Cramér’s estimate for stable processes with power drift
Résumé
We investigate the upper tail probabilities of the all-time maximum of a stable Lévy process with a power negative drift. The asymptotic behaviour is shown to be exponential in the spectrally negative case and polynomial otherwise, with explicit exponents and constants. Analogous results are obtained, at a less precise level, for the fractionally integrated stable Lévy process. We also study the lower tail probabilities of the integrated stable Lévy process in the presence of a power positive drift.
Domaines
Probabilités [math.PR]
Fichier principal
EJP275.pdf (266.09 Ko)
Télécharger le fichier
ejpecp.cls (13.76 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|