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Effective statistics of pairs of
fractional powers of complex grid points

Rafael Sayous
September 9, 2024

Abstract: Using a standard definition of fractional powers on the universal cover
exp : S Ñ C˚ where S is the standard infinite helicoid embedded in R3, we study the
statistics of pairs at various scalings from the countable family tnα : n P exp´1pΛqu

for every complex grid Λ and every real parameter α P s0, 1r . We prove the con-
vergence of the empirical pair correlation measures towards a rotation invariant
measure with explicit density. In particular, with the scaling factor N ÞÑ N1´α,
we prove that there exists an exotic pair correlation function which exhibits a level
repulsion phenomenon. For other scaling factors, we prove that either the pair cor-
relations are Poissonian or there is a total loss of mass. We give an error term for
this convergence.
Keywords: pair correlations, level repulsion, fractional power, lattices, convergence
of measures.
MSC: 11J83, 11K38, 11P21, 28A33.

1 Introduction
Let G be a locally compact metric additive group. In order to comprehensively
understand the distribution of a countable family puiqiPI in G, an essential aspect
involves analysing the statistics of the spacings between selected pairs of these points,
seen at various scalings. The approach consisting in taking all pairs into account
is the study of pair correlations. More precisely, let ϕ : r0,`8r Ñ GG be a scaling
function, and h : I Ñ r0,`8s be a height function (i.e. a nonnegative function that
every set ti P I : hpiq ď Nu is finite). Our focus lies on the asymptotic of the
multisets FN “ tϕpNqpui ´ ujquhpiq,hpjqďN,i‰j as N Ñ 8.

These problems initially occurred in physics, especially in quantum chaos, which
has lead to a purely mathematical point of view of pair correlations. See for instance
[RS98, AAL18, LS20b] for questions directly linked to quantum physics. Determin-
ing the behaviour of pair correlations for a deterministic numerical sequence may
present an intriguing challenge, see the papers [RS98, BZ05, LS20a, LT22, Lut22,
PP22, PP24]. For instance, when α ą 0 is small enough, the sequence ptnαuqnPN,
where t¨u denotes the fractional part function, exhibits a behaviour commonly called
Poisson pair correlations, as proven by C. Lutsko, A. Sourmelidis and N. Technau
in their paper [LST21], as well as in the special case α “ 1

2 , as shown by D. El-Baz,
J. Marklof and I. Vinogradov in [EMV15].

In our setting, the metric group G will then be pC,`q. Recall that a complex
Z-lattice is a discrete additive subgroup of C generating C as a real vector space,
and that a complex subset Λ is called a Z-grid if there exist a (unique) Z-lattice Λ⃗
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and a complex number z P C such that Λ “ z ` Λ⃗. The spaces LatC of complex
Z-lattices, and GridC of complex Z-grids, are endowed with the Chabauty topology
(since lattices and grids are closed subsets of C). In this introduction, all grids
and lattices are assumed to be unimodular (i.e. of covolume 1 such as the lattice
Zris). In what follows, we fix a real number α P s0, 1r and a unimodular Z-grid
Λ P GridC. We have chosen to widen our focus, working with grids instead of
lattices only, since grids have become trendy in number theoretical issues, see for
instance [EM04, Sha13, AES16, LSS19, MRS24]. Let γ P s0, 1r , that we use as a
parameter for the scaling in this introduction. To conduct a much more involved
study than the paper [Say23] on the pair correlation statistics of the real sequence
pnαqnPN, we will define a sequence of measures for the pair correlations of the "α
powers" of grid points in Λ. In this introduction, we present the case α “ 1

b
where

b P N ´ t0u. In this particular case, the study we conduct can be simplified and
translated to the statistics of scaled differences Nγpv ´ uq where u, v are b-th roots
of grid points with norm less than N . Such a scaling factor Nγ is a usual choice, see
[Wei23, NP07]. In other words, we study the sequence of empirical pair correlation
measures given by

RN “
α

N2p2´α´γq

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

ÿ

u,vPC˚

ub“m, vb“n

∆Nγpv´uq,

where, for all complex number z P C, we denote by ∆z the Dirac mass at z. We de-
note by LebC the Lebesgue measure on C, and we define the nonnegative measurable
function ρ “ ρα,γ,Λ⃗ by

ρ : z ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if γ ą 1 ´ α,

π

α2p2 ´ αq
if γ ă 1 ´ α,

α
2

1´α

p1 ´ αq
|z|

´
4´2α
1´α

ÿ

pPΛ⃗
|p|ď

|z|

α

|p|
2

1´α if γ “ 1 ´ α.

We use the notation Dpz0, rq “ tz P C : |z ´ z0| ă ru for open disks. For all Radon
measures µN , for N P N, and µ on C, the sequence pµN qNPN is said to vaguely
converges towards µ if for every continuous functions f : C Ñ C with compact
support, we have the convergence µN pfq Ñ µpfq. In this case, we write µN

˚
á µ.

Theorem 1.1. We have the following vague convergence, as N Ñ 8,

RN
˚

á ρ LebC .

This result will be proven effective in the following sense: let f P C1
c pCq, choose

A ą 1 such that supp f Ă Dp0, Aq and assume that γ “ 1 ´ α. Then, we have a
rate for this convergence, given by the estimate, as N Ñ 8,

RN pfq “

ż

C
fpzqρpzq dz ` Oα,Λ

´A4p}f}8 ` }df}8q

N

¯

.
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Theorem 1.1 indicates that ρ describes the pair correlations of α “ 1
b

powers of grid
points. This is essentially a particular case of Theorem 2.1, the main result of the
present paper which holds for every real number α P s0, 1r and for which we give an
error term in Remark 4.2. The proof of Theorem 1.1 using Theorem 2.1 and some
counting lemma is done at the very end of Section 4.
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Figure 1: The graph of the function ρ restricted to the disk Dp0, 1q in the case
α “ 1

3 , γ “ 1 ´ α “ 2
3 and Λ “ Zris.

In other words, the pair correlations for the b-th roots of grid points have a
constant density if γ ă 1 ´ α (we say that these pair correlations exhibit a Poisson
behaviour), have an exotic density if γ “ 1 ´ α and there is a total loss of mass if
γ ą 1 ´ α. This phase transition phenomenon frequently appears in the study of
pair correlations, see for instance [PP22, PP24, Say23]. We must insist here that we
are not looking for any pseudorandom behaviour: the set Λ is a typical example of
a well distributed set (when seen from afar), and we are interested in the way the
function z ÞÑ zα (which is transcendental if α R Q) modifies this set at the level of
pair correlations, since of course this function does not preserve gaps.

The study of pair correlation in a noncompact setting has already been fruitful
in various fields. On G “ R, the lengths of closed geodesics in negative curvature
have Poisson pair correlation or converge to an exponential probability measure
(depending on the scaling factor) [PS06, PP23]. Still on G “ R, for real points
α, β verifying some diophantine condition, the image of Z2 by the quadratic form
px, yq ÞÑ px´αq2 ` py´βq2 also exhibits a Poisson pair correlation [Mar03] (see also
[Mar02] for a related result in higher dimension). On the group G “ pK,`q where
K is a p-adic field with integer ring denoted by O, the pair correlations of squares
of integers tz2 : z P Ou has also been studied in [Zah03] and has a behaviour which
can arguably be called Poisson.

In Section 2, we first define a more general setting for pair correlations than the
one of Theorem 1.1, using the universal cover C of C˚ and dividing it into levels:
this novel technical step which will allow us to retrieve some algebraic properties
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of integer powers for fractional ones, giving us technically handy geometric inter-
pretations of the studied pairs throughout the paper. Then, we state Theorem 2.1,
which is the main theorem in this paper and of which Theorem 1.1 is a special case,
as well as a version using separated levels, namely Theorem 2.8, and we end this
section by proving the main lemmas we will use for the proof of the latter theorem.
In Section 3, we prove Theorem 2.8, using a linear approximation, an approximation
of Riemann sums after appropriate changes of variable defined locally (depending
on the levels introduced in Section 2), an averaging argument over levels (which
is necessary to avoid discrepancy as illustrated in Figure 2), and various counting
results. In Section 4, we give an upper bound on the number of pairs which were
counted out by separating the grid points into levels in Section 2, allowing us to
straightforwardly derive Theorems 2.1 from Theorem 2.8. The change of variable
step is inspired by the unfolding technique, illustrated in [Mar02, § 2.1]. But this
paper cannot be reduced to the unfolding technique, in particular for obtaining the
error terms.
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Figure 2: The complex points N 19
42 pn

23
42 ´m

23
42 q of only "one level" (with the notations

of Section 2.1, these are the points N 19
42 pnr 23

42 ,0s ´mr 23
42 ,0sq) inside the disk Dp0, 3

2q, for
lattices points m,n P Zris with 0 ă |m|, |n| ď N “ 20.

One may consider to generalise Theorem 1.1 to any discrete set of constant den-
sity instead of a complex grid, and we expect the error term given after Theorem 1.1
(or the more precise version given in Remark 4.2 for Theorem 2.1) to be particularly
more complicated to compute.
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2 The main statement and technical lemmas
In all this paper, we fix α P s0, 1r as well as Λ a Z-grid in C (not necessarily uni-
modular). We denote by Λ⃗ its underlying Z-lattice. We set

S “ tpreiω, ωq : r ą 0, ω P Ru Ă C ˆ R

A standard way in complex analysis to define a power function is to use the Riemann
surface S. On the universal cover exp : C Ñ C˚ of C˚, we set ΛS “ exp´1pΛq, which
consists of infinitely many copies of the grid Λ (minus the origin if Λ contains 0): for
every t P R, the map exp restricts to a bijection ΛS X tz : t ď Impzq ă t` 2πu Ñ Λ.
We use the identification z ÞÑ pexppzq, Impzqq between the universal cover C and
the helicoid S. The set ΛS is then identified with tpn, ωq : n P Λ, ω P argpnqu Ă S.
We define the α power function on this surface by

Powα : S Ñ S
preiω, ωq ÞÑ prαeiαω, αωq,

which corresponds to the multiplication by α on the universal cover C. We are then
interested in pair correlations of the countable set PowαpΛSq. Let πC (resp. πR)
denote the projection on the complex (resp. real) coordinate of C ˆ R. To focus on
the complex part of such three dimensional vector differences, we flatten them and we
study the statistical distribution of the complex differences πCpPowαpnq´Powαpmqq

for all m,n P ΛS such that |πRpn ´ mq| ă 2π. This condition is introduced for the
points m and n to be on the same "copy" of C˚ in its universal cover C. This is
not a constraint since we multiply all differences Powαpnq ´ Powαpmq by a scaling
factor going to infinity and evaluate the related measures on a compactly supported
function: after rescaling, pairs of points failing to satisfy this condition uniformly
give rise to differences in CˆR escaping all compact subsets. Let ϕ, ψ : N Ñ s0,`8r

be two functions converging to `8, which we respectively call the scaling factor
and the renormalization factor. Throughout this paper, we fix λ P r0,`8s and we
assume the following convergence and formula

ϕpNq

N1´α
Ñ λ P r0,`8s as N Ñ 8,(1)

ψpNq “

´N2´α

ϕpNq

¯2
for all N P N.(2)

Compared to the case of the introduction, taking into account all directions of
noncompactness in S Ă CˆR, the need for two new integer parameters N 1 and N2

emerges. We are interested in the multi-index sequence of empirical pair correlation
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measures whose formula is given for all N,N 1, N2 P N ´ t0u by

Rα,Λ
N,N 1,N2 “

1
pN 1 ` N2qψpNq

ÿ

m,nPΛS , n‰m
|πRpn´mq|ă2π

0ă|πCpmq|,|πCpnq|ďN
´2πN 1ďπRpmq,πRpnqă2πN2

∆ϕpNqpπCpPowαpnq´Powαpmqqq

“
1

pN 1 ` N2qψpNq

ÿ

m,nPΛ, n‰m
0ă|m|,|n|ďN

ÿ

rPexp´1pmq, sPexp´1pnq

|Imprq´Impsq|ă2π
´2πN 1ďImprq,Impsqă2πN2

∆ϕpNqpexppαsq´exppαrqq.(3)

Let covolΛ⃗ be the covolume of Λ⃗, i.e. the area of any fundamental parallelogram of
Λ⃗. Set ρα,Λ⃗,λ the nonnegative measurable function of formula

ρα,Λ⃗,λ : z ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if λ “ `8,

π

α2p2 ´ αq covol2Λ⃗
if λ “ 0,

α
2

1´α

p1 ´ αq covolΛ⃗

´

|z|

λ

¯´
4´2α
1´α

ÿ

pPΛ⃗
|p|ď

|z|

αλ

|p|
2

1´α if λ P s0,`8r .

The next two results will be proven at the end of Section 4.

Theorem 2.1. We have the vague convergence, as mintN, N 1 ` N2u Ñ 8,

Rα,Λ
N,N 1,N2

˚
á ρα,Λ⃗,λ LebC .

For an error term in this convergence, see Remark 4.2. In the case α P s0, 1r XQ,
we write its irreducible form α “ a

b
and obtain the following result.

Theorem 2.2. We have the vague convergence, as N Ñ 8,

R
a
b

,Λ
N,0,b

˚
á ρa

b
,Λ LebC .

Remark 2.3. Theorem 2.2 is not an immediate consequence of Theorem 2.1 since
N 1 ` N2 “ 0 ` b does not go to infinity.

2.1 Separation into levels
We use the notation R` “ r0,`8r . For every real number β, every integer k and
every nonzero complex number z, we begin by defining the level-k β power of z as

zrβ,ks
“ |z|

βeiβωk , where ωk is the representative in r2πk, 2πpk ` 1qr of argpzq.

In other words, for every z P C ´ R`, we set zrβ,ks “ eβplogpzq`i2πkq, where the
map log : C ´ R` ÞÑ C is the branch of the logarithm with branch cut R` and
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Figure 3: On the left, the helicoidal Riemann surface S. On the right, an illustration
of the points (dots) r P exp´1pΛq Ă C. The (dotted and plain) two-headed arrows
correspond to pairs of grid points appearing in the definition of the empirical pair
correlation measure Rα,Λ

N,N 1,N2 . The distinction between dotted and plain two-headed
arrows will be explained before Theorem 2.4.

verifying logp´1q “ iπ, and we extend this definition to C˚ in an "upper" continuous
way, namely when Impzq ě 0. For the particular case k “ 0, we use the notation
zβ “ zrβ,0s. This nonstandard choice of branch cut is handy for the following formula:
for all z, z1 P C˚ and all k P Z,

zrβ,ks

z1rβ,ks
“

´ z

z1

¯β

or
´ z

z1

¯rβ,´1s

,

depending on the sign of the difference ω´ω1 of the argument representatives ω of z
and ω1 of z1, both taken in r0, 2πr . In comparison, taking the principal branch of the
logarithm to define these power functions would have required to separate between
3 cases, whether the difference ω ´ ω1 belongs to s ´ 2π,´πs, s ´ π, πs or sπ, 2πs.
With the formula zβ “ eβ logpzq, we obtain the linear approximation, as z Ñ 0 with
the restriction Impzq ě 0,

(4) p1 ` zq
α

“ 1 ` αz ` Oαp|z|
2
q.

Note that the image of C˚ by the level-k β power function z ÞÑ zrβ,ks is the semi
open angular sector tz P C˚ : argpzq P r2πkβ, 2πpk` 1qβr mod 2πu, in other words
the sector of angle 2βπ centred at the argument 2πpk ` 1

2qβ mod 2π.
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We define the multi-index sequence of level separated empirical pair correlation
measures by

(5) Rα,Λ,lvl
N,N 1,N2 “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNqpnrα,ks´mrα,ksq.

In comparison to the definition Rα,Λ
N,N 1,N2 from the beginning of Section 2, in the

measure Rα,Λ,lvl
N,N 1,N2 we do not take into account pairs of points illustrated with dotted

arrows in Figure 3. Recall that the scaling and renormalization factors ϕ and ψ
verify the convergence (1) and the formula (2).

Theorem 2.4. We have the following vague convergence of positive measures, as
mintN, N 1 ` N2u Ñ 8,

Rα,Λ,lvl
N,N 1,N2

˚
á ρα,Λ⃗,λ LebC .
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Figure 4: The empirical distribution obtained for the measure R
1
3 ,Zris,lvl
N,N 1,N2 with N “ 70

and N 1 ` N2 “ 3 in the case λ “ 1, using a smoothing process of the library SciPy
of Python.

A qualitative illustration of this convergence is shown by comparing Figure 4 to
Figure 1, in the exotic case λ “ 1. Since the modulus function | ¨ | from C to R`

is continuous and proper and since the function ρα,Λ⃗,λ is invariant under rotation,
the hypotheses of Theorem 2.4 also imply the vague convergence, as the minimum
mintN,N 1 ` N2u Ñ 8,

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNq|nrα,ks´mrα,ks|

˚
á 2πrρα,Λ⃗,λprqdr.

As an illustration of the latter convergence, a radial profile is drawn on Figure 5, in
the exotic case λ “ 1.
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Figure 5: The empirical radial distribution of R
1
3 ,Zris,lvl
N,N 1,N2 for N 1 `N2 “ 3 and different

values of N (N “ 10 in pink, N “ 30 in orange, N “ 50 in green, and N “ 80 in
blue) using the scaling factor N ÞÑ N

2
3 (and renormalization factor N ÞÑ N2), and

the limit density r ÞÑ ρ 1
3 ,Zris,1prq (in red).

We denote by diamΛ⃗ the minimal diameter over all fundamental parallelograms
of Λ⃗ and by sysΛ⃗ the systole (or Minkowski’s first minimum) of the Z-lattice Λ⃗, that
is to say

sysΛ⃗ “ mint|p| : p P Λ⃗, p ‰ 0u ą 0.

We mention that the diameter diamΛ⃗ is comparable to the quantity covolΛ⃗
sysΛ⃗

thanks to
the second theorem of Minkowski.

Remark 2.5. In the exotic case λ P s0,`8r , one can notice that we have ρα,Λ⃗,λ “ 0
on the open disk Cp0, αλ sysΛ⃗q. This property is called a level repulsion phenomenon.
The fact that the radius αλ sysΛ⃗ of this level repulsion disk converges to `8 as
λ Ñ `8 can be interpreted as a continuity result between the cases λ P s0,`8r

and λ “ `8. Such a continuity observation may also be made between the cases
λ P s0,`8r and λ “ 0, since Gauss counting argument (more precisely, its version
for β “ 2

1´α
stated in Lemma 2.10) indicates that, for all λ P s0,`8r ,

ρα,Λ⃗,λpzq ÝÑ
|z|Ñ8

π

α2p2 ´ αq covol2Λ⃗
.

Remark 2.6. Notice that ρα,Λ⃗,λ is rotation invariant and, if λ P s0,`8r , the points
of discontinuity of ρα,Λ⃗,λ constitute the union of circles

Ť

pPΛ⃗´t0u
Cp0, αλ|p|q. By com-

parison, extending the definition of Rα,Λ,lvl
N,N 1,N2 to the simplistic case α “ 1, choosing

the scaling factor N ÞÑ 1 (hence λ “ 1) and the renormalization factor N ÞÑ N2,
a standard Gauss argument and a Riemann sum approximation grants the vague
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convergence, as N Ñ 8,

R1,Λ,lvl
N,N 1,N2 “

1
N2

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆n´m
˚

á
π

covolΛ⃗

ÿ

pPΛ⃗´t0u

∆p.

In particular, the limit measure is not rotation invariant: we lose some symmetry
in this extreme case α “ 1.

Remark 2.7. Upon an appropriate rescaling in terms of α, a continuity statement
can be made between the cases α P s0, 1r and α “ 0. We impose the scaling factor
ϕpNq “ N1´α (hence λ “ 1) for this remark. Up to rotation, we can assume that the
grid Λ contains no nonzero point on the branch cut R` of the log function involved
in the definition of α-powers with levels. For all k P Z, all n,m nonzero grid points
in Λ and all integer N P N, notice that we have the convergence, as α Ñ 0`,

(6) 1
α
N1´α

pnrα,ks
´ mrα,ks

q ÝÑ Nplogpnq ´ logpmqq.

We set
RΛ,log

N “
1
N2

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆Nplogpnq´logpmqq.

which is (up to the choice of a branch cut for the logarithm function) the empirical
pair correlation measure studied in [PP24, § 3] for logarithm of grid points. Using
Theorem 2.4 and the fact that z ÞÑ z

α
is continuous and proper for the top con-

vergence arrow, the convergence (6) for the left-hand convergence arrow, and the
dominated convergence theorem for the right-hand convergence arrow, we obtain
the following diagram of vague convergence:

pz ÞÑ z
α

q˚R
α,Λ,lvl
N,N 1,N2

˚
á

minpN,N 1`N2qÑ8
pz ÞÑ z

α
q˚ρα,Λ⃗,λ LebC “ α2ρα,Λ⃗,λpαzq dz

α

Ó
0`

ç˚

α

Ó
0`

ç˚

RΛ,log
N

|z|4

covolΛ⃗

ř

pPΛ⃗
|p|ď|z|

|p|2 dz.

The bottom convergence arrow missing to this diagram has been proven in [PP24,
Theo. 3.1].

In order to state an effective version of Theorem 2.4, we will use the space
C1

c pCq of continuously differentiable functions of two real variables f : C Ñ C, with
the standard notations }f}8 “ supzPC |fpzq| and }df}8 “ supzPC }dfpzq}, where
} ¨ } is the operator norm on the space of R-linear applications from C to C. We
use Landau’s notation: for two sets of parameters P and P 1 with P 1 Ă P, for
functions F,G : N ÞÑ C depending on (at least) the parameters in P 1, we write
F pNq “ OP 1pGpNqq if there exists some constant cP 1 ą 0, depending only on P 1,
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and some integer N0, depending on all the parameters in P, such that, for all
N ě N0, we have the inequality |F pNq| ď cP 1 |GpNq|. In our study, each time we
will use Landau’s notation, a test function f P C1

c pCq will have been fixed, a bound
A on the size of its support will have been taken (i.e. supp f Ă Dp0, Aq) and our
sets of parameters will always be P “ tα,Λ, ϕ, ψ,Au and P 1 “ tαu, tΛu or tα,Λu

(hence using the notation Oα, OΛ or Oα,Λ). It is important to keep in mind that
the rank N0 may only depend on the parameters in P. In particular, it does not
depend on the parameters N 1, N2, }f}8, }df}8, nor on any other index temporarily
fixed in the proof of a lemma or a theorem.

For all f P C1
c pCq and A ą 1, if λ “ `8 we set ErrT h.2.8pα,Λ, f, Aq “ 0, and

otherwise we define

ErrTh.2.8pα,Λ, f, Aq

“

$

&

%

Oα,Λ
`

A4p}f}8 ` }df}8q
` ϕpNq

N1´α ` 1
NαϕpNq

` 1
N 1`N2

˘˘

if λ “ 0,

Oα,Λ
`

p}f}8 ` }df}8qpλ` 1
λ q

10´8α
1´α

`

A
8´6α
1´α |

ϕpNq

λN1´α ´ 1| ` A4

N ` A2

N 1`N2

˘˘

if λ P s0,`8r .

Theorem 2.8. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq.

• If λ “ `8, then there exists an integer N0 which depends on α, Λ and A, such that for all
N ě N0 and all N 1, N2 P N, we have Rα,Λ,lvl

N,N 1,N2 pfq “ 0.

• If λ P r0,`8r , as N Ñ 8, we have

Rα,Λ,lvl
N,N 1,N2 pfq “

ż

C
fpzqρ

α,Λ⃗,λpzq dz ` ErrTh.2.8pα,Λ, f, Aq.

Remarks 2.9. • By a standard approximation argument of a function in C0
c pCq by functions

in C1
c pCq, Theorem 2.4 is an immediate consequence of Theorem 2.8.

• For a version of the error term in Theorem 2.8 with explicit dependence on parameters of
the grid Λ (but not on the power parameter α), see [Say].

• In the case α “ a
b P Q, for all integers N P N and k P Z ´ t0u, we have the periodicity

formula R
a
b ,Λ,lvl
N,0,kb “ R

a
b ,Λ,lvl
N,0,b . This implies that we have, as N Ñ 8,

R
a
b ,Λ,lvl
N,0,b

˚
á ρ

α,Λ⃗,λ LebC .

2.2 Counting lemmas
Set sysΛ “ mint|m| : m P Λ,m ‰ 0u ą 0. This quantity is not commonly used for studying grids,
except when the grid is a lattice, in which case sysΛ is the usual systole. It will be useful for many
computations throughout this paper. The next lemma is a well known result which will be useful
in order to explicitly compute the limit function ρ

α,Λ⃗,λ as well as to bound error terms for Theorem
2.8.

Lemma 2.10. For every real number β ě 0, there exists a constant Cβ,Λ ą 0 such that, for all
x ě 1,

ˇ

ˇ

ˇ

ÿ

mPΛ
0ă|m|ďx

|m|β ´
2π

covolΛ⃗
xβ`2

β ` 2

ˇ

ˇ

ˇ
ď Cβ,Λ x

β`1.

11



For every real number β ą ´2, we have the (less explicit) estimate, as x Ñ 8,

ÿ

mPΛ
0ă|m|ďx

|m|β “
2π

covolΛ⃗
xβ`2

β ` 2 ` Oβ,Λ

´

xβ`1 ` 1
¯

.

In the case β “ ´2, we have the following estimate, as x Ñ `8,
ÿ

mPΛ
0ă|m|ďx

1
|m|2

„
2π

covolΛ⃗
logpxq.

For every real number β ă ´2, we have the convergence
ÿ

mPΛ´t0u

|m|β ă 8.

Proof. We recall Abel’s summation formula: for every real sequence pakqkě1, all real numbers
1 ď x0 ď x and all function f : rx0,`8r Ñ R of class C1 on sx0,`8r, we have the equality

(7)
ÿ

x0ďkďx

akfpkq “
`

ÿ

1ďkďx

ak
˘

fpxq ´
`

ÿ

1ďkăx0

ak
˘

fpx0q ´

ż x

x0

`

ÿ

1ďkďt

ak
˘

f 1ptq dt

Let x ě 1 and F be a closed fundamental parallelogram of Λ⃗ containing 0 with minimal diameter.
For the case β “ 0, we follow the standard Gauss counting argument. Set Ax “ tm P Λ : 0 ă

|m| ď xu and Bx “
Ť

mPAx
pm ` F q, so that we have the equality LebCpBxq “ CardpAxq covolΛ⃗.

The definition of diamΛ⃗ yields the inclusions

(8) D̄p0, x´ diamΛ⃗q Ă Bx Ă D̄p0, x` diamΛ⃗q,

where the closed disk D̄p0, x ´ diamΛ⃗q is empty if x ă diamΛ⃗. Computing the Lebesgue measure
of these disks gives

(9) π

covolΛ⃗
maxt0, x´ diamΛ⃗u2 ď CardpAxq ď

π

covolΛ⃗
px` diamΛ⃗q2

which is even valid in the case 0 ď x ă 1 and implies the lemma in the case β “ 0.
Assume β ą 0. Consider the sequence pak “ Cardtm P Λ : k ´ 1 ă |m| ď kuqkě1. We have

the following inequalities
ÿ

1ďkďx

akpk ´ 1qβ ď
ÿ

mPΛ
0ă|m|ďx

|m|β ď
ÿ

1ďkďrxs

akk
β .

Let t¨u denote the lower integral part on R. Applying Abel’s formula (7) to f : t ÞÑ tβ then
f : t ÞÑ pt ´ 1qβ with x0 “ 1, together with the case β “ 0 to estimate

ř

1ďkďx ak “ CardpAtxuq,
this proves the lemma in the case β ą 0.

Assume β P s ´ 2, 0r . Then we have the inequalities

(10)
ÿ

2ďkďx

akk
β ď

ÿ

mPΛ
1ă|m|ďx

|m|β ď
ÿ

2ďkďrxs

akpk ´ 1qβ .

Applying Abel’s formula (7) to f : t ÞÑ tβ then f : t ÞÑ pt ´ 1qβ with x0 “ 2, this proves the
estimate, as x Ñ 8,

ÿ

mPΛ
1ă|m|ďx

|m|β “
2π

covolΛ⃗
xβ`2

β ` 2 ` Oβ

`1 ` diam2
Λ⃗

covolΛ⃗
xβ`1˘.

12



Combining this with the inequality
ř

mPΛ
0ă|m|ď1

|m|β ď sysβΛ
πp1`diam2

Λ⃗
q

covolΛ⃗
coming from Equation (9),

the lemma is proven in the case β P s ´ 2, 0r .
The case β “ ´2 directly comes from the inequalities (10) and the same application of Abel’s

formula, since then the only diverging term is equivalent to, as x Ñ 8,

´

ż x

2

π

covolΛ⃗
t2f 1ptq „

2π
covolΛ⃗

logpxq

in both cases where f is given by t ÞÑ 1
t2 or by t ÞÑ 1

pt´1q2 .
For the case β ă ´2, using the case β “ 0 from Equation (9), we can directly compute

ÿ

mPΛ
0ă|m|ďx

|m|β “
ÿ

mPΛ
0ă|m|ď3diamΛ⃗

|m|β `
ÿ

mPΛ
3diamΛ⃗ă|m|ďx

|m|β

ď Oβ,Λp1q `
1

covolΛ⃗

ż

C´Dp0,2diamΛ⃗q

p|z| ´ diamΛ⃗qβ dz “ Oβ,Λp1q.

which gives an upper bound independent of x for the sum.
Another helpful tool is given in the next lemma: it will allow us to count grid points that are

near a given straight line.
Lemma 2.11. Let g : R` Ñ R` be a nonnegative piecewise continuous function and set Lg “

tx` iy : x ě 0, y P R and |y| ď gpxqu. Then, for all N P N, we have the inequality

Card
`

Λ XDp0, Nq X Lg
˘

ď 4
N
ÿ

x“1

p1 ` diamΛ⃗qpmaxrx´1,xs g ` diamΛ⃗q

covolΛ⃗
.

Proof. Fix N P N´ t0u. For every x P t1, . . . , Nu, let mx denote the real number maxrx´1,xs g and
consider the rectangle Rx “ rx´ 1, xs ` ir´mx,mxs. We have the inequality

Card
`

Λ XDp0, Nq X Lg
˘

ď

N
ÿ

x“1
CardpΛ XRxq.

For each x, let us denote by ĂRx the diamΛ⃗-neighbourhood of Rx for the infinity norm }z}8 “

maxt|Repzq|, |Impzq|u (so that ĂRx is a rectangle, see Figure 2.2). Using Gauss counting argument,
the inequality between the Euclidean norm and the infinity norm then yields the inequality, for all
x P t1, . . . , Nu,

CardpΛ XRxq covolΛ⃗ ď volpĂRxq “ p1 ` 2diamΛ⃗qp2mx ` 2diamΛ⃗q.

Summing over x P t1, . . . , Nu proves the lemma.
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2.3 Symmetry lemma
By the change of variable p “ n´m, we can rewrite the definition (5) as follows

(11) Rα,Λ,lvl
N,N 1,N2 “

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
0ă|m`p|,|m|ďN

∆ϕpNqppm`pqrα,ks´mrα,ksq

For any number z P C˚, recall the notation zα “ zrα,0s for its level-0 α power. Let θ : C˚ Ñ R
denote the projection of the argument function onto r0, 2πr . For all nonzero complex numbers z, z1,
the definition of their level-k α power yields the formula zrα,ks

z1rα,ks “ p zz1 qrα,ls where l “ t
θpzq´θpz1

q

2π u “

0 or ´ 1 depending on the sign of θpzq ´ θpz1q, independently of k. Set

I`
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m` p| ď N and θpm` pq ą θpmqu

and I´
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m` p| ď N and θpm` pq ă θpmqu.

In other words, putting aside the case θpm` pq “ θpmq for now, the set I`
N (resp. I´

N ) contains the
indices pm, pq in Equation (11) verifying the formula, for all k P Z,

pm` pqrα,ks

mrα,ks
“ p1 `

p

m
qα

`

resp. pm` pqrα,ks

mrα,ks
“ p1 `

p

m
qrα,´1s

˘

.

Let Rα,Λ,`
N,N 1,N2 (resp. Rα,Λ,´

N,N 1,N2) denote the part of Rα,Λ,lvl
N,N 1,N2 with indices in I`

N (resp. in I´
N ) in

Equation (11). One can notice a one-to-one correspondence between I`
N and I´

N given by the map
pm, pq ÞÑ pm` p,´pq. This yields the formula

(12) Rα,Λ,´
N,N 1,N2 “ pz ÞÑ ´zq˚Rα,Λ,`

N,N 1,N2 .

The next lemma indicates that the contribution of the indices pm, pq which do not belong to I`
N nor

I´
N is negligible. Combined with the formula (12), we will be able to derive the vague convergence

of Rα,Λ,lvl
N,N 1,N2 from the one of Rα,Λ,`

N,N 1,N2 .

Lemma 2.12. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq. We have the estimate,

as N Ñ 8,

Rα,Λ,lvl
N,N 1,N2 pfq “ Rα,Λ,`

N,N 1,N2 pfq ` Rα,Λ,´
N,N 1,N2 pfq ` Oα,Λ

´N}f}8

ψpNq

´´AN1´α

ϕpNq

¯

` 1
¯2¯

Proof. The difference Rα,Λ,lvl
N,N 1,N2 pfq ´

`

Rα,Λ,`
N,N 1,N2 pfq ` Rα,Λ,´

N,N 1,N2 pfq
˘

is

(13) 1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
0ă|m`p|,|m|ďN
θpm`pq“θpmq

fpϕpNqppm` pqrα,ks ´mrα,ksqq.

Fix k P Z. Our goal is then to count pairs of points pm, pq P Λ ˆ pΛ⃗ ´ t0uq verifying the inequalities
0 ă |m|, |m ` p| ď N , the equality of arguments θpm ` pq “ θpmq and the inequality |ϕpNqppm `

pqrα,ks ´ mrα,ksq| ď A. We denote by I“
N,A the set of such indices pm, pq (which indeed does

not depend on k thanks to the formula zrα,ks “ ei2πkαzα). Let pm, pq P I“
N,A. We denote by

ω “ θpmq “ θpm` pq their common argument in r0, 2πr . The function z ÞÑ zrα,ks is regular when
we restrict it to the segment rm,m ` ps: the complex valued function g : t ÞÑ pm ` ptqrα,ks “

p|m| ` t|p|qαeiαpω`2πkq is differentiable and its derivative is given by g1 : t ÞÑ
αeiαpω`2πkq

|p|

p|m|`t|p|q1´α . It is
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minimal in modulus when t “ 1, for which we have |g1p1q| “
α|p|

|m`p|1´α . The mean value inequality
then grants us

A

ϕpNq
ě |pm` pqrα,ks ´mrα,ks| “ |gp1q ´ gp0q| ě

α|p|

|m` p|1´α
.

From this, we derive the main inequality that we will use to count such pairs of points, namely

(14) |p| ď
AN1´α

αϕpNq
.

As N Ñ 8, Equation (9) indicates that there are only Oα

` 1
covolΛ⃗

`

AN1´α

αϕpNq
` diamΛ⃗

˘2˘ points p P Λ⃗
verifying the inequality (14). Let us fix such a point p. Then, for the points 0, m and m` p to be
aligned, the nonzero grid point m ` p has to be chosen on the ray from 0 to p. Since moreover it
has to be in the closed disk D̄p0, Nq, there are at most N

sysΛ⃗
ways to choose the point m` p. This

counting argument yields, as N Ñ 8,

(15) CardpI“
N,Aq “ Oα

´ N

sysΛ⃗ covolΛ⃗

´´AN1´α

αϕpNq

¯

` diamΛ⃗

¯2¯
“ Oα,Λ

´

N
´´AN1´α

αϕpNq

¯

` 1
¯2¯

.

The triangle inequality applied to Equation (13) gives the estimate stated in the lemma.

Remark 2.13. Since the renormalization factor is given by ψpNq “ pN
2´α

ϕpNq
q2, in the case λ “ 0 of

Theorem 2.8, the estimate of Lemma 2.12 becomes

Rα,Λ,lvl
N,N 1,N2 pfq “ Rα,Λ,`

N,N 1,N2 pfq ` Rα,Λ,´
N,N 1,N2 pfq ` Oα,Λ

´A2}f}8

N

¯

.

2.4 Linear approximation
Thanks to Lemma 2.12 and the symmetry formula (12), for every f P C1

c pCq, we can focus on the
asymptotic behaviour of the sequence pRα,Λ,`

N,N 1,N2 pfqqN,N 1,N2PN, whose formula can be rewritten

(16) Rα,Λ,`
N,N 1,N2 pfq “

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pm,pqPI`

N

f
`

ϕpNqmrα,kspp1 `
p

m
qα ´ 1q

˘

.

Define another sequence of positive measures by

µ`
N,N 1,N2 “

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pm,pqPI`

N

∆ϕpNq
αp

mr1´α,ks
.

The next result is a linear approximation lemma.

Lemma 2.14. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq. We assume that

ϕpNq

N1´α ÝÑ
NÑ8

λ P r0,`8r . Then we have, as N Ñ 8,

Rα,Λ,`
N,N 1,N2 pfq ´ µ`

N,N 1,N2 pfq “ Oα,Λ

´

}df}8

` A4

NαϕpNq
`
A2ϕpNq

N2´α

˘

` }f}8

` A3

NαϕpNq
`
ϕpNq2

N3´2α

˘

¯

.

Proof. Fix k P Z. For all pm, pq P I`
N , we want to bound from above the quantity

(17)
ˇ

ˇf
`

ϕpNqmrα,ks
``

1 `
p

m

˘α
´ 1

˘˘˘

´ f
`

ϕpNq
αp

mr1´α,ks

˘
ˇ

ˇ.
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By the hypothesis supp f Ă Dp0, Aq, in order for the latter quantity not to be equal to 0, the index
pm, pq has to verify (at least) one of the two inequalities

(18) |p| ď
A|m|1´α

αϕpNq
or

ˇ

ˇ

`

1 `
p

m

˘α
´ 1

ˇ

ˇ ď
A

|m|αϕpNq
.

Let I`
N,A be the subset of I`

N consisting of such indices. Let pm, pq P I`
N,A. Note that the inverse

of the map z ÞÑ zα is Lipschitz continuous on a small neighbourhood of 1 “ 1α in the image of
z ÞÑ zα. This neighbourhood may be taken to be Dp1, 1q X tz P C : Impzq ě 0u X pz ÞÑ zαqpC˚q,
which is convex and where pz ÞÑ zαq´1 has its derivative’s norm lesser than 2

1
α

´1

α . Then, as a
consequence of Equation (18), since A

|m|αϕpNq
ď A

sysα
Λ ϕpNq

Ñ 0 as N Ñ 8, we have the estimate, as
N Ñ 8,

(19)
ˇ

ˇ

p

m

ˇ

ˇ “ Oα

´ A

|m|αϕpNq

¯

.

(Recall that, thank to the definition of Oα, the latter estimate is uniform over any temporarily
fixed variable, in particular over pm, pq P I`

N,A). One may notice that Equation (19) implies that
m` p and m are not independent grid points: they have to be close together since p has to verify
|p| “ Oα

`A|m|
1´α

ϕpNq

˘

. With the consequential estimate |p| “ Oα

`

AN1´α

ϕpNq

˘

, we use the Gauss counting
argument from Equation (9) (summing over Λ⃗ with x “ Oα

`

AN1´α

ϕpNq

˘

) to deduce a result that we
will use twice in the remaining part of the proof: as N Ñ 8, we have the estimate (uniformly for
every grid point m P Λ),

(20) Cardtp P Λ⃗ ´ t0u : pm, pq P I`
N,Au “ Oα,Λ

´´AN1´α

ϕpNq
` 1

¯2¯
.

Recall the linear approximation (4) as z Ñ 0 with the restriction Impzq ě 0. In order to apply it
to most fractions z “

p
m , we have to take out the indices pm, pq for which Imp

p
m q ă 0 holds. For

that matter, we first notice that for all pm, pq P I`
N,A, the inequality Imp

p
m q ă 0 holds if, and only

if, we have θpm ` pq ´ θpmq P sπ, 2πr (since Imp
p
m q “ Imp

m`p
m q). We denote by Ibad

N,A the set of
these indices. Then, by use of Equation (19), for all indices pm, pq P Ibad

N,A, we have the estimate,
as N Ñ 8,

ˇ

ˇ

p

m

ˇ

ˇ “
ˇ

ˇ

m` p

m
´ 1

ˇ

ˇ “
ˇ

ˇ|1 `
p

m
|eipθpm`pq´θpmqq ´ 1

ˇ

ˇ “ |eipθpm`pq´θpmqq ´ 1| ` Oα

´ A

|m|αϕpNq

¯

“ |ei
θpm`pq´θpmq

2 ´ e´i
θpm`pq´θpmq

2 | ` Oα

´ A

|m|αϕpNq

¯

“ 2 sin
`θpm` pq ´ θpmq

2
˘

` Oα

´ A

|m|αϕpNq

¯

.(21)

Using this, we claim that the quantity θpm`pq´θpmq which belongs to sπ, 2πr since pm, pq P Ibad
N,A,

has to be close to 2π. Since the image of θ is r0, 2πr , this will imply that θpm` pq has to be close
to 2π while θppq has to be close to 0. In other words, both grid points m ` p and m have to be
close to the real positive ray R` ´ t0u. Using the concavity of the sinus function on r0, π2 s, we can
derive the following estimate from Equation (21) (and using again Equation (19)), as N Ñ 8,

2
π

p2π ´ pθpm` pq ´ θpmqqq ď 2 sin
`θpm` pq ´ θpmq

2 q

“
ˇ

ˇ

p

m

ˇ

ˇ ` Oα

´ A

|m|αϕpNq

¯

thus 2π ´ pθpm` pq ´ θpmqq “ Oα

´ A

|m|αϕpNq

¯

(22)

which proves the claim.
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As an immediate consequence, the same estimate holds for 2π ´ θpm ` pq and for θpmq. We
choose a constant Cα ą 0 to make the Landau’s notation explicit so that θpmq ď Cα

A
|m|αϕpNq

, then
we set the function gN : x ÞÑ x tan

`

Cα
A

xαϕpNq

˘

. For N large enough so that Cα A
ϕpNq

ă π
2 , the map

gN is well defined over r1,`8r and is nondecreasing. Applying Lemma 2.11 with gN gives us the
estimate, as N Ñ 8,

Card
!

m P pΛ ´ t0uq XDp0, Nq : θpmq ď
CαA

|m|αϕpNq

)

ď N
4p1 ` diamΛ⃗qpN tanpCα

A
NαϕpNq

q ` diamΛ⃗q

covolΛ⃗

“ Oα,Λ

´

Np
AN1´α

ϕpNq
` 1q

¯

.

Multiplying this bound by the number of lattice points p described in Equation (20) gives us the
following estimate for counting these bad indices, as N Ñ 8,

CardpIbad
N,Aq “ Oα,Λ

´

N
`AN1´α

ϕpNq
` 1

˘3
¯

.

Thus, the restriction to these bad indices in the error term Rα,Λ,`
N,N 1,N2 pfq´µ`

N,N 1,N2 pfq is estimated
by, as N Ñ 8,

(23) Oα,Λ

´}f}8NpAN
1´α

ϕpNq
` 1q3

ψpNq

¯

We set Igood
N,A “ I`

N,A ´ Ibad
N,A. Using the mean value theorem, for all pm, pq P Igood

N,A , since
Imp

p
m q ě 0 by definition of Igood

N,A and using the uniform estimate (19), the quantity (17) is bounded
by

(24) }df}8ϕpNq|m|α
ˇ

ˇ

`

1 `
p

m

˘α
´ 1 ´

αp

m

ˇ

ˇ “ Oα

´

}df}8ϕpNq
|p|2

|m|2´α

¯

.

It remains to bound from above the sum SN,A “
ř

pm,pqPIgood
N,A

|p|
2

|m|2´α . For that matter, we use

the estimates (19) (in the form |p|2 “ Oα

`A2
|m|

2´2α

ϕpNq2

˘

) and (20) then we apply again Lemma 2.10
(summing over Λ, with β “ ´α and x “ N), which gives us an upper bound for the sum SN,A as
follows

SN,A ď
ÿ

mPΛ
0ă|m|ďN

1
|m|2´α

Oα

´A2|m|2´2α

ϕpNq2

¯

Cardtp P Λ⃗ ´ t0u : pm, pq P Igood
N,A u

ď
ÿ

mPΛ
0ă|m|ďN

1
|m|α

Oα

´ A2

ϕpNq2

¯

Oα,Λ

´´AN1´α

ϕpNq
` 1

¯2¯

“ Oα,Λ

´A2`AN1´α

ϕpNq
` 1

˘2

ϕpNq2

¯

ÿ

mPΛ
0ă|m|ďN

1
|m|α

“ Oα,Λ

´A2N2´α
`

AN1´α

ϕpNq
` 1

˘2

ϕpNq2

¯

.

This estimate together with the one over Ibad
N,A given in Equation (23), and the bound given in

Equation (24) gives us, as N Ñ 8,

Rα,Λ,`
N,N 1,N2pfq ´µ`

N,N 1,N2pfq “ Oα,Λ

´A2}df}8N
2´α

`

AN1´α

ϕpNq
` 1

˘2

ψpNqϕpNq
`

}f}8NpAN1´α

ϕpNq
` 1q3

ψpNq

¯

.
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Since the renormalization factor is given by the formula ψpNq “
`

N2´α

ϕpNq

˘2, the latter estimate can
be simplified (using the inequality pa` bqk ď 2kpak ` bkq for real numbers a, b ą 0 and k P N) and
finally rewritten, as N Ñ 8,

Rα,Λ,`
N,N 1,N2 pfq ´ µ`

N,N 1,N2 pfq “ Oα,Λ

´

A2}df}8

` A2

NαϕpNq
`
ϕpNq

N2´α

˘

` }f}8

` A3

NαϕpNq
`
ϕpNq2

N3´2α

˘

¯

.

Remark 2.15. If λ “ 0, the error term in Lemma 2.14 becomes, as N Ñ 8,

Rα,Λ,`
N,N 1,N2 pfq ´ µ`

N,N 1,N2 pfq “ Oα,Λ

´

}df}8

A4

NαϕpNq
` }f}8

A3

NαϕpNq

¯

“ Oα,Λ

´A4p}f}8 ` }df}8q

NαϕpNq

¯

.

2.5 Riemann sum approximation
The last lemma is a standard Riemann sum approximation. Again, let F be a closed fundamental
parallelogram of Λ⃗ containing 0 and of diameter diamΛ⃗.

Lemma 2.16. Let δ P C˚ and F be a finite subset of Λ. Then, for every function f P C1pCq, we
have the inequality

ˇ

ˇ

ˇ
|δ|2 covolΛ⃗

ÿ

mPF

fpmδq ´

ż

Ť

mPF

δpm`Fq

fpzq dz
ˇ

ˇ

ˇ
ď CardpF q|δ|3}df |

Ť

mPF

δpm`Fq}8diamΛ⃗.

Proof. Notice that, for all m P F , we have LebCpδpm ` F qq “ covol
δΛ⃗ “ |δ|2 covolΛ⃗. A direct

application of the mean value inequality for f on the convex sets δpm ` F q and then summing
over m P F ends the proof.

We now have enough tools to prove our effective theorem.

3 Proof of Theorem 2.8
We have three different regimes for the scaling factor and the proof will be divided accordingly.
Recall that the renormalization is given by the formula ψpNq “

`

N2´α

ϕpNq

˘2. Let f P C1
c pCq and

choose A ą 1 such that supp f Ă Dp0, Aq.

3.1 Regime ϕpNq

N1´α ÝÑ
NÑ8

`8

Compared to both other regimes where we get an asymptotic bound for the speed of convergence,
this one is particular as we will asymptotically prove the equality Rα,Λ,lvl

N,N 1,N2 pfq “ 0 representing a
drastic loss of mass at infinity. For that reason, we will not use whole lemmas from Section 2 but
only elements of their proof. For N large enough (independently on N 1, N2), we will first prove
the equality Rα,Λ,`

N,N 1,N2 pfq “ 0 (hence Rα,Λ,´
N,N 1,N2 pfq “ 0 by symmetry), then we will take care of the

diagonal terms pm, pq P IN , that is to say those which verify m`p
m P R.

Fix k P Z. Recall that the set I`
N is defined so that, for all indices pm, pq P I`

N , the formula
pm` pqrα,ks ´mrα,ks “ mrα,kspp1 `

p
m qα ´ 1q holds. Our goal is to prove that, for N large enough

independently on k, we have the inequality
ˇ

ˇ

`

1 `
p

m

˘α
´ 1

ˇ

ˇ ě
A

|m|αϕpNq
.
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Using the notation I`
N,A from the proof of Lemma 2.14, the indices pm, pq P I`

N failing to verify the
former inequality are in this set I`

N,A by Equation (18). Thus it is sufficient to prove that, for N
large enough, we have I`

N,A “ H. For all pm, pq P I`
N,A, we can use the estimate |p| “ OαpAN

1´α

ϕpNq
q,

that follows from Equation (19). Thanks to the convergence N1´α

ϕpNq
Ñ 0 as N Ñ 8 and the

inequality |p| ě sysΛ⃗ for all p P Λ⃗ ´ t0u, we have indeed I`
N,A “ H for N large enough. For

such ranks N and for all N 1, N2 P N, this immediately gives the equality Rα,Λ,`
N,N 1,N2 pfq “ 0. With

the same condition on the ranks N , N 1 and N2, the equality Rα,Λ,´
N,N 1,N2 pfq “ 0 follows from the

symmetry described in Equation (12).
The same argument, this time using the set of indices I“

N,A defined in the proof of Lemma 2.12
and the estimate (14), gives the result over the diagonal terms. After summing over I`

N,A Y I´
N,A Y

I“
N,A, we have finally proven the equality, for N large enough and for all N 1, N2 P N,

Rα,Λ,lvl
N,N 1,N2 pfq “ 0.

3.2 Local changes of variables
3.2.1 Riemann sums argument
In the two other regimes for the scaling factor ϕ, thanks to the symmetry equation (12) and to
Lemmas 2.12 and 2.14, it is sufficient to study the behaviour of the sequence pµ`

N,N 1,N2 pfqqN,N 1,N2PN
defined by the formula that we recall

µ`
N,N 1,N2 pfq “

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
pm,pqPI`

N

f
´ ϕpNqαp

mr1´α,ks

¯

,

where I`
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m ` p| ď N and θpm ` pq ą θpmqu.. In order for

an index pm, pq to contribute to this sum, it has to verify, as N Ñ 8,

(25)
ˇ

ˇ

p

m

ˇ

ˇ ď
A

α|m|αϕpNq
hence |p| ď

AN1´α

αϕpNq
.

In order to see the measure µN,N 1,N2 as a weighted Riemann sum over the lattice Λ⃗, we will use
the open angular sector (illustrated in Figure 7)

Cp,k “ tz P C˚ : argpzq P θppq ´ p1 ´ αq2π sk, k ` 1r `2πZu,

the ray Lp,k “ tz P C˚ : argpzq ” ´
θppq

1´αu and the family of change of variables php,kq
pPΛ⃗, kPZ

defined by

hp,k : Cp,k Ñ C˚ ´ Lp,k

z ÞÑ |z|
´ 1

1´α e´
iωk
1´α with argpzq ” ωk P θppq ´ p1 ´ αq2π sk, k ` 1r .

In other words, these changes of variables are restrictions to Cp,k of the maps

(26) hp,k : z ÞÑ exp
´

´
1

1 ´ α
plogpzeip´θppq`2πpk`1qp1´αqqq ` ipθppq ´ 2πpk ` 1qp1 ´ αqqq

¯

where log is the nonstandard branch of the logarithm on C´R` defined in the beginning of Section
2.1. Let p P Λ⃗ ´ t0u and k P Z. The map hp,k is biholomorphic and computing its derivative, using
the formula (26), gives us h1

p,k : z ÞÑ ´ 1
1´α

hp,kpzq

z , whose modulus is z ÞÑ 1
1´α |z|

´
2´α
1´α . We set

ωp,k “
ÿ

mPΛ,mRR`

pm,pqPI`

N

∆ ϕpNqαp

mr1´α,ks
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allowing us to decompose the measure µ`
N,N 1,N2 into sums where k and p are fixed, then apply a

different change of variables on each part. The condition m R R` is introduced so that the points
ϕpNqαp
mr1´α,ks all belong to Cp,k and not only to its closure. In order to add or remove this condition at
will, notice the inequality

(27) CardpΛ X D̄p0, Nq X R`q ď
N

sysΛ⃗
` 1.

For all m P Λ such that pm, pq P I`
N and m R R`, the change of variable hp,k is designed for the

following computation:

hp,k
` ϕpNqαp

mr1´α,ks

˘

“
`ϕpNqα|p|

|m|1´α

˘´ 1
1´α hp,k

`

eipθppq´p1´αqpθpmq`2πkqq
˘

“
`ϕpNqα|p|

|m|1´α

˘´ 1
1´α e´ 1

1´α ipθppq´p1´αqpθpmq`2πkqq
“ pϕpNqαpq

´ 1
1´α m

where we recall the notation z´ 1
1´α “ zr´ 1

1´α ,0s. Consequently, we have the formula

(28) php,kq˚ωp,k “
ÿ

mPΛ, mRR`

pm,pqPI`

N

∆mδN,p
where δN,p “ pϕpNqαpq

´ 1
1´α .

Using Equation (27), the condition m R R` in the latter formula can be removed up to an extra
error term of order Oαp

}f}8N
ψpNq sysΛ⃗

q, thus we forget about it until Equation (35).
In order to compare every measure php,kq˚ωp,k with a weighted Riemann sum, we have to

establish which part of C is occupied by the indices m in its definition. Recall that I`
N denotes the

subset of Λ ˆ pΛ⃗ ´ t0uq with conditions 0 ă |m|, |m` p| ď N and θpm` pq ą θpmq. Putting aside
the condition |m ` p| ď N for the moment, we claim that such indices m approximately occupy
a half-disk (depending on p), namely half of the closed disk Dp0, Nq. Let Bp denote the complex
band r´1, 0sp` R`. More precisely, we claim that, modulo the complex subset Bp X D̄p0, Nq, the
set

DN,p “ tz P C˚ ´ t´pu : |z| ď N and θpz ` pq ą θpzqu

is the half-disk centred at the origin, of radius N and with the argument condition θpzq P sθppq ´

π, θppqr `2πZ. The claim follows from a straightforward study of (the sign of) the function z ÞÑ

θpz ` pq ´ θpzq which is continous on C´ pR` Y p´p`R`qq, which can be computed explicitly on
the circle Cp0, |p|q and whose zeros belong to the line Rp. See Figure 6 for a summary of this study.
A quantitative comparison between DN,p and the associated half-disk will be stated in Equation
(32).

In order to remove the condition |m` p| ď N in I`
N and to compute the associated error term,

first notice that failing this condition implies that N ´ |p| ă |m| ď N . Using Lemma 2.10 twice
(summing over Λ with β “ 0, first with x “ N then with x “ N ´ |p|), we obtain, as N Ñ 8 with
N ě |p|,

CardpΛ XDN,p ´ tm P Λ : pm, pq P I`
Nuq “

πpN2 ´ pN ´ |p|q2q

covolΛ⃗
` O

`1 ` diam2
Λ⃗

covolΛ⃗
N
˘

“ OΛ

´

p|p| ` 1qN
¯

.

Thanks to the inequality |p| ď AN1´α

αϕpNq
from Equation (25), the condition N ě |p| in the latter

estimate is verified for N large enough, uniformly on such indices p. Using Lemma 2.10 (summing
over Λ⃗ with β “ 0 and x “ AN1´α

αϕpNq
), we can replace the condition pm, pq P I`

N by m P Λ XDN,p in
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Figure 6: An illustration of a set DN,p with θppq ě π, and DN,p1 with θpp1q ă π.

the definition of µN,N 1,N2 pfq up to the error term, as N Ñ 8,

µ`
N,N 1,N2 pfq ´

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛXDN,p

fp
ϕpNqαp

mr1´α,ks
q

“ Oα,Λ

´}f}8pAN
1´α

ϕpNq
` 1qpAN

1´α

ϕpNq
q2N

ψpNq

¯

.(29)

This invites us to define the measures

rωp,k “
ÿ

mPΛ,mRR`

mPΛXDN,p

∆ ϕpNqαp

mr1´α,ks

and rµ`
N,N 1,N2 “ 1

pN 1`N2qψpNq

řN2
´1

k“´N 1

ř

pPΛ⃗´t0u
rωp,k. Using Equations (27) and (29), we obtain an

error term, as N Ñ 8,

(30) rµ`
N,N 1,N2 pfq ´ µ`

N,N 1,N2 pfq “ Oα,Λ

´}f}8pAN
1´α

ϕpNq
` 1qpAN

1´α

ϕpNq
q2N

ψpNq
`

}f}8N

ψpNq

¯

.

Let F be a fundamental domain of Λ⃗ containing 0 and of diameter diamΛ⃗. An approximation
of DN,p is given by rDN,p “

Ť

mPΛXDN,p
pm ` F q. We apply Lemma 2.16 (on the C1 function

fp,k “ f ˝ h´1
p,k, with δ “ δN,p and F “ Λ XDN,p), then we use Lemma 2.10 (summing over Λ with

β “ 0 and x “ N since we have the inclusion DN,p Ă D̄p0, Nq). This grants us the estimate, as
N Ñ 8,
ˇ

ˇ

ˇ
php,kq˚rωp,kpfp,kq ´

ş

δN,p
rDN,p

fp,kpzq dz

|δN,p|2 covolΛ⃗

ˇ

ˇ

ˇ
ď

diamΛ⃗
covolΛ⃗

}dfp,k |δN,p
rDN,p

}8 |δN,p|CardpΛ XDN,pq

“ Oα,Λ

´}dfp,k |δN,p
rDN,p

}8N
2

pϕpNq|p|q
1

1´α

¯

.(31)

The set rDN,p is "approximately" DN,p, and is "approximately" a half-disk as we shall now see. Let
us use the notation, for all z0 P C, r ą 0, ω P R,

Hpz0, r, ωq “ tz P C : |z ´ z0| ď r and argpz ´ z0q P sω ´ π, ωr `2πZu
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which is a half-disk centred at z0, of radius r ą 0, with an argument (relative to its centre)
determined by ω (more precisely by its image in R{2πZ). We want to compare the complex subset
rDN,p with the half-disk Hp0, N, θppqq. Let u be the complex number verifying argpuq “ argppq ` π

2
and |u| “ diamΛ⃗. Let rBp,N denote the diamΛ⃗-neighbourhood of the band Bp X D̄p0, Nq. Using
the triangle inequality, modulo the set rBp,N , we have the following inclusions

rDN,p Ă Hpu,N ` 2diamΛ⃗, θppqq and Hp´2u,N ´ 3diamΛ⃗, θppqq Ă rDN,p.

(We don’t necessarily have Hp´u,N ´ 2diamΛ⃗, θppqq Ă rDN,p Y rBp,N in the case where Λ contains
0, since 0 never belongs to Λ XDN,p which is the set of indices we defined rDN,p with). Thus, the
symmetric difference that is of interest here verifies, modulo rBp,N ,

rDN,p∆Hp0, N, θppqq “ p rDN,p YHp0, N, θppqqq ´ p rDN,p XHp0, N, θppqqq

Ă Hpu,N ` 2diamΛ⃗, θppqq ´Hp´2u,N ´ 3diamΛ⃗, θppqq.

Since the set rBp,N has Lebesgue measure bounded by Opp|p| ` diamΛ⃗qNq, the latter inclusion
modulo rBp,N gives the estimate, as N Ñ 8 (with N ě 3diamΛ⃗ and independently on p P Λ⃗ ´ t0u),

LebCp rDN,p∆Hp0, N, θppqqq ď
π

2 ppN ` 2diamΛ⃗q2 ´ pN ´ 3diamΛ⃗q2q ` Opp|p| ` diamΛ⃗qNq

“ OpdiamΛ⃗Nq ` Opp|p| ` diamΛ⃗qNq “ OΛpp|p| ` 1qNq.(32)

Let RN “
N`diamΛ⃗

pϕpNqα|p|q
1

1´α
. From the estimates (31) and (32), we derive, as N Ñ 8,

ˇ

ˇ

ˇ
php,kq˚rωp,kpfp,kq ´

ş

δN,pHp0,N,θppqq
fp,kpzq dz

|δN,p|2 covolΛ⃗

ˇ

ˇ

ˇ

“ Oα,Λ

´}dfp,k |δN,p
rDN,p

}8N
2

pϕpNq|p|q
1

1´α

¯

`
|
ş

δN,p
rDN,p

fp,kpzq dz ´
ş

δN,pHp0,N,θppqq
fp,kpzq dz|

covolΛ⃗ |δN,p|2

“ Oα,Λ

´}dfp,k |δN,p
rDN,p

}8N
2

pϕpNq|p|q
1

1´α

¯

`
}fp,k |δN,pp rDN,pYHp0,N,θppqqq

}8 LebCpδN,p rDN,p∆δN,pHp0, N, θppqqq

covolΛ⃗ |δN,p|2

“ Oα,Λ

´}dfp,k |Dp0,RN q}8N
2

pϕpNq|p|q
1

1´α

` }fp,k |Dp0,RN q}8p|p| ` 1qN
¯

.(33)

We set

HCp,k “ h´1
p,k

`

δN,pHp0, N, θppqq ´ Lp,k
˘

“ h´1
p,k

`

Hp0, |δN,p|N,´
α

1 ´ α
θppqq ´ Lp,k

˘

(where we used the equality argpδN,pq ` θppq ” ´ 1
1´αθppq ` θppq “ ´ α

1´αθppq for the right-hand
equality). We will geometrically describe HCp,k in Section 3.2.2, and see that this set is the
intersection of an angular sector (which turns out to be half of Cp,k) and the complementary set
C ´ D̄p0, |δN,pN |´p1´αqq “ C ´ D̄p0, α|p|ϕpNq

N1´α q. Recall the formula fp,k “ f ˝ h´1
p,k and that the

modulus of h1
p,k is z ÞÑ 1

1´α |z|
´

2´α
1´α . Hence the Jacobian of hp,k is z ÞÑ 1

p1´αq2 |z|
´

4´2α
1´α . We define

(34) ν`
p,kpfq “

1
p1 ´ αq2|δN,p|2 covolΛ⃗

ż

HCp,k

fpzq|z|
´

4´2α
1´α dz,
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and

ν`
N,N 1,N2 “

1
pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ν`
p,k.

Thanks to the inclusion supp f Ă Dp0, Aq and the formula |h´1
p,k| : z ÞÑ |z|´p1´αq, we have the

inequalities, for all N P N,

}fp,k |Dp0,RN q}8 ď }f}8 and }dfp,k |Dp0,RN q}8 ď p1 ´ αqAp1´αqp2´αq}df}8 ď A2}df}8.

Let εα be the function 1 ` | log | if α “ 1
2 , and the constant function 1 otherwise. Combining

Equations (33) and (27) (to remove the condition m R R` in the definition of rωp,k), applying the
change of variable formula, and using Lemma 2.10 (summing over Λ⃗ with β “ 0 and x “ AN1´α

αϕpNq

thanks to Equation (25)), we compute the estimate, as N Ñ 8,

rµ`
N,N 1,N2pfq ` Oα

` }f}8N

ψpNq sysΛ⃗

˘

´ ν`
N,N 1,N2pfq

“
ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

Oα,Λ

´}fp,k |Dp0,RN q}8p|p| ` 1qN

ψpNq
`

}dfp,k |Dp0,RN q}8N
2

ψpNqpϕpNq|p|q
1

1´α

¯

“ Oα,Λ

´}f}8pAN1´α

ϕpNq
` 1qNpAN1´α

ϕpNq
q2

ψpNq
`

A2}df}8N
2

ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α

¯

.

Together with Equation (30), we finally obtain the estimate, as N Ñ 8,

µ`
N,N 1,N2 pfq ´ ν`

N,N 1,N2 pfq “ Oα,Λ

´

}f}8N

ψpNq

`

1 `
`AN1´α

ϕpNq

˘2˘(35)

` }f}8

`

1 `
AN1´α

ϕpNq

˘`AN1´α

ϕpNq

˘2 N

ψpNq

`
A2}df}8N

2

ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α

¯

.

3.2.2 Geometric description by symmetry
Set νN,N 1,N2 “ ν`

N,N 1,N2 ` pz ÞÑ ´zq˚ν
`
N,N 1,N2 . Using the symmetry argument (12), we will be

able to compare Rα,Λ,lvl
N,N 1,N2 to νN,N 1,N2 . This section aims at describing the measure νN,N 1,N2 .

Lemma 3.1. For all k P Z and all p P Λ⃗ ´ t0u, up to a complex subset of Lebesgue measure 0, we
have the disjoint union

HCp,k Y p´HC´p,kq “ Cp,k X pC ´Dp0, α|p|ϕpNq

N1´α
qq.

Proof. To prove this, fix k and p as such. We begin by noticing thatHCp,k and ´HC´p,k are indeed
subsets of Cp,k (by definition for HCp,k, and thanks to the inclusion ´HC´p,k Ă ´C´p,k “ Cp,k).
Furthermore, they are subsets of C ´ Dp0, α|p|ϕpNq

N1´α q since the changes of variable h´1
p,k and h´1

´p,k
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Figure 7: Illustration of Lemma 3.1.

have the same modulus z ÞÑ |z|´p1´αq. More precisely, the definition of hp,k grants the formula,
for all z P C ´ Lp,k,

h´1
p,kpzq “ |z|´p1´αqe´ip1´αqωk where argpzq ” ωk P ´

θppq

1 ´ α
` 2π sk, k ` 1r

or, in other words, for all r ą 0 and ω P R ´ p´θppq ` 2πZq,

(36) h´1
p,kpreip´

αθppq

1´α
`ωq

q “ r´p1´αq exp
´

θppq ´ p1 ´ αq
`

θppq ` ω ` 2π
`

k ´

Yθppq ` ω

2π

]

˘˘

¯

.

Since h´1
p,k (and similarly h´p,kq) acts separately on each variable in polar coordinates, it remains to

describe HCp,k (resp. ´HC´p,k) in terms of arguments, which reduces to the description of the set
h´1
p,kpS1 ´ te´

iθppq

1´α uq (resp. ´h´1
´p,kpS1 ´ te´

iθp´pq

1´α uq). Using the formula (36) and doing separately
the cases θppq ď π and θppq ą π, we find that

h´1
p,kpS1 ´ te´

iθppq

1´α uq

“

#

teiω : ω P θppq ´ 2πp1 ´ αqp sk, k `
θppq

2π r Y sk ` 1
2 `

θppq

2π , k ` 1r qu if θppq ď π,

teiω : ω P θppq ´ 2πp1 ´ αq sk ´ 1
2 `

θppq

2π , k `
θppq

2π r u if θppq ą π,

which is half of the circle arc S1 XCp,k. Similarly, up to a finite number of points (namely the three
points in exppαθppq ´ 2πkp1 ´αq ` t´1, 0, 1uq), the complex subset ´h´1

´p,kpS1 ´ te´
θp´pq

1´α uq can be
proven equal to half of a circle arc, namely the complement of h´1

p,kpS1 ´ te´
iθppq

1´α uq in S1 X Cp,k.
This concludes the proof of the lemma.

Thanks to the union described in Lemma 3.1, we derive the following formula

νN,N 1,N2 “
1

pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

νp,k
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where we set νp,k “ ν`
p,k ` pz ÞÑ ´zq˚ν

`
´p,k, that is to say νp,k is a measure absolutely continuous

with respect to LebC with density given by, for all z P C,

(37) gp,kpzq “

|z|
´

4´2α
1´α 1

Cp,kXpC´Dp0,α|p|ϕpNq

N1´α qq
pzqpϕpNqα|p|q

2
1´α

p1 ´ αq2 covolΛ⃗
.

We use the notation Cp “ Cp,0 X pC ´ Dp0, α|p|ϕpNq

N1´α qq. We notice that the sector Cp,k X pC ´

Dp0, α|p|ϕpNq

N1´α qq is obtained by a rotation of Cp as e´i2πkp1´αqCp “ ei2πkαCp. We can then describe
νN,N 1,N2 by the following formula

νN,N 1,N2 pfq “
pαϕpNqq

2
1´α

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz,

where the sum over p P Λ⃗ ´ t0u is finite since ei2πkαCp Ă C ´ supp f if |p| ą AN1´α

αϕpNq
. When

N 1, N2 Ñ 8, we will average over k the above integrals on ei2πkαCp, which will allow us to
replace them by one integral over C ´ Dp0, α|p|ϕpNq

N1´α q. For that purpose, we separate the cases
α P QX s0, 1r and α P pR´QqX s0, 1r . Since the averaging over k P t´N 1, . . . , N2 ´1u and the one
over p P Λ⃗ ´ t0u are geometrically uncorrelated, both averaging processes seem to be necessary in
order to obtain a rotation-invariant limit. Imposing a small value of N 1 `N2 empirically leads to
rotation discrepancy near the origin, as shown in Figure 2 (where N 1 “ 0 and N2 “ 1).
The measure we will obtain after this averaging process is given by the formula

(38) νN pfq “
pαϕpNqq

2
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

C´Dp0,α|p|ϕpNq

N1´α q

fpzq|z|
´

4´2α
1´α dz.

3.2.3 Averaging: the rational case
In this section, we assume that α P QX s0, 1r and we write α “ a

b where a and b are coprime positive
natural numbers. We recall that the angle of the restricted open sectors Cp is 2πp1 ´αq “ 2π b´a

b .
Thus, outside of the union of b rays from the origin (which is a set of Lebesgue measure 0), we
have the covering formula, for all k0 P Z and all p P Λ⃗ ´ t0u,

(39)
k0`b´1
ÿ

k“k0

1ei2πkαCp
“ pb´ aq1C´Dp0,α|p|ϕpNq

N1´α q
.

Hence, we can rewrite νN,N 1,N2 pfq by regrouping groups of b consecutive integrals, which gives

νN,N 1,N2 pfq “
pαϕpNqq

2
1´α pb´ aq

X

N 1
`N2

b

\

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

C´Dp0,α|p|ϕpNq

N1´α q

fpzq|z|
´

4´2α
1´α dz

`
pαϕpNqq

2
1´α

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1`t
N1`N2

b u

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz.

We recall the formula ψpNq “ pN
2´α

ϕpNq
q2. Using polar coordinate, we can bound from above the

latter integrals as follows, for all k P Z and p P Λ⃗ ´ t0u,
ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz ď 2π}f}8

ż

rą
α|p|ϕpNq

N1´α

r´
3´α
1´α dr “ p1 ´ αqπ}f}8

`α|p|ϕpNq

N1´α

˘´ 2
1´α .

25



Using the inequality
ˇ

ˇ

t
N1`N2

b u

N 1`N2 ´ 1
b

ˇ

ˇ ď 1
N 1`N2 and Lemma 2.10 (summing over Λ⃗ with β “ 0 and

x “ AN1´α

αϕpNq
), we get the estimate, as N Ñ 8,

(40) νN,N 1,N2 pfq “ νN pfq ` Oα,Λ

´A2}f}81Z´bZpN 1 `N2q

N 1 `N2

¯

.

3.2.4 Averaging: the irrational case
In this section, we assume that α P pR´QqX s0, 1r . As we take successive rotations by an angle 2πα
(or equivalently, an angle ´2πp1 ´ αq) of the (restricted) angular sector Cp, there is no possibility
of having a periodic covering formula such as Equation (39). However, since the angle of Cp is also
2πp1 ´αq, we can still geometrically understand the error in such a covering. Let Cp,N 1,N2 denote
the complex subset

␣

z P C : |z| ě
α|p|ϕpNq

N1´α
and argpzq X

`

θppq ` 2πp1 ´ αq
‰ tp1 ´ αqpN 1 `N2qu

1 ´ α
´N2, N 1

“ ˘

‰ H
(

.

In other words, Cp,N 1,N2 is the restriction to C ´ Dp0, α|p|ϕpNq

N1´α q of the angular sector between
arguments θppq´p1´αqN2`2πZ and θppq`p1´αqN 1`2πZ (with direct trigonometric orientation).
Then, outside of the union of 2pN 1 `N2q rays from the origin (which is a set of Lebesgue measure
0), we have the formula, for all p P Λ⃗ ´ t0u,

N2
´1

ÿ

k“´N 1

1ei2πkαCp
“ tp1 ´ αqpN 1 `N2qu1C´Dp0,α|p|ϕpNq

N1´α q
` 1Cp,N1,N2 .

With computations analogous to the ones in Section 3.2.3, we find a similar error term, namely as
N Ñ 8,

(41) νN,N 1,N2 pfq “ νN pfq ` Oα,Λ

´ A2}f}8

N 1 `N2

¯

.

3.3 Regime ϕpNq

N1´α ÝÑ
NÑ8

0

Using the formula ψpNq “ pN
2´α

ϕpNq
q2 and Lemma 2.10 (summing over Λ⃗ with β “ ´ 1

1´α and
x “ AN1´α

αϕpNq
), the third line in the estimate (35) can be bounded, as N Ñ 8,

N2

ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α “

$

’

’

’

’

&

’

’

’

’

%

A
1´2α
1´α Oα,Λp 1

N q if α ă 1
2 ,

Oα,Λp
logp

?
N

ϕpNq
q

N q if α “ 1
2 ,

Oα,ΛppN2p1´αqϕpNq
2α´1
1´α q´1q if α ą 1

2 ,

Since 1
N , logp

?
N

ϕpNq
q

N and even pN2p1´αqϕpNq
2α´1
1´α q´1 are negligible with respect to 1

NαϕpNq
, the

estimate (35) can be rewritten by removing the first term of its right-hand side and by combining
the second and third terms, so that the estimate holds for N large enough independently on }df}8

(as required in our definition of Oα,Λ). As N Ñ 8, we obtain

µ`
N,N 1,N2 pfq “ ν`

N,N 1,N2 pfq ` Oα,Λ

´A3p}f}8 ` }df}8q

NαϕpNq

¯

.

Then, using the symmetry described in Equation (12) together with Lemma 2.12 (in which the
stated estimate is also negligible when compared to 1

NαϕpNq
, see Remark 2.13) and Lemma 2.14,

26



(see Remark 2.15) we get, as N Ñ 8,

(42) Rα,Λ,lvl
N,N 1,N2 pfq “ νN,N 1,N2 pfq ` Oα,Λ

´A4p}df}8 ` }f}8q

NαϕpNq

¯

.

Thanks to the estimates (40) and (41), we can focus on the behaviour of the sequence pνN pfqqNPN
defined in Equation (38), where νN is the measure of density

gN : z ÞÑ
pαϕpNqq

2
1´α |z|

´
4´2α
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď
|z|N1´α

αϕpNq

|p|
2

1´α

with respect to the Lebesgue measure of C (with gN p0q “ 0 by continuity). In this regime, using
Lemma 2.10 (summing over Λ⃗ ´ t0u with β “ 2

1´α and x “
|z|N1´α

αϕpNq
), we have the pointwise

convergence
@z P C˚, gN pzq ÝÑ

NÑ8

π

α2p2 ´ αq covol2Λ⃗
“ ρ

α,Λ⃗,λpzq.

More precisely, Lemma 2.10 even grants us the error term, as N Ñ 8, uniformly for every complex
number z P C ´Dp0, αϕpNq

N1´α q,

gN pzq “ ρ
α,Λ⃗,λpzq ` Oα,Λ

´ ϕpNq

|z|N1´α

¯

.

For all N P N, the function gN vanishes on the open disk Dp0, sysΛ⃗ αϕpNq

N1´α q hence is bounded from
above on Dp0, αϕpNq

N1´α q by

pαϕpNqq
2

1´α sys´
4´2α
1´α

Λ⃗
p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď1

|p|
2

1´α “
ϕpNq

2
1´α

ψpNq
Cα,Λ.

Integrating these error terms over C and since
ş

Dp0,Aq
1

|z|
dz “ 2πA, we obtain the estimate, as

N Ñ 8,

|νN pfq ´ ρ
α,Λ⃗,λ

LebCpfq|

ď }f}8

ż

Dp0,
αϕpNq

N1´α q

π

α2p2 ´ αq covol2Λ⃗
dz ` }f}8

ż

Dp0,
αϕpNq

N1´α q

ϕpNq
2

1´α

ψpNq
Cα,Λ dz

` }f}8

ż

Dp0,AqXpC´Dp0,
αϕpNq

N1´α qq

Oα,Λ

´ ϕpNq

|z|N1´α

¯

dz

“ }f}8 Oα,Λ

´

` ϕpNq

N1´α

˘2
¯

` }f}8 Oα

´

Cα,Λ
` ϕpNq

N1´α

˘
4´2α
1´α

¯

` }f}8 Oα,Λ

´AϕpNq

N1´α

¯

“ Oα,Λ

´A}f}8ϕpNq

N1´α

¯

.(43)

Combining Equations (43), (42), (41) and (40), we have proven Theorem 2.8 in the case λ “ 0.
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3.4 Regime ϕpNq

N1´α ÝÑ
NÑ8

λ P s0,`8r

By using the inequality |p| ě sysΛ⃗, the formula ψpNq “
`

N2´α

ϕpNq

˘2
„ N2

λ2 and Gauss counting
argument (9), in this regime, the estimate (35) grants us, as N Ñ 8,

µ`
N,N 1,N2 pfq ´ ν`

N,N 1,N2 pfq

“ Oα,Λ

´A2λ2}f}8

N
p1 ` λ´2q `

A3}f}8pλ´1 ` 1q

N
`
A4}df}8λ

2

λ
1

1´αN
pλ´1 ` 1q2 sys´ 1

1´α

Λ⃗

¯

“ Oα,Λ

´A4p}f}8 ` }df}8qpλ` λ´1q
maxt2, 1

1´α u

N

¯

.(44)

Thanks to the estimates (44), (40), (41) and to Lemmas 2.12 and 2.14, in this regime too we
can focus on the behaviour of the sequence pνN qNPN defined in Equation (38). Its density gN
with respect to the Lebesgue measure of C has the following the pointwise almost everywhere
convergence outside of a countable union of circles: for all z P C ´

Ť

pPΛ⃗ Cp0, αλ|p|q,

gN pzq “
pαϕpNqq

2
1´α |z|

´
4´2α
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď
|z|N1´α

αϕpNq

|p|
2

1´α ÝÑ
NÑ8

α
2

1´α

p1 ´ αq covolΛ⃗

´

|z|

λ

¯´
4´2α
1´α

ÿ

pPΛ⃗´t0u

|p|ď
|z|

αλ

|p|
2

1´α ,

which is the formula of the function ρ
α,Λ⃗,λ defined before Theorem 2.1. In this section, we aim at

making this convergence effective and at concluding the proof of Theorem 2.8. From now on, we
assume that N is large enough so that λ

2 ď
ϕpNq

N1´α ď 2λ. First, one can notice that both functions
gN and ρ

α,Λ⃗,λ vanish on the open disk Dp0, αλ sysΛ⃗
2 q. For all z P Dp0, Aq, we have the inequality

|gN pzq ´ ρ
α,Λ⃗,λ

pzq| ď
α

2
1´α p

αλ sysΛ⃗
2 q

´
4´2α
1´α

p1 ´ αq covolΛ⃗

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯
4´2α
1´α

´ λ
4´2α
1´α

ˇ

ˇ

ˇ

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α

`
α

2
1´α p

α sysΛ⃗
2 q

´
4´2α
1´α

p1 ´ αq covolΛ⃗

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α
ˇ

ˇ1
rα

ϕpNq

N1´α |p|,`8r
p|z|q ´ 1rαλ|p|,`8r p|z|q

ˇ

ˇ.

Integrating on each annulus tz P C : |z| P rαλ|p|, α ϕpNq

N1´α |p|su and using Lemma 2.10 (summing
over p1 “ λp P λΛ⃗ ´ t0u with x “ 2A

α ě 1 and β “ 2
1´α then β “ 4´2α

1´α ), thanks to the inclusion
supp f Ă Dp0, Aq and the inequality ϕpNq

N1´α ď 2λ, we obtain the estimate, as N Ñ 8,
ˇ

ˇ

ˇ

ż

C
pgN ´ ρ

α,Λ⃗,λqf dLebC

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

Dp0,Aq´Dp0,
αλ sysΛ⃗

2 q

pgN ´ ρ
α,Λ⃗,λqf dLebC

ˇ

ˇ

ˇ

“A2}f}8 Oα

´ pλ sysΛ⃗q
´

4´2α
1´α

covolΛ⃗

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯

4´2α
1´α

´ λ
4´2α
1´α

ˇ

ˇ

ˇ

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α

¯

`A2}f}8 Oα

´ sys´
4´2α
1´α

Λ⃗
covolΛ⃗

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α 2πmax
!

α
ϕpNq

N1´α
|p|, αλ|p|

)
ˇ

ˇ

ˇ
α
ϕpNq

N1´α
|p| ´ αλ|p|

ˇ

ˇ

ˇ

¯
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“ }f}8 Oα,Λ

´A
6´4α
1´α p1 ` λ2q

λ
4´2α
1´α

ˇ

ˇ

` ϕpNq

λN1´α

˘

4´2α
1´α ´ 1

ˇ

ˇ `
A

8´6α
1´α p1 ` λ2q

λ
8´6α
1´α

ˇ

ˇ

ϕpNq

λN1´α
´ 1

ˇ

ˇ

¯

“ Oα,Λ

´

}f}8A
8´6α
1´α p1 ` λ2q

` 1
λ

4´2α
1´α

`
1

λ
8´6α
1´α

˘ˇ

ˇ

ϕpNq

λN1´α
´ 1

ˇ

ˇ

¯

.

Recalling that νN “ gN LebC, combining the latter estimate with the ones from Equations (40),
(41), (44), the symmetry described in Equation (12), and Lemmas 2.12 and 2.14, we have finally
proven Theorem 2.8 (in which we simplified the error term by using standard inequalities such as
1 ` λβ ď 2pλ` 1

λ q|β| for every real number β).

4 Removing the branch cut
In the beginning of Section 2, we defined an empirical pair correlation measure Rα,Λ

N,N 1,N2 . In its
definition (3), for all grid points n,m P Λ, we have the condition |Imprq ´ Impsq| ă 2π where r, s
are logarithms of n,m in the associated Riemann surface ĂC˚ “ C. In terms of the levels introduced
in Section 2.1, this translates to consider all terms of the form nrα,ks ´ mrα,ks (already taken into
account in Rα,Λ,lvl

N,N 1,N2), as well as the terms nrα,k`1s ´ mrα,ks (resp. nrα,ks ´ mrα,k`1s) for which
the argument condition θpnq ă θpmq (resp. θpnq ą θpmq) holds. In other words, comparing the
measure Rα,Λ

N,N 1,N2 with its level separated avatar Rα,Λ,lvl
N,N 1,N2 defined in Equation (5) and studied in

Section 3, we obtain

Rα,Λ
N,N 1,N2 ´ Rα,Λ,lvl

N,N 1,N2 “
1

pN 1 `N2qψpNq

N2´2
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNqpnrα,k`1s´mrα,ksq1θpnqăθpmq

(45)

` ∆ϕpNqpnrα,ks´mrα,k`1sq1θpnqąθpmq.

Lemma 4.1. Let A ą 1. For every integer k P Z, let

IN,A,k “
␣

pn,mq P Λ2 : n ‰ m, 0 ă |n|, |m| ď N, |nrα,k`1s ´mrα,ks| ď
A

ϕpNq
and θpnq ă θpmq

(

.

Then we have, as N Ñ 8,

CardpIN,A,kq “ Oα,Λ

´

N
`AN1´α

ϕpNq
` 1

˘3
1λ‰`8

¯

.

Proof. Let pn,mq P IN,A,k, set ε “
θpnq`θpmq

2 P s0, 2πr and notice that

αp2πk ` θpmqq P α2πk ` α sε, 2πs “ α2πpk ` 1q ` α sε´ 2π, 0s

and αp2πpk ` 1q ` θpnqq P α2πpk ` 1q ` αr0, εr.

Since in addition α P s0, 1r and the scaling factor N ÞÑ ϕpNq converges to `8, we claim that
both points mrα,ks and nrα,k`1s are close to the ray Lα,k of argument 2πpk ` 1qα. Indeed, assume
first that the segment rnrα,k`1s,mrα,kss and the ray Lα,k don’t intersect (which can happen only
if α ě 1

2 q. Applying Al-Kashi’s law of cosines to the triangle with vertices nrα,k`1s, mrα,ks and 0
with angle ω P r2πp1 ´ αq, πs at 0, we obtain the inequalities

´ A

ϕpNq

¯2
ě |nrα,k`1s ´mrα,ks|2 “ |n|2α ` |m|2α ´ 2|n|α|m|α cospωq

ě |n|2α ` |m|2α ´ 2|n|α|m|α cosp2πp1 ´ αqq

“ p|n|α ´ |m|αq2 ` 2|n|α|m|αp1 ´ cosp2πp1 ´ αqqq.
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Figure 8: Illustration of the proof that both points nrα,k`1s (confined in the red
region) and mrα,ks (in the blue one) are close to the ray Lα,k.

Assuming that |n| ď |m| (instead of using mint|n|, |m|u and maxt|n|, |m|u), the latter equation
and the triangle inequality on |m|α “ |mrα,ks| “ |mrα,ks ˘ nrα,k`1s| grant us the bound

(46) |n|α ď
1

a

2p1 ´ cosp2πp1 ´ αqqq

A

ϕpNq
and |m|α ď

A

ϕpNq
` |n|α.

Then nrα,k`1s and mrα,ks are both close to 0, hence close to Lα,k.
And now if pn1,m1q P IN,A,k and if the segment rn1rα,k`1s,m1rα,kss and the ray Lα,k intersect,

we directly have the inequalities

(47) dpm1rα,ks, Lα,kq, dpn1rα,k`1s, Lα,kq ă
A

ϕpNq
.

By Gauss counting argument (9) and since A
ϕpNq

Ñ 0, the inequalities (46) are only valid for a num-

ber Oαp
p1`diamΛ⃗q

4

covol2
Λ⃗

q of indices pn,mq P Λ2. Hence, from now on we can assume that rnrα,k`1s,mrα,kss

and the ray Lα,k do intersect and work with Equation (47). Geometrically, this implies that (at
least) one of the points nrα,k`1s and mrα,ks is in the open half-space centred at Lα,k, i.e. of equation
Repze´i2πkαq ą 0. By symmetry, we can assume this holds for the point mrα,ks. Set

Pα : z ÞÑ |z|αeiαω where argpzq ” ω P 2πpk ` 1q` sε´ 2π, εr.

This function coincides with z ÞÑ zrα,ks around m, and with z ÞÑ zrα,k`1s at n. Set εN “ A
ϕpNq

.
Denote by ℓ a point in Lα,k for which the inequality |mrα,ks ´ ℓ| ă εN holds. By the reversed
triangle inequality, we see that |ℓ| P Dp|m|α, εN q. Applying the mean value inequality to the
inverse function of Pα, we can locate the grid point m as follows

|m´ P´1
α pℓq| ď |mrα,ks ´ ℓ| max

Dpℓ,εN q
|pP´1

α q1| ď εN
1
α

p|ℓ| ` εN q
1
α ´1.

In other words, the grid point m is close to the positive real line in the following sense

(48) m P D
´

x0,
εN
α

pxα0 ` εN q
1
α ´1

¯

where x0 “ P´1
α pℓq P R`.
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We assume that N is large enough so that the three inequalities, 2
1
α

´1εN

α ď 1
2 , εN ď p

sysΛ
2 qα and

εN

α psysαΛ `εN q
1
α ´1 ă

sysΛ
2 hold. The latter inequality implies that x0 ě

sysΛ
2 for Equation (48)

to hold. One can then notice that the ball described in Equation (48) has radius bounded by
2

1
α

´1εN

α x1´α
0 ď 1

2x0. Since it is centred at x0 ě
sysΛ

2 , we obtain the inequality Repmq ě
sysΛ

4 . More
generally, for every real number x ě 0, the ball from Equation (48) can intersect the vertical line
above x (or equivalently contains x) only if x0 ď 2x. Using the notation Lg of Lemma 2.11, this
remark applied to x “ Repmq P r

sysΛ
4 , |m|s implies that the point m belongs to the set Lg for the

function
g : x ÞÑ

3 1
α ´αεN
α

x1´α.

Applying Lemma 2.11 to the grid Λ and the inequalities maxrk´1,ks g “ gpkq ď gpNq (since g is
nondecreasing), this gives us the inequality

(49) Card
␣

m P Λ : Dn P Λ, pn,mq P IN,A,k
(

ď 4N
p1 ` diamΛ⃗qpgpNq ` diamΛ⃗q

covolΛ⃗
.

In order to count not only such points m but all the ordered pairs pn,mq P IN,A,k, we will use the
function Qα : z ÞÑ zr 1

α ,0s. The assumption θpnq ă θpmq gives the formula n
m “ Qαpn

rα,k`1s

mrα,ks q. By
applying the mean value inequality to the function Qα between the points 1 and nrα,k`1s

mrα,ks on an
adequate neighbourhood V of 1 (e.g. we can choose the half-disk V “ Dp1, A

ϕpN0q sysα
Λ

q X QαpC˚q

for N0 large enough so that the closure of this half disk does not contain 0), we obtain, with
cα “ maxV |Q1

α|,

ˇ

ˇ1 ´
n

m

ˇ

ˇ ď cα
ˇ

ˇ1 ´
nrα,k`1s

mrα,ks

ˇ

ˇ ď cα
A

ϕpNq|m|α

i.e. |m´ n| ď cα
A|m|1´α

ϕpNq
ď cα

AN1´α

ϕpNq
.(50)

Using Gauss counting argument (more precisely, the right-hand inequality of Equation (9) applied
to the grid m ´ Λ), and recalling the definitions εN “ A

ϕpNq
and gpNq “ 3

1
α

´αεN

α N1´α, the latter
inequality yields, as N Ñ 8,

CardpIN,A,kq ď 4N
p1 ` diamΛ⃗qpgpNq ` diamΛ⃗q

covolΛ⃗
π

covolΛ⃗

`

cα
AN1´α

ϕpNq
` diamΛ⃗

˘2

“ Oα,Λ

´

N
`AN1´α

ϕpNq
` 1

˘3
¯

.

In the case λ ‰ 8, this proves the lemma. If λ “ `8, then Equation (50) becomes impossible as
long as N is large enough so that ϕpNq

N1´α ą cα
A

sysΛ⃗
, hence IN,A,k is empty.

Proof of Theorem 2.1. Immediate by combining Equation (45) with Lemma 4.1.

Remark 4.2. In addition, for all f P C1
c pCq and A ą 1 such that supp f Ă Dp0, Aq, we obtain the

error term in Theorem 2.1, as mintN,N 1 `N2u Ñ 8,

Rα,Λ
N,N 1,N2 pfq “

ż

C
fpzqρ

α,Λ⃗,λpzq dz ` ErrTh.2.8pα,Λ, f, Aq

` Oα,Λ

´ N

pN 1 `N2qψpNq

`AN1´α

ϕpNq
` 1

˘3
1λ‰`8

¯

.

Proof of Theorem 2.2. Immediate by combining the rational version of Theorem 2.8 stated in
Remark 2.9 with Lemma 4.1.
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Proof of Theorem 1.1. Let γ P s0, 1r . Assuming ϕpNq “ Nγ and ψpNq “ N2p2´α´γq, we can
compare R

1
b ,Λ
N,0,b defined in Equation (3) to the measure RN defined in the introduction and obtain

RN ´ R
1
b ,Λ
N,0,b “

1
bψpNq

ÿ

m,nPΛ, n‰m
0ă|m|,|n|ďN

ÿ

rPexp´1
pmq, sPexp´1

pnq

|Imprq´Impsq|ě2π
0ďImprq, Impsqă2πb

∆ϕpNqpexpp s
b q´expp r

b qq.

Since z ÞÑ expp zb q induces a biholomorphism from C{i2πbZ to C˚, for two points expp rb q and expp sb q

to be close together, the associated classes rrs and rss have to be close together in C{i2πbZ. Under
the assumptions |Imprq ´ Impsq| ě 2π and 0 ď Imprq, Impsq ă 2πb, this implies that one of the two
points r,s is close to the real line, and the other one to the horizontal line R ` i2πb. We use the
notation IN,A,b from Lemma 4.1. Let f P C1

c pCq and A ą 1 be such that supp f Ă Dp0, Aq. For N
large enough, for an index pn,mq to contribute to the sum RN pfq ´ R

1
b ,Λ
N,0,bpfq, then either pn,mq

or pm,nq has to belong to IN,A,b. The number of such points n,m is evaluated in Lemma 4.1.
Combining this with Theorem 2.2, we obtain the vague convergence RN ´R

1
b ,Λ
N,0,b

˚
á 0 as N Ñ `8

and deduce Theorem 1.1.
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