Lemma 2.16 (on the C? function
for=fo h;}w with 6 = dn, and F = An Dy ), then we use Lemma 2.10 (summing over A with
B =0and x = N since we have the inclusion Dy, = D(0,N)). This grants us the estimate, as
N — o0,

S5N,p5N,p fp,k(z) dz‘ diamy

h ~ —
(Pop, )5 &p 1 (fp,1e) |6 |2 covol ¢

A
S covol ¢ |dfp,k OnpDn.p loo [0v,p| Card(A n D p)

dep,k Snv oD HOO-ZV2
— Oup ( O pDivp - )
(@(N)p[) ==

The set D ~,p is "approximately” Dy ,, and is "approximately" a half-disk as we shall now see. Let
us use the notation, for all zo € C, r > 0, w € R,

(31)

H(zg,r,w)={2€C : |z— 2| <rand arg(z — 29) € Jw — m,w[ +27Z}
21



which is a half-disk centred at zp, of radius r > 0, with an argument (relative to its centre)
determined by w (more precisely by its image in R/27Z). We want to compare the complex subset
Dy, with the half-disk H (0, N,0(p)). Let u be the complex number verifying arg(u) = arg(p) + 5
and |u| = diamjy. Let ép,N denote the diam ;-neighbourhood of the band B, n D(0, N). Using

the triangle inequality, modulo the set Ep, ~, we have the following inclusions
Dy, < H(u,N + 2diamg,6(p)) and H(—2u, N —3diamg,6(p)) < Dnp.

(We don’t necessarily have H(—u, N —2diamg, 0(p)) < ﬁN,p v Ep,N in the case where A contains
0, since 0 never belongs to A n Dy, which is the set of indices we defined D ~,p with). Thus, the
symmetric difference that is of interest here verifies, modulo B, v,

Dy yAH(0,N,6(p)) = (D, v H(0,N,6(p)) — (D, 0 H(0, N, 6(p)))
< H(u, N + 2diamg, 0(p)) — H(—2u, N — 3diamg, 6(p)).

Since the set EP’N has Lebesgue measure bounded by O((|p| + diamz)N), the latter inclusion
modulo EpyN gives the estimate, as N — oo (with N > 3diamj; and independently on p € A— {0}),
Lebe(DnpAH (0, N, 0(p))) < g((]\FI— 2diam ¢ ) — (N — 3diam ) )+ O((|p| + diamy;)N)
(32) = O(diamy; N) + O((|p| + diamz)N') = Ox((|p| + 1)N).

Let Ry = — 4™ Fyom the estimates (31) and (32), we derive, as N — o,

(e(N)alp]) 1=

SéNpH(ONo for(2)dz ‘
[On p|? covolK

(Gop) st (Fp) =

_o, <|dfp,k aN,pﬁN‘,,JooNQ) N | $sn By Fok(2) 42 = §5 0 mo.n000y) Tok(2) 2]
(@(N)|p|) ==
ldfp.k 165.pDnp oo N2 )
(o(V)lp) ™=

N pr,k 165 .p(DN.pUH(0,N,0(p)

covol o2

:Oa,A<

oo Lebe(6n,p D p Adn  H (0, N, 6(p)))

covoly [0 p |2

d N?
(33) _ Oa7A (” fp,k ‘D(O,RN)“OO

_ ok 0.t s (] + DINV).
)=+ Mk iporw (el +1) )

We set

— _ (0%
HCy g = hy 3 (0npH(0,N,0(p)) = Lpx) = hy 3 (H(0, [0 p| N, —me(p)) — L)

(where we used the equality arg(dn,,) + 0(p) = —1%9( ) +0(p) = —12;0(p) for the right-hand
equality). We will geometrically describe HC)  in Section 3.2.2, and see that this set is the
intersection of an angular sector (which turns out to be half of prk) and the complementary set

C — D(0, [6x,N|~1=) = C — D(0, 222~ Recall the formula f,x = f o h*; and that the

Nl—«a
modulus of }, ;. is 2 — =z~ =% . Hence the Jacobian of hpi is z — (172|z\7ﬁ We define
(39 () 1 | sl
j— -«
ok (1= @)?|onp[* covoly Jye, , 2= =
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and

N//

+ —

VN,N’,N” - (N’ +N” Z Z
k— N’ peA—{0}

Thanks to the inclusion supp f < D(0,A) and the formula |h;k| : 2z |2|70=%) we have the
inequalities, for all N € N,

| foe 1D, oo < 1 fllo and [dfy b (D0, ) oo < (1= @)AN=DE=D df o0 < A df [co.

Let £o be the function 1 + |log| if @ = 3, and the constant function 1 otherwise. Combining
Equations (33) and (27) (to remove the condition m ¢ R in the definition of &, 1), applying the
change of variable formula, and using Lemma 2.10 (summing over A with 8 = 0 and = = ‘31(;[(1]\_,;

thanks to Equation (25)), we compute the estimate, as N — o,

£ oM
TW)sysg) ~ VR (f)

| ok 1D oo (1Pl + DN [ dfse D055 o0 N
= O, + 1
2. ( »(N) (N (S(N)|p) = )

ﬁE,N’,N”(f) + Oa (

peA—{0}
Aleoz
pl< 4%y

[ £l Nl“+1>Jv<f‘t;¥*};)“>2+ A2|df oo N2 S )
G(N) BINB(N)T= 0

AN1 @
lPI<S <Ny ad(IN)

_ oa’A(

Together with Equation (30), we finally obtain the estimate, as N — oo,

1IN AN

s G ))

ANI_O‘)(ANI_Q)Q N

o) o) v
2 2

L ANy

(35) 8y e () = Voo e () = O

+ [l (1 +

Y(N)p(N) ™= e

Nl—«a
Ipl<

3.2.2 Geometric description by symmetry

Set vn N/ N7 = VK, Ny T (2 = )*1/;{, nv.n#- Using the symmetry argument (12), we will be

Alvl
able to compare %’;‘; N+ nw t0 vy N7 n#. This section aims at describing the measure vy, N7 nv.

Lemma 3.1. Forallk e Z and all p € A— {0}, up to a complex subset of Lebesgue measure 0, we
have the disjoint union

alp|g(N)

HOch U (—HO_M) = Op7k‘ N ((C — D(O, Ni-a

))-

Proof. To prove this, fix k and p as such. We begin by noticing that HC), , and —HC_,, j, are indeed

subsets of C, i, (by definition for HCp j, and thanks to the inclusion —HC_, , ¢ —C_, 1 = Cp ).

Furthermore, they are subsets of C — D(0, %) since the changes of variable h 1 and h” 1
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alp|¢(N)
sw)

Figure 7: Illustration of Lemma 3.1.

have the same modulus z — |z\_(1_°‘). More precisely, the definition of hj, ; grants the formula,
forall ze C— Ly,

) 0
hol(z) = 2| (e 0m)wr where arg(z) = wy € _ ) + 27k, k+ 1]

Pk l-«o
or, in other words, for all » > 0 and w € R — (—0(p) + 27Z),
;(_ 20(p)
(36) h (Tel( = +w)) = (1) exp (9(;0) —(1-a) (Q(p) +w+ 27T(k: — [9(]9;7:—(,0J)))

Since h_1 (and similarly h_j, 1)) acts separately on each variable in polar coordinates, it remains to
descrlbe HC, k (resp —HC_, x) in terms of arguments which reduces to the description of the set
h, LSt —{e” = }) (resp. fh_p RSt —{e” = })) Using the formula (36) and doing separately
the cases 0(p) < m and 6(p) > 7, we find that

h;,i(Sl—{e )

e s webp) —2r(1 - @)k k+ SR Ok + 1+ M2 k1)) if(p) <,
{e® : webp)— ( a)lk—1 4+ % g4 ”[} if 0(p) > T,
which is half of the circle arc S' " C,, x. Similarly, up to a finite number of pOiIltb (namely the three
points in exp(ad(p) — 27k(1 — a) + {—1,0,1})), the complex subset — (S1 —{e” =8 }) can be
proven equal to half of a circle arc, namely the complement of h, k( —{e” = } in St A Cp .

This concludes the proof of the lemma. O

Thanks to the union described in Lemma 3.1, we derive the following formula

1
WV 2,

VN,N',N" =
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where we set v, = V;k +(z— —z)*ufp > that is to say v, 1 is a measure absolutely continuous
with respect to Lebc with density given by, for all z € C,

—2a

4 2
[ Lo, ine-pio, ety (2 (G alp T2

(1 — )2 covolg

(37) gp.k(2) =

We use the notation C, = C, 9 n (C — D(0, %)) We notice that the sector Cp; N (C —

D(0, %)) is obtained by a rotation of C), as e~*2™F(1=0)(C, = 2™ka( We can then describe

vn, N, by the following formula

vN.N N (f) = (g (V) ™ Nil > p| == f F)|e T dz
N, (1—a)? covolz (N’ 4+ N")i(N) e e~ )

where the sum over p € A — {0} is finite since e?mkeC, < C —supp f if |p| > %. When

N',N” — o, we will average over k the above integrals on e*™**(C), which will allow us to
replace them by one integral over C — D(0, %) For that purpose, we separate the cases
a€Qn]0,1[ and a € (R—Q)n]0,1[. Since the averaging over k € {—N’,..., N” —1} and the one
over p € A-— {0} are geometrically uncorrelated, both averaging processes seem to be necessary in
order to obtain a rotation-invariant limit. Imposing a small value of N’ + N” empirically leads to
rotation discrepancy near the origin, as shown in Figure 2 (where N’ = 0 and N” = 1).

The measure we will obtain after this averaging process is given by the formula

B ) = O S bl FENRI R

(1 — ) covol; ¥(N) peiot0) C-D(0,2l2let )

3.2.3 Averaging: the rational case

In this section, we assume that « € Qn ]0, 1[ and we write a = % where a and b are coprime positive

natural numbers. We recall that the angle of the restricted open sectors C), is 27(1 — ) = 27rb_Ta.
Thus, outside of the union of b rays from the origin (which is a set of Lebesgue measure 0), we

have the covering formula, for all kg € Z and all p e A — {0},

ko+b—1

(39) Z ]].ei27rkacp = (b — a’)]]'C—D(O, wl\;;\lqb_((zxv) )
k=ko

Hence, we can rewrite vy, n/, v~ (f) by regrouping groups of b consecutive integrals, which gives

(@p(N)) ™5 (b — a)| XN |

2
v o (f) = |p|mj F)le
(1 = )2 covolz (N’ + N")p(N) peﬁz—:{o} C—D(0, 21zl

4—2a

e N'-1 2 4-2a
" (ag(M)) > DIl O

— )2 B .
(1 — )2 covolz (N’ + N")y(N) ke N LN | e (o) eiznkac,

We recall the formula ¢(N) = (%)2 Using polar coordinate, we can bound from above the

latter integrals as follows, for all k € Z and p e A — {0},

fc Fl2)]2]” T de < zﬂfyoof PR dr = (1— a)ﬂHfHoo(M)*%,

alpl$(N) Nl-a
NI-«
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N'+N" .
Using the inequality ’[N,Jr% — %’ < W and Lemma 2.10 (summing over A with § = 0 and
11—«
T = %), we get the estimate, as N — o0,
A2| flloolz—bz (N + N")
(40) VN,N’,N”(f) = VN(f) +Oa1A ( OON/JFN// )

3.2.4 Averaging: the irrational case

In this section, we assume that « € (R—Q)n ]0, 1[. As we take successive rotations by an angle 27«
(or equivalently, an angle —27(1 — «)) of the (restricted) angular sector C,,, there is no possibility
of having a periodic covering formula such as Equation (39). However, since the angle of C,, is also
27(1 — a), we can still geometrically understand the error in such a covering. Let C), n+ n» denote
the complex subset

N 1 _ N/ N//
{zeC: \z|>%and arg(z)m(@(p)—!—%r(l—a)]l( ai(—oj— ) —N",N'[) # &}.
In other words, Cp n/ n» is the restriction to C — D(0, %) of the angular sector between

arguments 0(p) — (1—a)N”+27Z and 6(p) + (1—a) N’ +27Z (with direct trigonometric orientation).
Then, outside of the union of 2(N’ + N”) rays from the origin (which is a set of Lebesgue measure
0), we have the formula, for all p e A — {0},

N"—-1

Z ]].ei27rkcycp = [(1 — O[) (Nl + NN)JIL(C*D(O,D":DF(N)) + ]]'Cp,N/,N”'
k=—N A

With computations analogous to the ones in Section 3.2.3, we find a similar error term, namely as
N — oo,

A% £l
(1) v (1) = v () + O (S )
. N)
3.3 Regime 2) — — ()
g Nt N—w
Using the formula ¢(N) = (%)2 and Lemma 2.10 (summing over A with 8 = —-L and

x = %), the third line in the estimate (35) can be bounded, as N — oo,

ATE Ogn(d) if o <L,
N2 1 1 VN
[ S T _ og(247) .
BN)O(N) = Z{} " Oaa (=) if o= 5,
peA—{0
—a _ 2a—1 _ .
Ipl < 43057 Oaa((N2I=0g(N)T=)7Y)  if o> L,

1 los(GE) 2(1—a) 2acly_ . . 1
o = and even (N ¢(N)T==)~" are negligible with respect to =iy sy the
estimate (35) can be rewritten by removing the first term of its right-hand side and by combining
the second and third terms, so that the estimate holds for N large enough independently on ||df |«

(as required in our definition of Oq z). As N — o0, we obtain

A3 0 df ||
N?\_],N’,N”(f) = VzJ\r/,N/,NN(f) + Oa,n ( (|f\|fa¢—é_N)f‘ )>

Since

Then, using the symmetry described in Equation (12) together with Lemma 2.12 (in which the
stated estimate is also negligible when compared to W(N)’ see Remark 2.13) and Lemma 2.14,
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(see Remark 2.15) we get, as N — oo,

AY(ldf oo + HfHoo)).

(42) RN no (F) = vn v e (F) + Oaa ( Neg(N)

Thanks to the estimates (40) and (41), we can focus on the behaviour of the sequence (vn(f))nen
defined in Equation (38), where vy is the measure of density

2 4—2a
(ap(N)) == |z|” == 2
gy 1z D1 et
1— L. (N
(1-a)covolgp(N) &=
Ipl< 2

with respect to the Lebesgue measure of C (with gx(0) = 0 by continuity). In this regime, using

Lemma 2.10 (summing over A — {0} with 3 = =+ and z = ‘ZI(;V(;)Q), we have the pointwise
convergence
T
Vze C*, gn(2) =P i (2)-

- .
N—w a?(2 — a) covoly

More precisely, Lemma 2.10 even grants us the error term, as N — o0, uniformly for every complex
number z € C — D(0, 258,

) Nl—a
P(N)
gn(2) =Py 52(2) + Oan (W)
For all N € N, the function g vanishes on the open disk D(0, Sybﬁ,?#) hence is bounded from

above on D(0, Ojfl(i)) by

(00(N) =5 sys T
(1 — ) covol; ¥(N)

2 ¢(N) e
l—-a — 700‘ .
pexZ_{O} | O(N)

IpI<1

Integrating these error terms over C and since SD(O 4) ﬁ dz = 2mA, we obtain the estimate, as

N — oo,
[N (f) = Py 5.5 Lebe(f)
™ G(N) T
<IFlke wa’m) e Wl fD(O’ﬁ% T Cand:
P(N)
. o (s ) d
+ 1 fD(O,A)m(C—D(O,M)) ’A<|Z|Nl*°‘> :
N N) | 42 Ap(N
=171 On ()2 4 111e O (Con ()55 11 0 (A2
Al flloo(IN
(13) = 0,y (A2,

Combining Equations (43), (42), (41) and (40), we have proven Theorem 2.8 in the case A = 0.
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3.4 Regime 21 feae A €0, 4+

Nl-« S
By using the inequali > he formula ¢(N) = (225)* ~ X2 and @ i
y using the inequality |p| > sysz, the formula (N) = (¢(N)) ~ 5z and Gauss counting
argument (9), in this regime, the estimate (35) grants us, as N — 0,

/“LR,N/,N”(f) - V}G,N’,N”(f)
AN flloo —ay, AfloATE 1) A4de“oo/\2
_OQ,A( N 1+27°)+ N =y

4 —1\ymax{2,72=}
0w (A (1 lloe + deHOO)J(\? +A7Y )

-1 2 T
(A +1) sys ¢ )

(44)

Thanks to the estimates (44), (40), (41) and to Lemmas 2.12 and 2.14, in this regime too we
can focus on the behaviour of the sequence (vy)nen defined in Equation (38). Its density gy
with respect to the Lebesgue measure of C has the following the pointwise almost everywhere
convergence outside of a countable union of circles: for all z e C — Upefx C (0, aX|p|),

4—2a

_ (ag(N)) = o]~ 2, om (llyTEs ==
gn(z) = (1 — ) covol; ¥ (N) Z |p| N—w (1 —a)covolg ( A ) Z [Pl

4—2a

peA—{0} peA—{0}
|2|N Nl—«a ﬂ
Inl<E8 IpI< o

which is the formula of the function p_ 5 | defined before Theorem 2.1. In this section, we aim at

making this convergence effective and at concluding the proof of Theorem 2.8. From now on, we

assume that N is large enough so that % < ]‘C(INZ 2. First, one can notice that both functions

al sybA

). For all z € D(0, A), we have the inequality

(LT _ye2| Y s

gn and p_ x| vanish on the open disk D(0,

o
—a

041*

(oz)\Zys ) 41i

_ - <
lgn(2) pa,A,)\(z)| (1—a) COVOIK

peA—{0}
<24
_2 asysy _ 42«
041*04( 2 A) 1—a
" (1 — a)covoly 1_\2{ }|p|1 “ ’ﬂ LI |p|,+00] (Iz]) = l[oz>x|p|,+oo[(|2|)|'
pE 0
lpl< 2%

Integrating on each annulus {z € C : |z| € [aA|p], aNlN(Z Ip|]} and using Lemma 2.10 (summing

over p = Ap € A — {0} with z = M > 1and g = 1= then § = ) thanks to the inclusion
supp f < D(0, A) and the inequality N(l_c)x < 2)\, we obtaln the estlmate, as N — oo,
’J IN = Pa K deebC‘_’J arsysz (gn — aAA)deeb(C’
D(0,A)—D(0,—5—2)
— A1 0, (A 600 )* CNEE[ Y i)
w e covol Nl-«a £ 4
peA—{0}
Ip|<24
741720
sysg " 2 $(N) $(N)
2 A 11— —
+ A% flloo Oa (W Z |p[ 7= 27 max {O‘Nka Ipl, a)\|p\} ‘O‘Nka Pl 0‘/\|p|D
peA—{0}
Ipl<24
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ATE(1422) $(N) | 4=a AT (14 22), (V)
:HfHOCO ( )\4111725 |(>\N1—a) 71‘+ 8=6a |>\N1—a 71’)
60 1 1 o(N)
= Oa.n (HfHooA = (1+ )‘2)()\41125 + == )‘)\Nl a 1‘)

Recalling that vy = gn Lebg, combining the latter estimate with the ones from Equations (40),
(41), (44), the symmetry described in Equation (12), and Lemmas 2.12 and 2.14, we have finally
proven Theorem 2.8 (in which we simplified the error term by using standard inequalities such as
1+ M < 2(A + 1) for every real number 3). O

4 Removing the branch cut

In the beginning of Section 2, we defined an empirical pair correlation measure ,%’JO\‘,[]\V, N In its
definition (3), for all grid points n,m € A, we have the condition [Im(r) — Im(s)| < 27 where r, s
are logarithms of n, m in the associated Riemann surface C* = C. In terms of the levels introduced
in Section 2.1, this translates to consider all terms of the form nl®*l — mlek] (already taken into
account in %%/J\V}V}Vn), as well as the terms nl®*+1 — mlakl (vesp. nlokl — mplesk+1]y for which
the argument condition #(n) < 6(m) (resp. 8(n) > 6(m)) holds. In other words, comparing the
measure %10\4[/]\\]/ v With its level separated avatar Zy II\V}V}\,/, defined in Equation (5) and studied in
Section 3, we obtain

(45)
N"—2
% %a,A,lvl _ Z Z A ]]-
NN’ N NNGNT T (NT 4 N// G(N)(nlo-k+1] —mle.k]) 26(n) <0(m)

—N' n,meA,n#m
O<|n\ |m|<N

BV (nlek)—mlak11) Lo(n) >0 (m):
Lemma 4.1. Let A > 1. For every integer k € Z, let

Inak={(n,m)eA* : n#m,0<|n|,|m| <N, pleh ] _ pledk]| < and 6(n) < 6(m) }.

A
p(N)
Then we have, as N — o0,

AN1-@
)

and notice that

Card(IN)AJg) = O (N( )3 ]lA;ﬁ_A'_m) .

¢(N
Proof. Let (n,m) € In a, set € = M €10, 2n[

a(2rk +0(m)) € a2rk + a]e, 2n] = a2n(k + 1) + a e — 27, 0]
and a(27(k+ 1) +0(n)) € a2n(k + 1) + «[0, £[.

Since in addition « €]0,1[ and the scaling factor N — ¢(N) converges to +00, we claim that

[a,k+1]

both points m!**! and n are close to the ray L, of argument 27 (k + 1)a. Indeed, assume

first that the segment [n[o"k+1],m[o‘7k]] and the ray L, ; don’t intersect (which can happen only
if @ > 1). Applying Al-Kashi’s law of cosines to the triangle with vertices nl®*+1 mle*l and 0
with angle w € [27(1 — «), 7] at 0, we obtain the inequalities
(siw)
¢(N)

|n[a,k+1] a,k] |2

—ml = [n|?® + |m|?® — 2|n|*|m|* cos(w)

A\

> [n]? + |m[?* — 2|n|¥|m|% cos(2n(1 — a))

= (In]* — [m|*)? + 2|n|*|m|*(1 — cos(27(1 — a))).

29



Figure 8: Illustration of the proof that both points nl confined in the red

region) and m!**! (in the blue one) are close to the ray Ly .

o,k+1] (

Assuming that |n| < |m| (instead of using min{|n|,|m|} and max{|n|,|m|}), the latter equation
and the triangle inequality on |m|® = |ml®kl| = |mleFk] + plek+1] grant us the bound

1 A
V/2(1 = cos(27(1 — a))) ¢(N)
Then nl®*+11 and ml**] are both close to 0, hence close to Lo k-

And now if (n/,m’) € Iy a and if the segment [n/l*F 1 my/leF]] and the ray L, intersect,
we directly have the inequalities

A
and |m|* < —— + |n|*.

(46) n|* < 5N

A
47 d e, k] La d o, k+1] La .
( ) (m ) ,k?)7 (TL ) JC) < gf)(N)

By Gauss counting argument (9) and since ﬁ — 0, the inequalities (46) are only valid for a num-

(1+diamz)*
ber OO‘ ( cov012_A
A

and the ray L, j do intersect and work with Equation (47). Geometrically, this implies that (at
least) one of the points nlek+1] and mleFl is in the open half-space centred at Lo, 1, i.e. of equation
Re(ze~#27%@) > 0. By symmetry, we can assume this holds for the point mlekl . Set

) of indices (n, m) € A%. Hence, from now on we can assume that [n[®#+1 mle]]

P, : 2 |2|%€" where arg(z) =w € 2n(k + 1)+ |e — 27, ¢].

a,k+1]

This function coincides with z — z[**] around m, and with z — 2! at n. Set ey = ﬁ.

Denote by ¢ a point in L, for which the inequality |ml®*l —¢| < ey holds. By the reversed
triangle inequality, we see that |¢| € D(Jm|% en). Applying the mean value inequality to the
inverse function of P,, we can locate the grid point m as follows

1 1
_P—l / < [, k] iy P—l / < Z(l¢ E_l_
= O] < ) — ] s |(P)] < ex (18] + o)

In other words, the grid point m is close to the positive real line in the following sense
(48) me D(:Eo, E—N(scg‘ + €N>é_1) where zg = P, '(¢) e Ry.
@
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i_ s
We assume that N is large enough so that the three inequalities, % < %, EN < (%)0‘ and
N (sys§ teny)at < 224 hold. The latter inequality implies that zo > 234 for Equation (48)
to hold. One can then notice that the ball described in Equation (48) has radius bounded by

1

%x(lfa < 1wg. Since it is centred at zg > =54 (m) = 32 More
generally, for every real number = > 0, the ball from Equation (48) can intersect the vertical line
above x (or equivalently contains x) only if zy < 2z. Using the notation L, of Lemma 2.11, this
remark applied to # = Re(m) € [274,|m|] implies that the point m belongs to the set Ly for the

function

1_
3= QEN 1—a
g:r—> ——= .
«

Applying Lemma 2.11 to the grid A and the inequalities maxp,_; 19 = g(k) < g(N) (since g is
nondecreasing), this gives us the inequality

1 + diamz)(g(N) + diam
(49) Card{me A:3Ine A, (n,m) eIy ar} < 4N( famz)(9(N) 1amA)‘
Y covol ;
In order to count not only such points m but all the ordered pairs (n,m) € In 4k, we will use the

01, The assumption 6(n) < 6(m) gives the formula 2 = Qq( 75:[::1]) By

applying the mean value inequality to the function @, between the points 1 and % on an

adequate neighbourhood V of 1 (e.g. we can choose the half-disk V' = D(1, W) N Qq(C*)
TEA

for Ny large enough so that the closure of this half disk does not contain 0), we obtain, with
o = maxy |Qg],

function Q. : z — 25

n[oz k+1] A
e | < G e
A|m|1—a ANl—a
__<eca :
¢(N) ¢(N)

Using Gauss counting argument (more precisely, the right-hand inequality of Equation (9) applied

I1— 7| call =

(50) ie. m—n| <ecq

1 o
to the grid m — A), and recalling the definitions ey = ﬁ and g(N) = 22X N1 the latter
inequality yields, as N — o0,
(1 + diamg)(g(N) + diamz) 7 AN1-«
(ca
¢(N)

Card(IMA,k) < 4N + diamx)z

covol 3 covol 3

= Oq.A (N(% + 1)3).

In the case A # o0, this proves the lemma. If A = +00, then Equation (50) becomes impossible as

long as N is large enough so that ﬁ(lNc)x > Cq s;:«’ hence Iy 4, is empty. O
PA
Proof of Theorem 2.1. Immediate by combining Equation (45) with Lemma 4.1. O

Remark 4.2. In addition, for all f € C}(C) and A > 1 such that supp f = D(0, A), we obtain the
error term in Theorem 2.1, as min{N, N’ + N"} — oo,

‘%J(if’,?\f’,N” f f ) dz + EI‘I‘Th 2. 8(0& A f, )
N AN1-« 3
+ O (<N' T oy ) )

Proof of Theorem 2.2. Immediate by combining the rational version of Theorem 2.8 stated in
Remark 2.9 with Lemma 4.1. O
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Proof of Theorem 1.1. Let v €]0,1[. Assuming ¢(N) = N” and ¢(N) = N2C=2=7 we can

1
compare Z j\’,’gb defined in Equation (3) to the measure Zx defined in the introduction and obtain

l_yA 1
AN = AN op = bV )y )y BN (exp(§)—exp(§))-
m,neN, n#m reexp_l(ﬂ"L), SGEXP_l(”)
0<|m|,|n|<N  |Im(r)—Im(s)|>2n

0<Im(r),Im(s)<27b

Since z — exp(}) induces a biholomorphism from C/i27bZ to C*, for two points exp(%) and exp(3)
to be close together, the associated classes [r] and [s] have to be close together in C/i2wbZ. Under
the assumptions |Im(r) —Im(s)| = 27 and 0 < Im(r), Im(s) < 27b, this implies that one of the two
points 7,s is close to the real line, and the other one to the horizontal line R + i2wb. We use the
notation Iy 45 from Lemma 4.1. Let f € C}(C) and A > 1 be such that supp f = D(0, A). For N

1
large enough, for an index (n,m) to contribute to the sum Zn(f) — %’]L{,gb(f), then either (n,m)
or (m,n) has to belong to In 4. The number of such points n,m is evaluated in Lemma 4.1.

1
Combining this with Theorem 2.2, we obtain the vague convergence %y _‘%)Jl{/’é\,b £ 0as N > 4w
and deduce Theorem 1.1. O
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