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Abstract

We investigate the upper tail probabilities of the all-time maximum of a stable Lévy
process with a power negative drift. The asymptotic behaviour is shown to be expo-
nential in the spectrally negative case and polynomial otherwise, with explicit expo-
nents and constants. Analogous results are obtained, at a less precise level, for the
fractionally integrated stable Lévy process. We also study the lower tail probabilities
of the integrated stable Lévy process in the presence of a power positive drift.
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1 Introduction and statement of the results

Let L be a real strictly α-stable Lévy process with characteristic exponent

Ψ(λ) = log(E[eiλL1 ]) = − (iλ)αe−iπαρ sgn(λ) = − |λ|αeiπα(1/2−ρ) sgn(λ), λ ∈ R,

where α ∈ (0, 2] is the scaling parameter and ρ = P[L1 > 0] is the positivity parameter.
Recall e.g. from Lemma 14.11 and Theorem 14.19 in [19] that ρ ∈ [1 − 1/α, 1/α] for
α ∈ [1, 2] and ρ ∈ [0, 1] for α ∈ (0, 1), and that with this normalization, for α ∈ (0, 2) the
Lévy measure of L has density

ν(x) =
Γ(1 + α)

π

(
sin(πα(1 − ρ))

|x|1+α 1{x<0} +
sin(παρ)

x1+α
1{x>0}

)
.

Throughout, we assume that L takes positive values i.e. ρ 6= 0, and we exclude the
degenerate case α = ρ = 1 where L is a unit drift. With these restrictions, L has no
positive jumps if and only if α > 1 and ρ = 1/α.
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Cramér’s estimate for stable processes with power drift

Consider the positive random variable

Mα,ρ,γ = sup
t≥0

{Lt − tγ}.

It is well-known from e.g. Proposition 48.10 in [19] that

P[Mα,ρ,γ <∞] =

{
1 if γα > 1

0 if γα ≤ 1.

In this paper, we are concerned with the asymptotic behaviour of

P[Mα,ρ,γ ≥ x], x→ ∞,

in the relevant case γα > 1. In the literature, the evaluation of such asymptotics having
various applications in insurance is coined as Cramér’s estimate. In the case of a linear
drift γ = 1, we refer to (XI.6.16) and (XII.5.10) in [9] for random walks and to [6] and
[14, Section 7.2] for Lévy processes having one-sided exponential moments. Applied to
stable Lévy processes, the main result of [6] shows

P[Mα,1/α,1 ≥ x] ∼ e−x, x→ ∞, (1.1)

for α > 1, and it is well-known that the asymptotics is in fact an equality - see [20] or
Corollary VII.2 in [4]. For more general power drifts and a class of Gaussian processes
fulfilling a certain scaling property, we refer to [12] which, applied to the important
case of Brownian motion with a parabolic drift, yields

P[M2,1/2,2 ≥ x] ∼ 1√
3
exp

{
− 4

3
√
3
x3/2

}
, x→ ∞. (1.2)

Let us mention that this estimate has been refined in Theorem 2.1 of [11], where a
complete asymptotic expansion at infinity is obtained - see also Lemma 2.1 and the ref-
erences therein for closed expressions of the density of M2,1/2,2 in terms of the Airy
function. The first result of the present paper is the following general estimate, extend-
ing (1.1) and (1.2).

Theorem A. Assume γα > 1.

(a) If L has positive jumps, one has

P[Mα,ρ,γ ≥ x] ∼ sin(παρ)

π
Γ(α− 1/γ)Γ(1 + 1/γ) x

1
γ −α.

(b) If L has no positive jumps, one has

P[Mα,1/α,γ ≥ x] ∼
√

α− 1

γα− 1
exp

{
−(α− 1) γ

α
α−1 (γα− 1)

1−γα
γ(α−1) x

γα−1
γ(α−1)

}
.

In the specific case α ∈ (1/2, 2] and γ = 2, these estimates are somehow reminiscent
of those previously obtained in [5] in the framework of Burgers turbulence with stable
noise initial data. See Remark 2.6 below for more detail. Our arguments, quite different
from those of [5], rely on the compensation formula for the case with positive jumps and
on some ad hoc and rather involved estimates combined with Laplace’s method in the
spectrally negative case.
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Cramér’s estimate for stable processes with power drift

In the second part of the paper we consider the Riemann-Liouville (or fractionally
integrated) stable process with parameter β > 0, defined as

L
(β)
t =

∫ t

0

(t− s)βdLs = β

∫ t

0

(t− s)β−1Ls ds, t ≥ 0.

The process {L(β)
t , t ≥ 0} is stable in the broad sense of [18], and by Proposition 3.4.1

therein we have

L
(β)
1

d
= (1 + αβ)−1/αL1. (1.3)

Recall also that {L(β)
t , t ≥ 0} is self-similar with index β +1/α, non-Markovian, and that

it has a.s. continuous sample paths. Consider the positive random variable

M
(β)
α,ρ,γ = sup

t≥0
{L(β)

t − tβ+γ},

which can be viewed as an extension of Mα,ρ,γ . Observe also from Theorem 10.5.1 in
[18] and self-similarity that

P[M(β)
α,ρ,γ <∞] = P[Mα,ρ,γ <∞]

for every β > 0. It is also easy to check that M
(β)
α,ρ,γ

d−→ Mα,ρ,γ as β → 0 when γα > 1.

As a rule, the non-Markovian character of a given process makes its passage times
across a level more difficult to investigate and our second main result has a less precise
character. Here and throughout, we use the standard notation f(x) ≍ g(x) to express
the fact that there exist two positive finite constants κ1, κ2 such that κ1f(x) ≤ g(x) ≤
κ2f(x) as x→ ∞ or as x→ 0, the nature of the limit being clear from the context.

Theorem B. Assume γα > 1.

(a) If L has positive jumps, one has

P[M(β)
α,ρ,γ ≥ x] ≍ x

1−γα
β+γ .

(b) If L has no positive jumps, one has

logP[M
(β)
α,1/α,γ ≥ x] ∼ −cα,β,γ x

γα−1
(α−1)(γ+β)

with cα,β,γ = (α− 1) (γ + β)
α

α−1 (αβ + 1)
γ+β−1−αβ
(α−1)(γ+β) (γα− 1)

1−γα
(α−1)(γ+β) > 0.

The method to get these estimates differs here for the lower bound and the up-
per bound. The former uses a simple scaling argument, inspired by that of [12], and
amounts to a comparison with the upper tails of L1. The latter relies on telescoping
sums for the case with positive jumps, and on a simple yet powerful association lemma
in the spectrally negative case - see Lemma 3.1.

In the last part of the paper, we study the lower tail problem for the integrated
stable process with a power positive drift. In a Gaussian framework, lower tail proba-
bilities have many applications described in [15]. In a self-similar framework they are
connected to the persistence probabilities, whose applications are also manifold - see
the recent survey [3]. We show the following.

Theorem C. Assume γα > 1 and ρ ∈ (0, 1). For every µ ≥ 0, one has

P

[
sup

0≤t≤1

{
L
(1)
t + µt1+γ

}
≤ ε

]
≍ ε

αρ
(α+1)(α(1−ρ)+1) .
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Cramér’s estimate for stable processes with power drift

Above, we have excluded the case ρ = 1, where the estimate amounts by monotonic-
ity to the one-dimensional estimate P[L1+µ ≤ ε], which is exponentially small for µ = 0

- see e.g. (14.35) in [19] - and zero for µ > 0. Theorem C is an extension of Theorem
A in [16] which dealt with the case µ = 0. In this respect, we should mention that the
condition γα > 1 on the drift power is optimal: in the Cauchy case α = γ = 1, the same
Theorem A in [16] shows that the lower tail probability exponent depends on µ. Our
argument here relies in an essential way on the strong Markov property of the bidimen-
sional process {(L(1)

t , Lt), t ≥ 0} and is hence specific to the case β = 1. The other cases
are believed to be challenging. To give one example, for α = 2, µ = 0 and β ≥ 2 an
integer, finding the exact values of the exponents κn in the asymptotics

P

[
sup

0≤t≤1

{
L
(n)
t

}
≤ ε

]
≍ εκn

as ε → 0 is still an open problem on Brownian motion - see Section 3.3 in [3]. In our
proof the aforementioned association Lemma 3.1 plays also a significant role. Unfor-
tunately, its one-sided character prevents us from dealing with the case of a negative
power drift. We leave this question, whose connection to Burgers turbulence with sta-
ble Lévy process initial data in the case α > 1 and γ = 1 is precisely described in Section
4.1 of [3], to future research.

2 Proof of Theorem A

2.1 The case with positive jumps

We will use the standard notation

c+ =
Γ(1 + α)

π
sin(πρα) > 0

for simplicity. Defining for every x > 0 the stopping time

Tx = inf{t ≥ 0; Lt > tγ + x},

we have P[Mα,ρ,γ ≥ x] = P[Tx < ∞]. We also set Kx = LTx − T γx − x for the overshoot
at Tx. For every f : R+ → R

+ measurable and such that f(0) = 0, the compensation
formula - see [4] p. 7 or Theorem 19.2 in [19] - implies

E
[
f(Kx)1{Tx<∞}

]
= E


∑

t≥0

f (Lt− +∆Lt − tγ − x)1{Lu<uγ+x ∀u<t, tγ+x<Lt−+∆Lt}




= c+E

[∫ ∞

0

dt

∫ ∞

0

f (Lt + s− tγ − x) 1{Lu<uγ+x ∀u<t, tγ+x<Lt+s} s
−1−αds

]

= c+

∫ ∞

0

dt

∫ ∞

0

E
[
f(z − tγ − x)1{Lu<uγ+x ∀u<t, tγ+x<z}(z − Lt)

−1−α
]
dz.

Taking f(u) = 1{u>0} and integrating in z, we obtain

P[Kx > 0, Tx <∞] =
c+
α

∫ ∞

0

E
[
(tγ + x− Lt)

−α
1{Lu<uγ+x ∀u<t}

]
dt

=
c+
α

(∫ ∞

0

E

[
(sγ + 1− x

1
γα−1Ls)

−α
1
{x

1
γα

−1
Lv<vγ+1 ∀v<s}

]
ds

)
x

1
γ −α

∼ c+
α

(∫ ∞

0

(sγ + 1)−α ds

)
x

1
γ −α

∼ sin(παρ)

π
Γ(α− 1/γ)Γ(1 + 1/γ) x

1
γ −α
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where the second equality follows by scaling, the convergence on the third line is
obtained by bounded and monotone convergence (decomposing into {Ls < 0} and
{Ls ≥ 0} inside the expectation), and the evaluation of the integral on the fourth line
is standard. To conclude the proof, it remains to show that L does not creep at Tx, in
other words that

P[Kx = 0, Tx <∞] = 0. (2.1)

The latter is in accordance with the well-known fact that L does not creep at a fixed
level x > 0 - see Theorem VI.19 and Lemma VIII.1 in [4]. However, this result does not
apply here since we consider the first passage time above a moving boundary. To show
(2.1), fix x > 0 and decompose

P[Ls ≥ sγ + x] = P1(s) + P2(s)

for every s ≥ 0, with

{
P1(s) = P[L̃s−Tx + T γx ≥ sγ , Kx = 0, Tx < s]

P2(s) = P[L̃s−Tx + LTx ≥ sγ + x, Kx > 0, Tx < s],

where L̃ is a copy of L which is independent of (Tx, LTx), by the strong Markov property.
On the one hand, we see by scaling and e.g. Property 1.2.15 in [18] that

P[Ls ≥ sγ + x] ∼ c+
α
s1−γα.

On the other hand, we have

P1(s) ≥ P[L̃s−Tx ≥ sγ , Kx = 0, Tx < s/2] ≥ P[L̃1 ≥ 2
1
α sγ−

1
α ] P[Kx = 0, Tx < s/2]

and passing to the limit, we obtain

lim inf
s→∞

sγα−1 P1(s) ≥ c+
2α

P[Kx = 0, Tx <∞].

Hence, we see that (2.1) is a consequence of

P2(s) ∼ c+
α
s1−γα. (2.2)

Applying the compensation formula as above, we obtain

P2(s) = c+

∫ s

0

dt

∫ ∞

0

P[L̃s−t+Lt+z ≥ sγ+x, Lt+z > tγ+x, Lu < uγ+x ∀u < t] z−1−α dz.

Changing the variables z = sγy and t = su, we see that c−1
+ sγα−1P2(s) equals

∫ 1

0

du

∫ ∞

0

P

[
s

1
α L̃1−u + s

1
αLu + sγy ≥ sγ + x,

s
1
αLu > sγ(uγ − y) + x, s

1
αLu < sγ uγ + x ∀u < 1

]
y−1−αdy,

which converges as s→ ∞ to

∫ 1

0

du

∫ ∞

1

y−1−αdy =
1

α
·

This shows (2.2), and completes the proof.

EJP 0 (2016), paper 0.
Page 5/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.10.1214/YY-TN
http://ejp.ejpecp.org/


Cramér’s estimate for stable processes with power drift

Remark 2.1. (a) Setting, here and throughout, L∗
t = sup{Ls, s ∈ [0, t]} for every t > 0,

we have

lim
γ→∞

P[Mα,ρ,γ ≥ x] = P[L∗
1 ≥ x]

for every x ≥ 0. Passing formally to the limit γ → ∞ in Theorem A (a), we can infer

P[L∗
1 ≥ x] ∼ Γ(α) sin(παρ)

π
x−α (2.3)

which is a standard and rigorous estimate - see Theorem 10.5.1 in [18] and Proposition
VIII.4 in [4].

(b) Taking f(u) = 1{u≥rx} for some r > 0 and applying as above the compensation
formula leads to the estimate

P[Kx ≥ rx, Tx <∞] ∼ c+
α

(∫ ∞

0

(r + uγ + 1)−α du

)
x

1
γ −α ∼ (r + 1)

1
γ −α

P[Tx <∞].

This implies the following limit theorem for the law of the renormalized overshoot:

Proposition 2.2.

L
(
x−1Kx

∣∣∣∣Tx < +∞
)

→ Pareto (α− 1/γ) as x→ ∞.

Recall, indeed, that the standard Pareto distribution with parameter δ > 0 has distribu-
tion function 1 − (r + 1)−δ on (0,∞). This observation seems new even in the classical
case of a linear drift γ = 1 with α > 1. Notice that still in the case of a linear drift, the
limit behaviour of the overshoot is very different for Lévy processes having finite ex-
ponential moments. If we consider for example the tempered stable subordinator with
negative unit drift and Lévy measure having density

ν(x) =
α e−cx

Γ(1− α)xα+1
1{x>0}

for some c ∈ (0, 1), then we are in the framework of [6] with ω ∈ (0, 1) and µ∗ < ∞ so
that C > 0 in (5) therein. By Remark 2 of [6], this implies that Kx converges at infinity
to some proper random variable - see also Theorem 4.2 in [13] for more general results.

(c) In the case α > 1, ρ = 1− 1/α and γ = 1, the Laplace transform of Mα,1−1/α,1 can
be computed with the help of Zolotarev’s well-known general formula - see [20]: one
finds

E[e−λMα,1−1/α,1 ] =
1

1 + λα−1
·

This Laplace transform can be easily inverted and yields the identity in law

Mα,1−1/α,1
d
= L

1
α−1 × Zα−1

where L ∼ Exp(1) and Zα−1 has a standard positive (α − 1)−stable law with Laplace
transform

E[e−λZα−1 ] = e−λ
α−1

,

both random variables being independent. This shows that the law of Mα,1−1/α,1 is
the so-called Mittag-Leffler distribution of parameter α − 1 which is studied e.g. in
Exercise 34.4 of [19] - see also the references therein. In particular, there exists a

EJP 0 (2016), paper 0.
Page 6/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.10.1214/YY-TN
http://ejp.ejpecp.org/


Cramér’s estimate for stable processes with power drift

closed expression for the survival function ofMα,1−1/α,1 in terms of the classical Mittag-
Leffler function, which leads to a complete and simple asymptotic expansion at infinity:
one has

P[Mα,1−1/α,1 > x] = Eα−1(−xα−1) ∼
∑

n≥1

(−1)n−1x−(α−1)n

Γ(1− (α− 1)n)

where we have used Formula 18.1(7) in [8] and the standard notation for asymptotic
expansions given e.g. in Appendix C of [1]. Observe from the complement formula
for the Gamma function that the first term matches the one that can be derived from
Theorem A (a), in this specific case. Notice also the following closed formula for the
distribution function, as a convergent series:

P[Mα,1−1/α,1 ≤ x] = 1 − Eα−1(−xα−1) =
∑

n≥1

(−1)n−1x(α−1)n

Γ(1 + (α− 1)n)
·

Let us finally refer to [10] for related results in the presence of a compound Poisson
process.

2.2 The case with no positive jumps

Applying the strong Markov property at Tx and using the absence of positive jumps,
we get
∫ ∞

0

(1− e−λt)P[Lt > tγ + x] dt = E

[
1{Tx<∞}

∫ ∞

0

(1− e−λ(Tx+t))1{L̃t+T
γ
x>(t+Tx)γ}

dt

]

= E

[
1{Tx<∞}

∫ ∞

0

(1− e−λ(Tx+t))1{t1/αL̃+
1 >(t+Tx)γ−T

γ
x } dt

]

where we have set a+ = max(a, 0) and, on the right-hand side, L̃ is an independent copy
of L. Integrating both sides on (0,∞) with respect to λ−ν−1dλ with ν ∈ (0, 1), we deduce

∫ ∞

0

tν P[Lt > tγ + x] dt = E

[
1{Tx<∞}

∫ ∞

0

(Tx + t)ν 1{t1/αL̃+
1 >(t+Tx)γ−T

γ
x } dt

]

= E

[
1{Tx<∞} T

1+ν
x

∫ ∞

0

(1 + t)ν 1
{L̃+

1 >T
γ−1/α
x ϕα,γ(t)}

dt

]
,

where

ϕα,γ(t) =
(1 + t)γ − 1

t1/α

is an increasing homeomorphism from (0,∞) to (0,∞), because αγ > 1 and α > 1. This
implies the identity
∫ ∞

0

tν P[L+
1 > t−1/α(tγ + x)] dt = E

[
1{Tx<∞} T

1+ν
x

∫ ∞

0

(1 + t)ν 1
{ϕ−1

α,γ(T
1/α−γ
x L̃+

1 )>t}
dt

]

=
1

1 + ν
E

[
1{Tx<∞} T

1+ν
x

(
(1 + ϕ−1

α,γ(T
1/α−γ
x L̃+

1 ))
1+ν − 1

)]

(2.4)

which extends to all ν > −1 by analyticity, since L+
1 has moments of every order. We

will now study the asymptotic behaviour of both sides of (2.4), introducing the crucial
parameter

ν0 =
α(γ − 1)

α− 1
> −1.

We begin with the left-hand side, which is easy.

EJP 0 (2016), paper 0.
Page 7/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.10.1214/YY-TN
http://ejp.ejpecp.org/


Cramér’s estimate for stable processes with power drift

Lemma 2.3. One has

∫ ∞

0

tν P[L+
1 > t−1/α(tγ + x)] dt

∼ γ
α

1−α ((γα− 1)−1x)
ν−ν0

γ

√
(α− 1)(γα− 1)

exp
{
−(α− 1) γ

α
α−1 (γα− 1)

1−γα
γ(α−1) x

αγ−1
γ(α−1)

}
.

Proof. By (14.35) in [19], we have the asymptotic behaviour

p1(x) ∼ α− 1
2(α−1)

√
2π(α− 1)

x
2−α

2(α−1) exp
{
−(α− 1)α

α
1−α x

α
α−1
}

at infinity, where p1 stands for the density of the random variableL1. Making the change
of variable y = x

α
α−1 and applying Watson’s lemma - see e.g. Theorem C.3.1 in [1], this

easily implies

P[L+
1 > x] ∼ α

1
2(α−1)

√
2π(α− 1)

x−
α

2(α−1) exp
{
−(α− 1)α

α
1−α x

α
α−1

}
. (2.5)

See also Theorem 2.5.3 in [21]. On the other hand, we can rewrite
∫ ∞

0

tν P[L+
1 > t−1/α(tγ + x)] dt = x

ν+1
γ

∫ ∞

0

sν P[L+
1 > x

αγ−1
αγ η(s)] ds (2.6)

where η(s) = s−1/α(sγ + 1) reaches its global minimum on (0,∞) at s∗ = (αγ − 1)−1/γ ,

with

η(s∗) = γα(γα− 1)
1−γα
γα and η′′(s∗) =

γ(γα− 1)
2α+1
αγ

α
·

Plugging (2.5) into the right-hand side of (2.6), we obtain

∫ ∞

0

tν P[L+
1 > t−1/α(tγ + x)] dt

∼ α
1

2(α−1)

√
2π(α− 1)

x
ν+(1−ν0)/2

γ

∫ ∞

0

sν η(s)
α

2(1−α) exp
{
−(α− 1)α

α
1−α η(s)

α
α−1x

1+ν0
γ

}
ds,

which yields the required asymptotic behaviour, by Laplace’s method.

We will now analyze the right-hand side of (2.4), which is more involved. Introducing
the function

Φα,γ,ν(x) = x−
(1+ν)α
γα−1

(
(1 + ϕ−1

α,γ(x))
1+ν − 1

)

on (0,∞), we can rewrite (2.4) as

∫ ∞

0

tν P[L+
1 > t−1/α(tγ + x)] dt =

1

1 + ν
E

[
1{Tx<∞}

(
L̃+
1

) (1+ν)α
γα−1

Φα,γ,ν(T
1/α−γ
x L̃+

1 )

]
.

(2.7)
Taking ν = ν0 and observing that ϕ−1

α,γ(t) ∼ (t/γ)
α

α−1 as t → 0 and ϕ−1
α,γ(t) ∼ t

α
γα−1 as

t→ ∞, we get

lim
x→0

Φα,γ,ν0(x) = (1 + ν0)γ
α

1−α > 0 and lim
x→∞

Φα,γ,ν0(x) = 1.

Therefore, since Φα,γ,ν0 is continuous and positive on (0,∞), we have
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Cramér’s estimate for stable processes with power drift

0 < inf
x>0

{Φα,γ,ν0(x)} < sup
x>0

{Φα,γ,ν0(x)} < ∞.

Going back to (2.7) and using the facts that L̃+
1 has positive moments of every order and

is independent of Tx, we finally get from Lemma 2.3 the crude asymptotics

P[Tx <∞] ≍ exp
{
−(α− 1) γ

α
α−1 (γα− 1)

1−γα
γ(α−1) x

αγ−1
γ(α−1)

}
. (2.8)

In order to obtain an exact asymptotics and finish the proof, we will need the following
technical lemma.

Lemma 2.4. For every ν ∈ (−1, γ − 1/α− 1], the function Φα,γ,ν is an increasing home-
omorphism from (0,∞) to (0, 1).

Proof. First, it is easy to see from the aforementioned asymptotics of ϕα,γ at zero and
infinity that

lim
x→0

Φα,γ,ν(x) = 0 and lim
x→∞

Φα,γ,ν(x) = 1

for ν ∈ (−1, γ − 1/α− 1], and it is plain that Φα,γ,ν is continuous. Since ϕα,γ increases
on (0,∞), we are reduced to show that

z 7→ Φα,γ,ν (ϕα,γ(z)) =

(
(1 + z)1+ν − 1

)
z

(1+ν)
γα−1

((1 + z)γ − 1)
(1+ν)α
γα−1

increases on (0,∞). Setting y = (1 + z)γ − 1 and fc(x) = (1 + x)c − xc, we obtain

(Φα,γ,ν (ϕα,γ(z)))
γα−1
1+ν =

(
f 1+ν

γ
(y−1)

) γα−1
1+ν

f 1
γ
(y−1)

which, since fc decreases for c ∈ (0, 1], shows that Φα,γ,ν increases for γ ≥ 1 and
ν ∈ (−1, γ − 1]. Assuming last γ < 1, we need to prove that

x 7→ gα,γ,ν(x) =
(
f 1+ν

γ
(x)
)α− 1

γ
(
f 1

γ
(x)
) 1+ν

γ

decreases on (0,∞). Setting c = 1+ν
γ ∈ (0, 1), we compute

g′α,γ,ν(x) =
c gα,γ,ν(x)

γ(1 + x)

(
αγ − (αγ − 1)

xc−1

fc(x)
− x

1
γ −1

f 1
γ
(x)

)
<
c gα,γ,ν(x)

γ(1 + x)

(
αγ − (αγ − 1)

xc−1

fc(x)

)
.

It is easy to see that x 7→ x1−cfc(x) increases from (0,+∞) to (0, c), and we finally obtain

g′α,γ,ν(x) <
((c− 1)γα+ 1)gα,γ,ν(x)

γ(1 + x)
≤ 0

as soon as ν ≤ γ − 1/α− 1.

Corollary 2.5. For every A ≥ 0, one has

P[Tx ≤ A]

P[Tx < +∞]
→ 0

as x→ ∞.
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Cramér’s estimate for stable processes with power drift

Proof. Set ν = ε− 1 with ε > 0 small enough for Φα,γ,ε−1 to increase on (0,∞). By (2.7)

and the fact that L̃+
1 and Tx are independent, we have

ε

∫ ∞

0

tε−1
P[L+

1 > t−1/α(tγ + x)] dt = E

[
1{Tx<∞}

(
L̃+
1

) α
γα−1

Φα,γ,ε−1(T
1/α−γ
x L̃+

1 )

]

≥ E

[(
L̃+
1

) α
γα−1

Φα,γ,ε−1(A
1/α−γL̃+

1 )

]
P[Tx ≤ A].

Combining now the crude asymptotics (2.8) and Lemma 2.3, we deduce that there exists
K > 0 such that

P[Tx ≤ A]

P[Tx < +∞]
≤ K x

ε−1−ν0
γ → 0

as x→ ∞, taking ε > 0 small enough.

We can now finish the proof. Taking ν = ν0 in (2.7), we first decompose the quantity

γ
α

α−1

∫ ∞

0

tν0 P[L+
1 > t−1/α(tγ + x)] dt

into

E[(L̃+
1 )

α
α−1 ]P[Tx <∞]+

1

Φα,γ,ν0(0+)
E

[
1{Tx<∞}(L̃

+
1 )

α
α−1

(
Φα,γ,ν0(T

1/α−γ
x L̃+

1 )− Φα,γ,ν0(0+)
)]
.

Applying Lemma 2.3 and the moment evaluation

E[(L̃+
1 )

α
α−1 ] =

1

α− 1

which is e.g. a consequence of (2.6.20) in [21], we see that the proof will be complete
as soon as

E

[
1{Tx<∞}(L̃

+
1 )

α
α−1

(
Φα,γ,ν0(T

1/α−γ
x L̃+

1 )− Φα,γ,ν0(0+)
)]

= o(P[Tx <∞]), x→ ∞.

(2.9)
But, decomposing according to {Tx ≤ A} or {Tx > A}, the left-hand side of (2.9) is
bounded by

2

α− 1
sup
z>0

{Φα,γ,ν0(z)} P[Tx ≤ A]

+ E

[
(L̃+

1 )
α

α−1 sup
z≥A

{∣∣∣Φα,γ,ν0(z1/α−γL̃+
1 )− Φα,γ,ν0(0+)

∣∣∣
}]

P[Tx <∞]

and (2.9) follows by Corollary 2.5, the continuity of Φα,γ,ν0 at zero, and dominated con-
vergence.

Remark 2.6. As mentioned in the introduction, in the case γ = 2 our Theorem A echoes
a large deviation estimate which had been previously obtained in [5]. More precisely, if
we set

M
[x]
α,ρ,γ = sup

t∈[0,x]

{Lt − tγ} and M
[x]

α,ρ,γ = sup
t≥x

{Lt − tγ},

then the main result of [5] states that

P[M
[x]

α,ρ,2 ≥ M
[x]
α,ρ,2] ≍ x1−2α
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Cramér’s estimate for stable processes with power drift

if L has positive jumps, and that

logP[M
[x]

α,1/α,2 ≥ M
[x]
α,1/α,2] ∼ −κα x

2α−1
α−1

for some explicit κα ∈ (0,∞) if L does not have positive jumps. Roughly speaking, when
x is large the event {

M
[x]

α,ρ,2 ≥ M
[x]
α,ρ,2

}

amounts to the fact that the translated process Lt −Lx − (t− x)2 crosses a level of size
x2 for some t ≥ x, which explains heuristically why the asymptotics of

P[M
[x]

α,ρ,2 ≥ M
[x]
α,ρ,2] and P[Mα,ρ,2 ≥ x2]

are comparable. One might wonder if all our above arguments could not help refine the
results of [5], but we have not investigated this question.

3 Proof of Theorem B

3.1 The lower bound

This part is easy and relies essentially on the identity (1.3). Introducing

T (β)
x = inf{t ≥ 0, L

(β)
t = tγ+β+x} and T̂ (β)

x = inf{t ≥ 0, L
(β)
t = (tγ+β+1)x

γα−1
α(γ+β) },

we see by the scaling property {L(β)
yt , t ≥ 0} d

= {yβ+1/αL
(β)
t , t ≥ 0} with y = x

1
γ+β that

P[M(β)
α,ρ,γ ≥ x] = P[T (β)

x <∞] = P[T̂ (β)
x <∞]. (3.1)

Setting

s∗ = argmin{s−β−1/α(sγ+β + 1)} =

(
1 + αβ

γα− 1

) 1
γ+β

and

m∗ = min
s>0

{s−β−1/α(sγ+β + 1), s > 0} = α(γ + β)(αβ + 1)−
1+αβ

α(γ+β) (γα− 1)
1−γα

α(γ+β) ,

a further scaling argument implies

P[T̂ (β)
x <∞] ≥ P

[
L(β)
s∗ ≥ (sγ+β∗ + 1)x

γα−1
α(γ+β)

]
= P[L1 ≥ (1 + αβ)1/αm∗ x

γα−1
α(γ+β) ]. (3.2)

When L has positive jumps, applying Property 1.2.15 in [18] to the stable random vari-
able L1 and using (3.1) and (3.2) yield the required lower bound

P[M(β)
α,ρ,γ ≥ x] ≥ κx

1−γα
γ+β , x→ ∞,

for some κ > 0. When L has no positive jumps, we obtain from (2.5), (3.1) and (3.2) the
required lower bound

lim inf
x→∞

x
1−γα

(α−1)(γ+β) logP[M
(β)
α,1/α,γ ≥ x] ≥ −cα,β,γ .

3.2 The upper bound in the case with positive jumps

Introducing the parameter

δ =
γα− 1

α(γ + β)
∈ (0, 1)
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and fixing ε > 0 small enough such that η = 2δ(1 + ε)δ−1 > 1, define the stochastically
increasing family of stopping times

T̂ (β,k)
x = inf{t ≥ 0, L

(β)
t − (1 + ε)−ktγ+βxδ = 2kxδ}, k ≥ 0.

Since P[T̂
(β,k)
x <∞] → 0 as k → ∞, by (3.1) we have the telescoping decomposition

P[M(β)
α,ρ,γ ≥ x] = P[T̂ (β,0)

x <∞] =
∑

k≥0

(
P[T̂ (β,k)

x <∞] − P[T̂ (β,k+1)
x <∞]

)
.

We first consider the case γ + β ≥ 1. Setting rk = (3 × 2k(1 + ε)k)
1

γ+β , we can bound

P[T̂ (β,k)
x <∞] ≤ P

[
sup

t∈[0,rk]

{L(β)
t } ≥ 2kxδ

]
+ P

[
sup
t≥rk

{L(β)
t − (1 + ε)−ktγ+βxδ} ≥ 2kxδ

]

≤ P
[
L∗
1 ≥ ηk3δ−1xδ

]
+ P

[
sup
t≥0

{L(β)
t+rk

− (1 + ε)−ktγ+βxδ} ≥ 2k+2xδ
]
,

where in the second line we have used the a.s. inequality supt∈[0,1]{L(β)
t } ≤ L∗

1, which is
obvious, and the equally obvious deterministic inequality

(t+ rk)
γ+β ≥ tγ+β + rγ+βk (3.3)

for all t ≥ 0, which follows from γ + β ≥ 1. The next step is to write down the process
decomposition

L
(β)
t+rk

=

(
β

∫ rk

0

(t+ rk − u)β−1 Lu du + tβ Lrk

)
+ β

∫ t

0

(t− s)β−1 (Ls+rk − Lrk) ds

(3.4)

d
=

(
β

∫ rk

0

(t+ rk − u)β−1 Lu du + tβ Lrk

)
+ L̃

(β)
t ≤ (t+ rk)

βL∗
rk

+ L̃
(β)
t

with {L̃(β)
t , t ≥ 0} an independent copy of {L(β)

t , t ≥ 0}, which implies

P

[
sup
t≥0

{L(β)
t+rk

− (1 + ε)−ktγ+βxδ} ≥ 2k+2xδ
]

≤ P[T̂ (β,k+1)
x <∞] + P

[
sup
t≥0

{L∗
rk(t+ rk)

β − ε (1 + ε)−k−1tγ+βxδ} ≥ 2k+1xδ
]

≤ P[T̂ (β,k+1)
x <∞] + P

[
cβ r

β
kL

∗
rk

+ sup
t≥0

{cβ L∗
rk
tβ − ε (1 + ε)−k−1tγ+βxδ} ≥ 2k+1xδ

]
,

where cβ = 2|β−1| and we have used (t + s)β ≤ cβ(t
β + sβ) for all t, s ≥ 0. The second

term on the right-hand side is bounded by

P

[
L∗
1 ≥ ηk3δ−1c−1

β xδ
]
+ P

[
sup
t≥0

{cβ L∗
rkt

β − ε (1 + ε)−k−1tγ+βxδ} ≥ 2kxδ
]

= P

[
L∗
1 ≥ ηk3δ−1c−1

β xδ
]
+ P

[
L∗
1 ≥ ηkκxδ

]

for some positive constant κ not depending on k, x. Setting κ̂ = min{κ, 3δ−1c−1
β } > 0,

and putting everything together, we finally obtain

P[M(β)
α,ρ,γ ≥ x] ≤ 3

∑

k≥0

P
[
L∗
1 ≥ ηkκ̂ xδ

]
∼ 3 κ̂−αΓ(α) sin(παρ)

π(1 − η−α)
x

1−γα
γ+β ,
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Cramér’s estimate for stable processes with power drift

where the estimate follows at once from (2.3) and direct summation. This completes
the proof for γ + β ≥ 1. The case γ + β < 1 follows along the same lines, except that
(3.3) is not true anymore. We hence set

λ =
ε

2(1 + ε)
∈ (0, 1) and rk = (3λ−1 × 2k(1 + ε)k)

1
γ+β , k ≥ 0.

Using the obvious inequality (t+ rk)
γ+β ≥ (1− λ)tγ+β + λrγ+βk leads first to

P[T̂ (β,k)
x <∞] ≤ P

[
L∗
1 ≥ ηk3δ−1xδ

]
+ P

[
sup
t≥0

{L(β)
t+rk

− (1 − λ)(1 + ε)−ktγ+βxδ} ≥ 2k+2xδ
]
.

Then, we can bound

P

[
sup
t≥0

{L(β)
t+rk − (1 − λ)(1 + ε)−ktγ+βxδ} ≥ 2k+2xδ

]

≤ P[T̂ (β,k+1)
x <∞] + P

[
sup
t≥0

{2L∗
rk
(t+ rk)

β − ε (1 + ε)−k−1tγ+βxδ} ≥ 2k+2xδ
]
,

and the proof is finished similarly.

3.3 The upper bound in the case without positive jumps

The argument relies on the following well-known association lemma, which will also
be used during the proof of Theorem C.

Lemma 3.1. Let F,G be two bounded functionals on the Skorokhod space D(R+,R)

being both non-increasing or both non-decreasing. Then, one has

E [F (Lu, u ≥ 0)G(Lu, u ≥ 0)] ≥ E [F (Lu, u ≥ 0)]E [G(Lu, u ≥ 0)] .

Proof. By càd-làg approximation, it is enough to consider the case when F,G depend
only on a finite number of points. With the notation of Chapter 4.6 in [18], we are hence
reduced to show that the random vector (Lt1 , Lt2 , . . . , Ltn) is associated for every n ≥ 2

and 0 < t1 < . . . < tn. By independence of the increments we have (Lt1 , Lt2 , . . . , Ltn) =

(X1, X1 +X2, . . . , X1 + . . .+Xn), where the Xi’s are mutually independent real random
variables, making the vector X = (X1, . . . , Xn) trivially associated. We can then apply
e.g. Exercise 4.25 p. 220 in [18].

Let us now finish the proof. For simplicity, we will set Tx for T
(β)
x . Let ε > 0 and fix

δ small enough such that η = 1 − (1 − ε)(δ + 1)β+γ > 0. Using the absence of positive
jumps, we obtain

∫ ∞

0

P[L
(β)
t ≥ (1− ε)tβ+γ + x] dt ≥

∫ ∞

0

P

[
L
(β)
t − L

(β)
Tx

≥ (1− ε)tβ+γ − T β+γx , Tx < +∞
]
dt

≥
∫ δ

0

P

[
L
(β)
Tx(t+1) − L

(β)
Tx

≥ −η T β+γx , 1 < Tx < +∞
]
dt.

(3.5)

By (1.3) and a change of variable, the left-hand side equals

∫ ∞

0

P[L
(β)
t ≥ (1−ε)tβ+γ+x] dt = κε

∫ ∞

0

t−
αβ

1+αβ P[L1 ≥ (1+αβ)1/αt−1/α(t
γ+β
1+αβ +cεx)] dt
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for some positive constants κε, cε such that cε → 1 as ε→ 0 and, by Lemma 2.3, we first
deduce

log

∫ ∞

0

P[L
(β)
t ≥ (1− ε)tβ+γ + x] dt ∼ −cα,β,γ(cεx)

γα−1
(α−1)(γ+β) .

We shall now separate the proof according as β ≥ 1 or β < 1.

Assume first β ≥ 1. Bounding the right-hand side of (3.5) leads to

∫ ∞

0

P[L
(β)
t ≥ (1−ε)tβ+γ+x] dt ≥ δP

[
inf

u≥1,t≤δ
{u−β−γ(L(β)

u(t+1) − L(β)
u )} ≥ −η, 1 < Tx <∞

]
,

whence

P

[
inf

u≥1,t≤δ
{u−β−γ(L(β)

u(t+1) − L(β)
u )} ≥ −η, Tx <∞

]

≤ δ−1

∫ ∞

0

P[L
(β)
t ≥ (1− ε)tβ+γ + x] dt + P[Tx ≤ 1]. (3.6)

We next observe that the contribution of P[Tx ≤ 1] in the right-hand side of (3.6) is
negligible, using the obvious bound

P[Tx ≤ 1] ≤ P[τx ≤ 1]

with τx = inf{t ≥ 0, L
(β)
t = x}, the crude estimates

logP[τx ≤ 1] ≍ logP[L1 > x] ≍ −x α
α−1

and the strict inequality
αγ − 1

(α− 1)(β + γ)
<

α

α− 1
·

Above, the crude estimates are a consequence of (1.3), (2.5) and

P[L
(β)
1 > x] ≤ P[τx ≤ 1] ≤ P

[
sup
t≤1

{Lt} > x

]
= αP[L1 > x],

the last equality being well-known as the reflection principle for spectrally negative
stable Lévy processes - see e.g. Exercises 29.7 and 29.18 in [19]. Finally, we notice that

u−β−γ(L
(β)
u(t+1) − L(β)

u ) = β

∫ 1+t

0

(
(1 + t− s)β−1 − (1− s)β−1

1{s≤1}

) Lus
uγ

ds

is an increasing functional of {Ls, s ≥ 0}, because β ≥ 1. Since 1{Tx<∞} is also an
increasing functional of L, we deduce from Lemma 3.1 that

P

[
inf

u≥1,t≤δ
{u−β−γ(L(β)

u(t+1) − L(β)
u )} ≥ −η, Tx <∞

]

≥ P

[
inf

u≥1,t≤δ
{u−β−γ(L(β)

u(t+1) − L(β)
u )} ≥ −η

]
P [Tx <∞] = κP [Tx <∞]

for some κ > 0 not depending on x. Putting everything together, we get

lim sup
x→∞

x
1−γα

(α−1)(γ+β) logP[Tx <∞] ≤ −cα,β,γ c
γα−1

(α−1)(γ+β)
ε ,

which, letting ε→ 0, completes the proof in the case β ≥ 1.
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Assume second β < 1. We set

σt = β

∫ 1

0

{
(1− s)β−1 − (1 + t− s)β−1

}
sγds

which is a positive increasing function on (0,∞) such that σt → 0 as t → 0. Replacing
T β+γx by

T β+γx =
β

σt

∫ Tx

0

{
(Tx − s)β−1 − (Tx(1 + t)− s)β−1

}
sγds

we deduce using a change of variable that

L
(β)
Tx(t+1)−L

(β)
Tx

+
η

2
T β+γx ≥ βT βx

∫ 1+t

1

(1+t−s)β−1LsTxds−T βx hβ(t) sup
u≥0

{
Lu −

η

2σt
uγ
}

where hβ(t) = 1 + tβ − (1 + t)β is increasing in t. Going back to (3.5), and taking a < δ,
the right-hand side is then greater than :

aP

[
Fδ(L)−

hβ(δ)

δγx
γ

β+γ

sup
s≥0

{
Ls −

η

2σa
sγ
}

≥ −η/2, δx 1
β+γ < Tx <∞

]
(3.7)

where

Fδ(L) = β inf
t≤δ

∫ 1+t

1

(1 + t− s)β−1 inf
u≥1

Lsu
uγ

ds

is an increasing functional of L. We next observe that, cutting (3.7) in two as in (3.6),
the second term will be negligible by taking δ small enough since

P[Tx ≤ δx
1

γ+β ] ≤ P[τx ≤ δx
1

γ+β ]

and
logP[τx ≤ δx

1
γ+β ] ≍ logP[L1 > δ−β−

1
αx

αγ−1
α(γ+β) ] ≍ −δ−αβ+1

α−1 x
αγ−1

(α−1)(γ+β) .

Thus, it remains to deal with the term :

P [Fδ(L) ≥ −η/4, Tx <∞]− P

[
hβ(δ) sup

s≥0

{
Ls −

η

2σa
sγ
}

≥ η

4
δγx

γ
β+γ

]
.

From Theorem A and using the scaling of L, the second term behaves as

logP

[
hβ(δ) (σa)

1
αγ−1 sup

s≥0

{
Ls −

η

2
sγ
}
≥ η

4
δγx

γ
β+γ

]
≍ − (σa)

− 1
γ(α−1) x

γα−1
(α−1)(γ+β)

which is negligible by taking a small enough. The proof is then concluded as in the case
β ≥ 1 by applying Lemma 3.1 to the term P [Fδ(L) ≥ −η/4, Tx <∞].

Remark 3.2. In the particular case β = 1 of the integrated stable process, we may
proceed as in the proof of Theorem A, and obtain a more precise upper bound. The
strong Markov property at Tx for the two-dimensional process

{(L(1)
t , Lt), t ≥ 0},

a scaling argument and (1.3) imply firstly

∫ ∞

0

tν0 P[L
(1)
t > t1+γ + x] dt

= E

[
1{Tx<∞} T

1+ν0
x

∫ ∞

0

(1 + t)ν0 1
{L̃+

1 +(tTx)−1/α(LTx−(1+γ)Tγ
x )>T

γ−1/α
x ψα,γ(t)}

dt

]
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Cramér’s estimate for stable processes with power drift

where ψα,γ(t) = t−1−1/α((t+1)1+γ−1− (1+γ)t) is again an homeomorphism from (0,∞)

to (0,∞), and Tx and L̃
+
1 are independent. We can then bound

∫ ∞

0

tν0 P[L
(1)
t > t1+γ + x] dt ≥ E

[
1{Tx<∞} T

1+ν0
x

∫ ∞

0

(1 + t)ν0 1
{L̃+

1 >T
γ−1/α
x ψα,γ(t)}

dt

]
,

using the crucial fact that the derivative of t 7→ L
(1)
t − t1+γ at Tx, which equals LTx −

(1 + γ)T γx , is a.s. non-negative. This leads to

∫ ∞

0

tν0 P[L+
1 > t−1−1/α(t1+γ+x)] dt ≥ 1

1 + ν0
E

[
1{Tx<∞}

(
L̃+
1

) (1+ν0)α

γα−1

Ψα,γ(T
1/α−γ
x L̃+

1 )

]

where
Ψα,γ(x) = x−

(1+ν0)α

γα−1
(
(1 + ψ−1

α,γ(x))
1+ν0 − 1

)

is again bounded away from zero and ∞, by the fateful choice of ν0. We finally obtain

P[Tx <∞] ≤ κ+

∫ ∞

0

tν0 P[L+
1 > t−1−1/α(t1+γ + x)] dt

for some κ+ ∈ (0,∞), and an appropriate modification of Lemma 1 yields

P[M
(1)
α,1/α,γ ≥ x] ≤ κ̂+ exp

{
−cα,1,γ x

γα−1
(α−1)(1+γ)

}

at infinity, for some other κ̂+ ∈ (0,∞). Unfortunately, the precise lower bound which
can be derived from (2.5) is different: one gets

P[M
(1)
α,1/α,γ ≥ x] ≥ κ̂− x

1−γα
2(α−1)(1+γ) exp

{
−cα,1,γ x

γα−1
(α−1)(1+γ)

}

for some κ̂− ∈ (0,∞), and the exact polynomial speed before the exponential term
remains unknown. We believe that this speed is given in the lower bound, and we refer
to Remark 3.4 (c) below for a general conjecture.

3.4 A more precise estimate in the Brownian case

In this paragraphwe specify the general results of [12] to the process L(β) in the case
α = 2, and we get a refinement of Theorem B (b). Observe that in this framework we
can also consider the wider range β > −1/2. The following proposition is a consequence
of Theorem 1 in [12] but the exact asymptotics does not seem to have been written
down anywhere, and we hence provide a detailed proof. It turns out that a transition
phenomenon occurs at β = 1/2.

Proposition 3.3. Assume γ > 1/2.

(a) If β ∈ (−1/2, 1/2), there exists κβ,γ > 0 such that

P[M
(β)
2,1/2,γ ≥ x] ∼ κβ,γ x

2β(1−2γ)
(2β+1)(γ+β) exp

{
−c2,β,γ x

2γ−1
γ+β

}
.

(b) If β > 1/2, there exists κ̃β,γ > 0 such that

P[M
(β)
2,1/2,γ ≥ x] ∼ κ̃β,γ x

1−2γ
2(γ+β) exp

{
−c2,β,γ x

2γ−1
γ+β

}
.

Proof. With our normalization for the characteristic exponent, one has L1 ∼ N (0, 2) and
a scaling argument implies

M
(β)
2,1/2,γ

d
=

(
2

2β + 1

) γ+β
2γ−1

M̃β,γ
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where

M̃β,γ = sup
t>0

{√
2β + 1

∫ t

0

(t− s)β dBs − tγ+β
}

and {Bt, t ≥ 0} is a standard linear Brownian motion. Setting H = β + 1/2, the process

Xt =
√
2β + 1

∫ t

0

(t− s)β dBs, t ≥ 0,

is Gaussian with mean 0 and variance t2H , and self-similar with index H. With the nota-
tion of Section 1 in [12], we have

s0 =

(
2β + 1

2γ − 1

) 1
γ+β

and A = 2

√
c2,β,γ
2β + 1

. (3.8)

We now wish to apply Theorem 1 in [12], whose statement deals with case H ∈ (0, 1)

but we can actually consider any H > 0 by Remark 1 therein. Following (7) in [12], we
need to evaluate the behaviour of E[(Yt−Ys)2] as t, s→ s0, having set Yt = t−HXt for all
t > 0. Because of the time normalization, we have not found any precise reference for
this behaviour in the literature and so we give the details. For 0 < s < t, we compute

E[(Yt − Ys)
2] = 2 − Iβ(x)

with x = st−1 ∈ (0, 1) and

Iβ(x) = 2(2β + 1)
√
x

∫ 1

0

(1 − u)β(1− xu)β du.

We need to study the asymptotic behaviour of Iβ(x) as y = 1 − x → 0. If β > 1/2,

rewriting

Iβ(x) = 2(2β + 1)
√
1− y

∫ 1

0

(1− u)2β(1 + yu(1− u)−1)β du,

making a Taylor expansion of order 2 of both quantities in y and evaluating the two
underlying Beta integrals leads to

Iβ(x) = 2 − (2β + 1)y2

4(2β − 1)
+ o(y2).

This shows that (7) in [12] holds with

α = 2 and D =
(2β + 1)

4(2β − 1)s20
· (3.9)

If β < 1/2, the argument does not apply because the second Beta integral diverges. We
first rewrite

Iβ(x) =
2(2β + 1)

√
x

β + 1
2F1

[−β 1

β + 2
;x

]
=

2(2β + 1)
√
xyβ

β + 1
2F1

[−β β + 1

β + 2
;−xy−1

]
,

where the first equality follows from Euler’s integral representation and the second one
from Pfaff’s transformation for the hypergeometric function - see respectively 2.1.3(10)
and 2.1.4(22) in [8]. Applying next the residue transformation 2.1.4(17) in [8], we obtain

Iβ(x) = 2xβ+1/2
2F1

[−β − 1− 2β

−2β
;−yx−1

]
− 2Γ(β + 1)Γ(−2β)

Γ(−β) x−β−1/2y2β+1

= 2 − Γ2(β + 1)

Γ(2β + 1) cos(πβ)
y2β+1 + O(y2).
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This shows that (7) in [12] holds with

α = 2β + 1 and D =
Γ2(β + 1)

Γ(2β + 1) cos(πβ) s2β+1
0

· (3.10)

Putting (3.8) and (3.9) resp. (3.10) together with (10) resp. (9) in [12], using the
standard estimate

√
2πΨ(u) ∼ u−1e−u

2/2 for the tail of the unit normal distribution, and
proceeding to the necessary simplifications, we obtain our required asymptotics with
the two different regimes.

Remark 3.4. (a) For β = 1/2, the transformation 2.1.4(18) in [8] with m = 2 exhibits a
logarithmic term: one has the non-trivial closed formula

I1/2(x) = 2 +
y2

2(1− y)
(ψ(3/2) − ψ(3) + log(y) − log(1− y))

where ψ is the digamma function. This implies

E[(Yt − Ys)
2] ∼ − (t− s)2 log |t− s|

2s20

as t, s→ s0, and we cannot apply the results of [12]. We believe that

P[M
(1/2)
2,1/2,γ ≥ x] ∼ κ (log x)δ x

1−2γ
2γ+1 exp

{
−c2,1/2,γ x

2γ−1
(γ+1/2)

}

for some κ > 0 and δ 6= 0 to be determined, the logarithmic correction being heuristi-
cally due to the 1-self-similarity of

t 7→
∫ t

0

√
t− s dBs.

(b) The constants κβ,γ and κ̃β,γ can also be evaluated from Theorem 1 in [12], but
they have a complicated form in general. For β > 1/2, one gets

κ̃β,γ =

√
2(2βγ − β − γ + 1)

π c2,β,γ (2β − 1)(2γ − 1)
·

For β ∈ (−1/2, 1/2), one obtains

κβ,γ =
H2β+1√

(2β + 1)(2γ − 1)
(γ + β)−

4β
2β+1

(
2γ − 1

2β + 1

) 2β(2γ−1)
(2β+1)(γ+β)

(
Γ2(β + 1)

Γ(2β + 1) cos(πβ)

) 1
2β+1

where

H2β+1 = lim
T→∞

1

T
E

[
exp

{
max
0≤t≤T

(
√
2BH(t)− t2H)

}]

for {BH(t), t ≥ 0} a standard fractional Brownian motion with Hurst parameter H =

β + 1/2. In the literature on extreme values, the constant H2β+1 is usually called the
Pickands constant and we refer to [7] for more detail. It does not seem to the authors
that the Pickands constant is explicit, save for β = 0 where the reflection principle and
Laplace’s method yield

E

[
exp

{
max
0≤t≤T

(
√
2Bt − t)

}]
= 1 +

T 3/2

2
√
π

∫ 1

0

√
s

(∫ ∞

0

x e−
sT(x−1)2

4 dx

)
ds ∼ T,
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so that H1 = 1 and

κ0,γ =
1√

2γ − 1

in accordance with Theorem A (b).

(c) From Proposition 3.3, it is plausible to conjecture that for α ∈ (1, 2) one has

P[M
(β)
α,1/α,γ ≥ x] ∼ κα,β,γ x

αβ(1−γα)
(α−1+αβ)(α−1)(γ+β) exp

{
−cα,β,γ x

γα−1
(α−1)(γ+β)

}

if β ∈ (0, 1− 1/α) and

P[M
(β)
α,1/α,γ ≥ x] ∼ κ̃α,β,γ x

1−γα
2(α−1)(γ+β) exp

{
−cα,β,γ x

γα−1
(α−1)(γ+β)

}

if β > 1− 1/α, where κα,β,γ and κ̃α,β,γ are some positive and finite constants.

4 Proof of Theorem C

Following the notation of [16], we will set

θ =
ρ

α(1 − ρ) + 1

once and for all. The upper bound follows easily from

P

[
sup

0≤t≤1

{
L
(1)
t + µt1+γ

}
≤ ε

]
≤ P

[
sup

0≤t≤1

{
L
(1)
t

}
≤ ε

]
≤ κ ε

αθ
α+1

for some κ ∈ (0,∞), where the first inequality follows from µ ≥ 0 and the second one
from Theorem A in [16] and scaling.

The lower bound is more involved and we will need the strong Markovian character
of the two-dimensional process {(L(1)

t , Lt), t ≥ 0}, setting by P(x,y) for its law starting
from (x, y) ∈ R

2, with the convention P = P(0,0). Define the stopping time

Rε = inf
{
t ≥ 0, L

(1)
t + µε

γα−1
α+1 t1+γ = 0

}

and observe first that, by scaling and translation,

P

[
sup

0≤t≤1

{
L
(1)
t + µt1+γ

}
≤ ε

]
= P(−1,0)

[
Rε ≥ ε−

α
α+1

]
.

Notice also that P(x,y) [Rε ≤ R0] = 1 for every x < 0 and y ∈ R, because µ ≥ 0. Applying
the strong Markov property at Rε, we obtain

P(−1,0)

[
R0 ≥ 2ε−

α
α+1
]
= E(−1,0)

[
P

(−µε
γα−1
α+1 R1+γ

ε ,LRε)

[
R0 + x ≥ 2ε−

α
α+1
]
{x=Rε}

]

whose right-hand side is, by comparison, smaller than

P(−1,0)

[
Rε ≥ ε−

α
α+1
]
+E(−1,0)

[
1
{Rε≤ε

−
α

α+1 }
P

(−µε
γα−1
α+1 R1+γ

ε ,−µ(1+γ)ε
γα−1
α+1 Rγ

ε )

[
R0 ≥ ε−

α
α+1
]]
.

Indeed, the derivative of t 7→ L
(1)
t + µε

γα−1
α+1 t1+γ at Rε equals LRε + µ(1 + γ)ε

γα−1
α+1 Rγε and

is a.s. non-negative under P(−1,0). On the other hand, a further scaling argument shows
that

P(−x,−y)[R0 ≥ t] = P
(−1,−yx

−
1

α+1 )

[
x

α
α+1R0 ≥ t

]
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for every x, y, t ≥ 0. If we now assume µ ≤ 1 this implies, again by comparison,

E(−1,0)

[
1
{Rε≤ε

−
α

α+1 }
P

(−µε
γα−1
α+1 R1+γ

ε ,−µ(1+γ)ε
γα−1
α+1 Rγ

ε )

[
R0 ≥ ε−

α
α+1
]]

= E(−1,0)

[
1
{Rε≤ε

−
α

α+1 }
P

(−1,−µ
α

α+1 (1+γ)(ε
α

α+1Rε)
γα−1
α+1 )

[(
µx1+γ ε

γα−1
α+1

) α
α+1

R0 ≥ ε−
α

α+1

]

{x=Rε}

]

≤ E(−1,0)

[
P(−1,−1−γ)

[
x

α(γ+1)
α+1 R0 ≥ µ− α

α+1 ε
−α2(γ+1)

(α+1)2

]

{x=Rε}

]

≤ P(−1,−1−γ)

[
R̃

α(γ+1)
α+1

0 R0 ≥ µ− α
α+1 ε−

α2(γ+1)
α+1

]

where R̃0 is an independent copy of R0. Putting everything together, we obtain

P(−1,0)

[
Rε ≥ ε−

α
α+1
]
≥ P(−1,0)

[
R0 ≥ 2ε−

α
α+1
]
−P(−1,−1−γ)

[
R̃

α(γ+1)
α+1

0 R0 ≥ µ− α
α+1 ε−

α2(γ+1)
α+1

]
.

Now by Theorem A in [16] we have

P(−1,x) [R0 > t] ≍ t−θ

for every x ∈ R and since α(γ + 1) > α+ 1, we can also infer from Lemma 2 in [17] that

P(−1,−1−γ)

[
R̃

α(γ+1)
α+1

0 R0 ≥ t

]
≍ t

θ(α+1)
α(γ+1) .

This implies that there exists two finite constants κ2 ≥ κ1 > 0 independent of µ, ε such
that

P(−1,0)

[
Rε ≥ ε−

α
α+1
]
≥ κ1 ε

αθ
α+1 − κ2 µ

θ
γ+1 ε

αθ
α+1 ,

which completes the proof of the lower bound for µ ≤ µ0 with µ0 = (κ1/2κ2)
(γ+1)/θ > 0.

Assuming finally µ > µ0 and setting µ̄ = µ
α

αγ−1 and µ̄0 = µ
α

αγ−1

0 for simplicity, we
have

P

[
sup

0≤t≤1

{
L
(1)
t + µt1+γ

}
≤ ε

]

= P

[
sup

0≤t≤µ̄

{
L
(1)
t + t1+γ

}
≤ εµ̄

α+1
α

]

≥ P

[
sup

0≤t≤µ̄

{
L
(1)
t + t1+γ

}
≤ εµ̄

α+1
α

0

]

≥ P

[
sup

µ̄0≤t≤µ̄

{
L
(1)
t + t1+γ

}
≤ 0, sup

0≤t≤µ̄0

{
L
(1)
t + t1+γ

}
≤ εµ̄

α+1
α

0

]

≥ P

[
sup

µ̄0≤t≤µ̄

{
L
(1)
t + t1+γ

}
≤ 0

]
P

[
sup

0≤t≤µ̄0

{
L
(1)
t + t1+γ

}
≤ εµ̄

α+1
α

0

]

= P

[
sup

µ̄0≤t≤µ̄

{
L
(1)
t + t1+γ

}
≤ 0

]
P

[
sup

0≤t≤1

{
L
(1)
t + µ0t

1+γ
}
≤ ε

]

≥ κ ε
αθ

α+1

for some κ > 0, where the first and fifth equalities are obtained by scaling, the fourth
inequality follows from Lemma 3.1, and the last inequality is a consequence of the strict
positivity of µ̄0. This completes the proof.
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Remark 4.1. Using the same argument and Lemma VIII.4 in [4], one can show the
following lower tail probabilities estimate for the Lévy stable process with a positive
power drift. If αγ > 1 and ρ ∈ (0, 1), then for every µ ≥ 0 one has

P

[
sup

0≤t≤1
{Lt + µtγ} ≤ ε

]
≍ εαρ. (4.1)

We leave the detail, which is simpler than the above, to the interested reader. This esti-
mate for small values echoes the persistence result for large time obtained in Theorem
1 of [2], which reads

P

[
sup

0≤t≤T
{Lt + µtγ} ≤ 1

]
= T−ρ+o(1) (4.2)

for every µ ≥ 0, with αγ < 1, ρ ∈ (0, 1), and under the additional assumption α ∈ (0, 1).

Observe that in the absence of self-similarity, the estimates (4.1) and (4.2) are different
ones and cannot be deduced from one another, save for µ = 0.
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