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Abstract

We investigate the upper tail probabilities of the all-time maximum of a stable Lévy
process with a power negative drift. The asymptotic behaviour is shown to be expo-
nential in the spectrally negative case and polynomial otherwise, with explicit expo-
nents and constants. Analogous results are obtained, at a less precise level, for the
fractionally integrated stable Lévy process. We also study the lower tail probabilities
of the integrated stable Lévy process in the presence of a power positive drift.
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1 Introduction and statement of the results

Let L be a real strictly a-stable Lévy process with characteristic exponent
\I/()\) — 1Og(E[ei/\L1]) - _ (i)\)ae—iwapsgn(/\) - _ |)\|o¢ei7roz(1/2—p) sgn(/\), = R,

where « € (0, 2] is the scaling parameter and p = P[L; > 0] is the positivity parameter.
Recall e.g. from Lemma 14.11 and Theorem 14.19 in [19] that p € [1 — 1/, 1/q] for
a € [1,2) and p € [0,1] for o € (0,1), and that with this normalization, for « € (0, 2) the
Lévy measure of L has density

I'(l1+«) (sin(ra(l —p)) sin(map)
v(z) = . ( |1+ ooy + W1{1>0} ‘

Throughout, we assume that L takes positive values i.e. p # 0, and we exclude the
degenerate case a« = p = 1 where L is a unit drift. With these restrictions, L has no
positive jumps if and only if « > 1 and p = 1/a.
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Cramér’s estimate for stable processes with power drift

Consider the positive random variable
Mg,y = sup{L; —t7}.
t>0

It is well-known from e.g. Proposition 48.10 in [19] that

1 ifya>1

P[Map.y < o] = { 0 ifya<1.

In this paper, we are concerned with the asymptotic behaviour of
PM, .~ >z, T — 00,

in the relevant case ya > 1. In the literature, the evaluation of such asymptotics having
various applications in insurance is coined as Cramér’s estimate. In the case of a linear
drift v = 1, we refer to (XI1.6.16) and (XII.5.10) in [9] for random walks and to [6] and
[14, Section 7.2] for Lévy processes having one-sided exponential moments. Applied to
stable Lévy processes, the main result of [6] shows

PMg /a1 > 2] ~ 77, T — 00, (1.1)

for @ > 1, and it is well-known that the asymptotics is in fact an equality - see [20] or
Corollary VII.2 in [4]. For more general power drifts and a class of Gaussian processes
fulfilling a certain scaling property, we refer to [12] which, applied to the important
case of Brownian motion with a parabolic drift, yields

PMy /22 > 1] ~ % exp{—f%af’ﬂ}, T — 00. (1.2)
Let us mention that this estimate has been refined in Theorem 2.1 of [11], where a
complete asymptotic expansion at infinity is obtained - see also Lemma 2.1 and the ref-
erences therein for closed expressions of the density of My /3, in terms of the Airy
function. The first result of the present paper is the following general estimate, extend-
ing (1.1) and (1.2).

Theorem A. Assume va > 1.

(a) If L has positive jumps, one has

sin(map) r(

- o= 1/7)0(1+1/7) 277,

P[Ma,p,v > ] ~

(b) If L has no positive jumps, one has

a—1

PM > x| ~

o 1—vo ~ya—1
o1/ eXp{*(a* 1)ya=T (ya = 1)7GD M“*”}-

yo—1

In the specific case « € (1/2,2] and v = 2, these estimates are somehow reminiscent
of those previously obtained in [5] in the framework of Burgers turbulence with stable
noise initial data. See Remark 2.6 below for more detail. Our arguments, quite different
from those of [5], rely on the compensation formula for the case with positive jumps and
on some ad hoc and rather involved estimates combined with Laplace’s method in the
spectrally negative case.
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Cramér’s estimate for stable processes with power drift

In the second part of the paper we consider the Riemann-Liouville (or fractionally
integrated) stable process with parameter 5 > 0, defined as

t t
L = /(t—s)BdLs = 5/@_5)6—1Lsd5, t=0.
0 0

The process {Lgﬂ), t > 0} is stable in the broad sense of [18], and by Proposition 3.4.1
therein we have
Lgﬁ) 4 (1+o¢ﬂ)_1/aL1. (1.3)

Recall also that {Lgﬂ ) t> 0} is self-similar with index 3 + 1/, non-Markovian, and that
it has a.s. continuous sample paths. Consider the positive random variable

M), = sup{Z® — 1),
" t>0

which can be viewed as an extension of M, , .. Observe also from Theorem 10.5.1 in

[18] and self-similarity that

P[Mgf/)m <oo] = P[Ma,py < 0]
for every 3 > 0. It is also easy to check that Mofzy7 <, M.,y as 8 — 0 when yo > 1.
As a rule, the non-Markovian character of a given process makes its passage times
across a level more difficult to investigate and our second main result has a less precise
character. Here and throughout, we use the standard notation f(z) < g(z) to express

the fact that there exist two positive finite constants 1, k2 such that 1 f(z) < g(z) <
kof(z) as x — oo or as x — 0, the nature of the limit being clear from the context.

Theorem B. Assume va > 1.

(a) If L has positive jumps, one has

]P[M(szﬂ >z =< e
(b) If L has no positive jumps, one has
IOgIP[M(()fi/a,w 2 ‘T] ~ —Ca,B,y "E%

« y+B—1-ap 1—va
with cq 5y = (@ = 1) (v + )= (af + 1) @06+ (ya — 1)T@D6FA > (.

The method to get these estimates differs here for the lower bound and the up-
per bound. The former uses a simple scaling argument, inspired by that of [12], and
amounts to a comparison with the upper tails of L;. The latter relies on telescoping
sums for the case with positive jumps, and on a simple yet powerful association lemma
in the spectrally negative case - see Lemma 3.1.

In the last part of the paper, we study the lower tail problem for the integrated
stable process with a power positive drift. In a Gaussian framework, lower tail proba-
bilities have many applications described in [15]. In a self-similar framework they are
connected to the persistence probabilities, whose applications are also manifold - see
the recent survey [3]. We show the following.

Theorem C. Assume ya > 1 and p € (0, 1). For every p > 0, one has

P [ sup {Lgl) ‘Hﬂflﬂ} < 5} = eI,
0<t<1
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Above, we have excluded the case p = 1, where the estimate amounts by monotonic-
ity to the one-dimensional estimate P[L; + p < ], which is exponentially small for y =0
- see e.g. (14.35) in [19] - and zero for p > 0. Theorem C is an extension of Theorem
A in [16] which dealt with the case p = 0. In this respect, we should mention that the
condition ya > 1 on the drift power is optimal: in the Cauchy case a = v = 1, the same
Theorem A in [16] shows that the lower tail probability exponent depends on p. Our
argument here relies in an essential way on the strong Markov property of the bidimen-
sional process {(Lgl), L,), t > 0} and is hence specific to the case § = 1. The other cases
are believed to be challenging. To give one example, for « = 2,4 = 0 and f > 2 an
integer, finding the exact values of the exponents k,, in the asymptotics

P [ sup {LE")} < 5} = gfin
0<t<1

as ¢ — 0 is still an open problem on Brownian motion - see Section 3.3 in [3]. In our
proof the aforementioned association Lemma 3.1 plays also a significant role. Unfor-
tunately, its one-sided character prevents us from dealing with the case of a negative
power drift. We leave this question, whose connection to Burgers turbulence with sta-
ble Lévy process initial data in the case o > 1 and v = 1 is precisely described in Section
4.1 of [3], to future research.

2 Proof of Theorem A

2.1 The case with positive jumps
We will use the standard notation

I'(1
cy = %sin(ﬂpa) >0

for simplicity. Defining for every x > 0 the stopping time
T, = inf{t >0; Ly > t7 4+ «},

we have P[M,,,, > z] = P[T, < oo]. We also set K, = Ly, — T, — x for the overshoot
at T,. For every f : R™ — R™ measurable and such that f(0) = 0, the compensation
formula - see [4] p. 7 or Theorem 19.2 in [19] - implies

E [f(Kac) 1{Tz<oo}} =E Z f (Lt* + AL =17 — 35) 1{Lu<m+z Vu<t,t7+ax<L, +AL:}
t>0

o oo
=ctE [/ dt/ FLi+s—t" —2) 11, curta Vu<t, tr+a<Lits) s717%ds
0 0

= C+ / dﬁ/ ]E [f(z — ﬁ’y — x)]-{Lu<u'Y+z Vu<t,t7+x<z}(z — Lt)_l_a] dZ
0 0

Taking f(u) = 1{,>0} and integrating in z, we obtain

o0

C
PK, >0,T, <o) = E* E [(t7 + o= L) " 1, curta vu<t}] dt
0

C+ > 1 _1q _ 1_
s El(s7+1—a5 L)1 . _ ds | 2>
o (/o [(s +1-—x ) (s lLv<w+1vU<s}] s):c

~ </ (s7+1)7¢ ds) x5
@ \Jo

~ SO 1 )01 4 1) 23
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where the second equality follows by scaling, the convergence on the third line is
obtained by bounded and monotone convergence (decomposing into {L; < 0} and
{Ls > 0} inside the expectation), and the evaluation of the integral on the fourth line
is standard. To conclude the proof, it remains to show that I does not creep at 7)., in
other words that

PK,=0,T, <o0] = 0. (2.1)

The latter is in accordance with the well-known fact that I does not creep at a fixed
level z > 0 - see Theorem VI.19 and Lemma VIII.1 in [4]. However, this result does not
apply here since we consider the first passage time above a moving boundary. To show
(2.1), fix x > 0 and decompose

PlLs > s"+z] = Pi(s) + P(s)

for every s > 0, with

Pi(s) = P[Leq +T)>5", K,=0,T, < s]
Py(s) = P[Ls—r, + Ly, > 8" 4z, K; >0, T, <s],

where L is a copy of L which is independent of (T, Lt, ), by the strong Markov property.
On the one hand, we see by scaling and e.g. Property 1.2.15 in [18] that

P[L; > s"+z] ~ &t gl-va,
(6%
On the other hand, we have
Pi(s) > PlLy_p, > 8", Ky =0, T, <s/2] > P[Ly >25s" = P[K, =0, T, < 5/2]

and passing to the limit, we obtain

liminf s7*~! Py(s) > ;—+ P[K, =0, T, < o0].
a

85— 00
Hence, we see that (2.1) is a consequence of

Py(s) ~ % sie. (2.2)

Applying the compensation formula as above, we obtain
S o0 -
Py(s) = c+/ dt/ P[L, ¢+Li+z> s"+a, Lit+z > "+, L, < u'+z Yu < t]z7 17 dz.
0 0
Changing the variables z = s7y and t = su, we see that c;'s7*~1P,(s) equals

1 [e%s}
/du/ ]P[séLl,quséLqus'ystVjo,
0 0

sa Ly > sST(u” —y) + x, saLy < sTu +aVu< 1} y~ %y,

1 o 1
/ du/ y Ty = —-
0 1 a

This shows (2.2), and completes the proof.

which converges as s — oo to

|
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Remark 2.1. (a) Setting, here and throughout, L} = sup{Ls, s € [0,t]} for every ¢t > 0,
we have
lim PMg,,~ > x] = P[L] > 2]

Y00

for every x > 0. Passing formally to the limit v — oo in Theorem A (a), we can infer

I'(«) sin(rap)

P[L: > 2] ~ z (2.3)

™

which is a standard and rigorous estimate - see Theorem 10.5.1 in [18] and Proposition
VIII.4 in [4].

(b) Taking f(u) = 1{y>p,} for some r > 0 and applying as above the compensation
formula leads to the estimate

«

P[K; > rz, T, < oc0] ~ o (/ (r—i—u”—i—l)_o‘du) 7T ~ (r—l—l)%*aIP[Tz < o0).
0

This implies the following limit theorem for the law of the renormalized overshoot:

Proposition 2.2.

L <z1KI

T, < +oo> — Pareto(a—1/7) asz — oo.

Recall, indeed, that the standard Pareto distribution with parameter § > 0 has distribu-
tion function 1 — (r 4+ 1)7% on (0, cc0). This observation seems new even in the classical
case of a linear drift v = 1 with a > 1. Notice that still in the case of a linear drift, the
limit behaviour of the overshoot is very different for Lévy processes having finite ex-
ponential moments. If we consider for example the tempered stable subordinator with
negative unit drift and Lévy measure having density

o e*CCl)

v(z) = Wl{wo}

for some ¢ € (0,1), then we are in the framework of [6] with w € (0,1) and p* < co so
that C' > 0 in (5) therein. By Remark 2 of [6], this implies that K, converges at infinity
to some proper random variable - see also Theorem 4.2 in [13] for more general results.

(c) Inthe case a > 1,p=1—1/aand v = 1, the Laplace transform of M, ;_1/4,1 can
be computed with the help of Zolotarev’s well-known general formula - see [20]: one

finds
1

1+ o1

This Laplace transform can be easily inverted and yields the identity in law

E[e*)\Ma,lfl/aJ] _

d 1
= LoT X Zq_1

Ma,lfl/a,l

where L ~ Exp(1) and Z,_; has a standard positive (o« — 1)—stable law with Laplace
transform
]E[ef/\ZC‘*l] = e

)

both random variables being independent. This shows that the law of M, 1_1/4,1 is
the so-called Mittag-Leffler distribution of parameter o — 1 which is studied e.g. in
Exercise 34.4 of [19] - see also the references therein. In particular, there exists a
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closed expression for the survival function of M, ;_; /4,1 in terms of the classical Mittag-
Leffler function, which leads to a complete and simple asymptotic expansion at infinity:

one has
(71)n—1$—(0¢—1)n

I'l—(a—1)n)

PMai-1/a1 > @] = Ea1(-2°7") ~ >

n>1

where we have used Formula 18.1(7) in [8] and the standard notation for asymptotic

expansions given e.g. in Appendix C of [1]. Observe from the complement formula

for the Gamma function that the first term matches the one that can be derived from

Theorem A (a), in this specific case. Notice also the following closed formula for the
distribution function, as a convergent series:

_ -1 n—lx(a—l)n
PMy11jaq < @] = 1 — Eoy(—a®Y) = Z#,

= IF'l+ (a—1)n)
Let us finally refer to [10] for related results in the presence of a compound Poisson
process.

2.2 The case with no positive jumps
Applying the strong Markov property at 7T, and using the absence of positive jumps,
we get

oo

/0 (1—eP[L; >t +a]dt =F {1{%@0} /0 (1 — e MTetD) L(E 10> (44 T0)) dt]
> —NT,
=1 |:1{TI<OO}/O (1 —e ( +t))1{t1/azl+>(t+Tm)'V—Ta?} dt:|

where we have set a™ = max(a, 0) and, on the right-hand side, Lisan independent copy
of L. Integrating both sides on (0, co) with respect to A™"~1d\ with v € (0, 1), we deduce

oo

/ fVIP[Lt >tV+$] dt =1F |:1{Tz<oo}/ (Tm—f—t)V 1{t1/azl+>(t+TT)’Y—T;}dt:|
0 0 ’

_ 1+v > v
=E |:1{Tm<oo} T, /0 (1+1) 1{’L'1+>T;*1/°“ Pa, (D)} dt} ’

where (14871
+1) —
Pary(t) = /e
is an increasing homeomorphism from (0, o) to (0,c0), because ay > 1 and « > 1. This

implies the identity
>~ v + -1/« _ 1+v > v
/0 t IP[Ll >t / (ﬁ'y + x)] dt =E |:1{Tz<oo} Tz /0 (1 + t) 1{@;,1W(T1{/077ZT)>t} dt:|

1 v - a—~yT v
= 5 B [l T (U oy (L) — 1)
(2.4)

which extends to all v > —1 by analyticity, since L] has moments of every order. We
will now study the asymptotic behaviour of both sides of (2.4), introducing the crucial

parameter

—1
PR k) Y
a—1

We begin with the left-hand side, which is easy.
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Lemma 2.3. One has

/ t" PLT >t~V + )] dt
0
—v0

i a A—vya  _ay=1_
exp {f(a —1)ye-T (ya — 1)7@=D gD } .

L a1 )
(o = Dya—1)

Proof. By (14.35) in [19], we have the asymptotic behaviour

1
o 2(a-1) 2— o o o
pi(x) ~ ——=1z2 D exp{—(a—1)al-=a g1
1#) ~ o {~(a=1) }
at infinity, where p; stands for the density of the random variable ;. Making the change
of variable y = z=-1 and applying Watson’s lemma - see e.g. Theorem C.3.1 in [1], this
easily implies

@D . o _a
IF’[L;r > x| ~ m:r_ﬂa*l) exp{f(oz—l)ozE zﬁ} (2.5)

See also Theorem 2.5.3in [21]. On the other hand, we can rewrite

v+l

/ t'PILT > 7Y 4+ x)|dt = & / s'P[L] > x%n(s)] ds (2.6)
0 0

where 7)(s) = s~/%(s” + 1) reaches its global minimum on (0, 00) at s, = (ay — 1)~1/7,
with 2041

Ve -1
Q

l—va

n(s«) = yalya —1) 7 and  7"(s.) =

Plugging (2.5) into the right-hand side of (2.6), we obtain

/ t PLT > t7Yo (7 + 2)] dt
0

1
a2(a—1)

- 2n(a — 1)

vi(1—vg)/2  [° o o o  14v
S / s¥ n(s)20==) exp{f(a— Datan(s)aTx WU} ds,
0

which yields the required asymptotic behaviour, by Laplace’s method.
O

We will now analyze the right-hand side of (2.4), which is more involved. Introducing
the function

_ (+v)a B 5
Doqu(@) = a7 o0 ((L+pah ()™ —1)
on (0,00), we can rewrite (2.4) as
> 1 =\ et ~
/ t'PLT > 7Y 4+ x)) dt = i RGeS L) ™ @ (T L]
) y . ,

(2.7)
Taking v = v and observing that ¢ 1 (t) ~ (t/7)="% ast — 0 and ¢ (t) ~ t7 7T as
t — oo, we get

lim Doy, () = (14+1)yT™= >0  and lim @, ,,(x) = 1.
r—r

T—r 00

Therefore, since @, -, is continuous and positive on (0, c0), we have
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0 < inf {®q 0 (2)} < sSUp{Pa . (2)} < o0.
z>0 x>0

Going back to (2.7) and using the facts that E{“ has positive moments of every order and
is independent of T, we finally get from Lemma 2.3 the crude asymptotics

ay—1

P[T, < 0] =< exp {f(a —1)43%T (ya — 1)7@D grtan } _ (2.8)

In order to obtain an exact asymptotics and finish the proof, we will need the following
technical lemma.

Lemma 2.4. For every v € (—1,7 — 1/a — 1], the function ®, -, is an increasing home-
omorphism from (0, c0) to (0,1).

Proof. First, it is easy to see from the aforementioned asymptotics of ¢, - at zero and
infinity that

lim @, -~ , = n lim @, ., =1

A Pay, (z) 0 and S Loy, (z)
forv € (—1,7 — 1/a — 1], and it is plain that ®, -, is continuous. Since ¢, , increases
on (0,00), we are reduced to show that

+v)

(1+2)1Tv —1) 271
z = Poyw (Sﬁaﬁ () = ( )(1+V)a
(I+2)7—1)77

increases on (0, 00). Setting y = (1 + 2)” — 1 and f.(z) = (1 + 2)¢ — z°, we obtain

(v

ya—1

ya—1 _ itv
(@awr (o) = (™) ™ £
which, since f. decreases for ¢ € (0,1], shows that ®,,, increases for v > 1 and

v € (—1,7 —1]. Assuming last v < 1, we need to prove that

1+v

T = Gaqyp(z) = ( 1ty (:E))a_% (f% (x)) K

N

decreases on (0,00). Setting ¢ = HT” € (0,1), we compute

1

/ _Cgarwf(‘r) oy — (ay — e — v Cgaﬂ,l,(l‘) ay — (ay — L_l
%mx@——————<v (ay—1) (@>< (7 (ay—1) )-

V(1 + ) felx)  f1 (1 +x) fe(x)

y

It is easy to see that x — 21 ~¢f.(z) increases from (0, +oc) to (0, c), and we finally obtain

((C B 1)704 + 1)ga,w,u(x) <

! x) < 0
ga,’y,v( ) 7(1 T l’) —

assoonasv <y—1/a—1.
O

Corollary 2.5. For every A > 0, one has

P[T, < 4] 0
asx — 00.
EJP 0 (2016), paper 0. ejp.ejpecp.org
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Proof. Set v = ¢ — 1 with € > 0 small enough for ®, , ._; to increase on (0,00). By (2.7)
and the fact that Lf and T}, are independent, we have

1

5/ EIPLE > VA ) dt = ]E[l{TI@O} (7)™ @amg_l(Tg/awif)}
0

Y

E [(Zf) e <I>a,%5_1(A1/0“7E{)} P[T, < A.

Combining now the crude asymptotics (2.8) and Lemma 2.3, we deduce that there exists

K > 0 such that
IP[TE < A] < e-1-vg

e < Ka 7 50
P[T, < too] —

as x — o0, taking € > 0 small enough.
O

We can now finish the proof. Taking v = 1 in (2.7), we first decompose the quantity
T / O P[LT > 7YY 4 2)] dt
0
into

~ 1 ~ a -
E[(LT) =] PIT: < oo+ B (11, <o) (B (@ T/ = @an(04)) ]

(I)CW’Y,VO (0+
Applying Lemma 2.3 and the moment evaluation

1

BI(ED)=T) = —

which is e.g. a consequence of (2.6.20) in [21], we see that the proof will be complete
as soon as

E [Ly cou) BT (B (T L) — By (0] = 0BT < o), @ 0.
(2.9)
But, decomposing according to {7, < A} or {T, > A}, the left-hand side of (2.9) is
bounded by

sup {@a 4,0, (2)} P[T < 4]
a—1 :>0 ’

+ BTN s {[0aunc L) = B (04)] ] PIT <

and (2.9) follows by Corollary 2.5, the continuity of &, ., at zero, and dominated con-
vergence.
O

Remark 2.6. As mentioned in the introduction, in the case v = 2 our Theorem A echoes
a large deviation estimate which had been previously obtained in [5]. More precisely, if
we set ]
~alT
M[;,]pﬁ = sup {L;—t"} and M, ,, = sup{L; — t"},
te[0,x] t>x
then the main result of [5] states that

]P[Mm , ZM[m] ] = pl2a

a,p, o, p,2
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Cramér’s estimate for stable processes with power drift

if L has positive jumps, and that

log P[M

2a—1

[=] =1
1/a,2 ZMa,l/aQ] ~ —RqT >t

[«]

for some explicit k, € (0, 00) if L does not have positive jumps. Roughly speaking, when

x is large the event
{Mm > M }

a,p,2 = ==a,p,2

amounts to the fact that the translated process L; — L, — (t — x)? crosses a level of size
22 for some t > x, which explains heuristically why the asymptotics of

el

PM, ,,>M ] and P[M,,2 > 2’

==, p,2

are comparable. One might wonder if all our above arguments could not help refine the
results of [5], but we have not investigated this question.

3 Proof of Theorem B
3.1 The lower bound

This part is easy and relies essentially on the identity (1.3). Introducing
T = inf{t >0, L) = +842}  and  TW = inf{t >0, LYV = (0P 41) 2o },

we see by the scaling property {L(ﬂ) t >0} 4 {y"“/O‘LEB), t >0} withy = 277 that

yt >
PM) | >a] = PIT{P) < o] = P[TP) < o0]. (3.1)
Setting
1 Eaxil
s, = argmin{s ?~(F 1 1)} = ( —|—a6)v
yo — 1
and

aB —va
m. = min{s 77V 1), 5> 0} = a(y+B)(af + 1)" 3058 (ya — 1) 3649,

a further scaling argument implies
PIT® < 00] > P [L) > (s7T8 + 1) 23675 | = P[L; > (1+ aB)Y/*m, 23079]. (3.2)

When L has positive jumps, applying Property 1.2.15 in [18] to the stable random vari-
able L; and using (3.1) and (3.2) yield the required lower bound

PMP)  >a] > nzlefg, T — 00,

for some x > 0. When L has no positive jumps, we obtain from (2.5), (3.1) and (3.2) the
required lower bound

lim inf 2@ 06 log PIMY) > 4] > —cap.

00 a,l/ay =

3.2 The upper bound in the case with positive jumps

Introducing the parameter
yo—1

S = aq+p €OV
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Cramér’s estimate for stable processes with power drift

and fixing ¢ > 0 small enough such that n = 2°(1 +¢)°~! > 1, define the stochastically
increasing family of stopping times

TER = inf{t >0, L\ — (1 4+ &) F1+820 = 2k2%), Kk >o0.

Since ]P[ﬂﬁ’k) < o] = 0 as k — o0, by (3.1) we have the telescoping decomposition

PIMY) ., > a] = PIIY < o] = 3 (PIIH < 0] = PITPHD < o))
k>0

1

We first consider the case v + 3 > 1. Setting i, = (3 x 2¥(1 +¢)¥)5+5 , we can bound

sup {L{"} > 2"a?
te(0,ry]

P[TVP" <] < P

+ P [Sup{LEB) —(14e) k8% > 2’%5}

t>rE
< P[L>9"87 '] + P Egg{LﬁQk — (L&) "7 +2) > 2’”%5] :
where in the second line we have used the a.s. inequality sup,¢|o, 1]{L§ﬁ )} < L7, which is
obvious, and the equally obvious deterministic inequality
(t—l—?‘k)’y-"_ﬂ > B + rz-‘rﬂ (3.3)

for all t > 0, which follows from v + 5 > 1. The next step is to write down the process
decomposition

Tk t
Lgf-)rk - <ﬂ/0 (t+ 7%~ u)ﬂil Lydu + t? er) + ﬂ/o (t— S)ﬁ71 (LS+""k - er) ds

(3.4)

d " 7(5) 7(5)
4 (5/ (t+rg — )~ Lydu + t° er) + L7 < (t+rm)’Ly, + Ly
0
with {E@, t > 0} an independent copy of {Lgﬂ), t > 0}, which implies

P [sup Lgﬁ)m — (1 +e) k7 80} > 2k+2$6}
>0

< PITPH*D < o] + P {Sup{L:k (t+ 1) —e(14e) k17801 > 2’““:&}
t>0
< Ip[fz(ﬁ,kﬂ) <] 4+ P {cﬁ TZL; + sup{cg L:ktﬁ —e(1 +€)7k71t7+ﬁz5} > 2k+1x6} 7
t>0

where ¢z = 2/°~1l and we have used (¢ + 5)? < cg(t? + s7) for all ¢,s > 0. The second
term on the right-hand side is bounded by

P L] > nk36_1051x5} + P [sup{CB LitP —e(14e) 160 > 2’%5]
>0

=P [L’{ > nk3571051x5] + P[L} > "k x‘s]

for some positive constant x not depending on k,z. Setting # = min{k, 35’1051} > 0,
and putting everything together, we finally obtain

PIM{T, > o] < 3% P[L]>n"Ra"] ~ %ﬂﬁ(f);ma(;mp)””l”ﬁg

)
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Cramér’s estimate for stable processes with power drift

where the estimate follows at once from (2.3) and direct summation. This completes
the proof for v 4+ 8 > 1. The case v+ 8 < 1 follows along the same lines, except that
(3.3) is not true anymore. We hence set

13 1

A= —— 0,1 d = 3\ ! x2F(1 75, k> 0.
2(1+€) € (’ ) an Tk ( X ( +E)) ) =

Using the obvious inequality (¢ + ;) ™? > (1 — )72 + A7 ¥ leads first to
P[I{P") < oc] < P[Li>n"3"2’] + P [igg{Liﬁk — (L= N +e)re+Paf) > 2’“%5] :
Then, we can bound

P igg{Lgﬁlk — (1= N1 4e) Fr+Pa0) > 2"’*%5]

< PIVHD < 0] + P {Sup{QL:k(t +7)P —e (14 )R 1 +8%) > 2"’*%5] ,
>0

and the proof is finished similarly.

3.3 The upper bound in the case without positive jumps

The argument relies on the following well-known association lemma, which will also
be used during the proof of Theorem C.

Lemma 3.1. Let F,G be two bounded functionals on the Skorokhod space D(R™,R)
being both non-increasing or both non-decreasing. Then, one has

E[F(Lu, u>0)G(Ly, u>0)] > E[F(Ly, u> 0)]E[G(Ly, u>0)].

Proof. By cad-lag approximation, it is enough to consider the case when F,G depend
only on a finite number of points. With the notation of Chapter 4.6 in [18], we are hence
reduced to show that the random vector (L4, , Lt,, ..., Ly, ) is associated for every n > 2
and 0 < ¢; < ... < t,. By independence of the increments we have (L, Lt,,..., Lt ) =
(X1, X1 +Xo,..., X1 +...+ X,,), where the X;’s are mutually independent real random
variables, making the vector X = (Xy,...,X,,) trivially associated. We can then apply
e.g. Exercise 4.25 p. 220 in [18].

O

Let us now finish the proof. For simplicity, we will set T, for ngﬁ ) Let € > 0 and fix
§ small enough such that n = 1 — (1 — £)(d + 1)’ > 0. Using the absence of positive
jumps, we obtain

/ PILY) > (1 — )P 4 2] dt > / P (L~ L) > (1= ™7 — T/, T, < +oo| dt
0 0 ’

)
> /0 P [L(Ti)(t+1) —LP > TP 1< T, < +oo} dt.
(3.5)

By (1.3) and a change of variable, the left-hand side equals

/ PILY > (1-e)tP7 +a]dt = HE/ 7708 P[Ly > (1+af)/ ot~V (47565 4 c.x)] dt
0 0
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Cramér’s estimate for stable processes with power drift

for some positive constants ., c. such that c. —+ 1 as ¢ — 0 and, by Lemma 2.3, we first
deduce

1og/ IP[Lgﬁ) > (1—e)t?™ fa]dt ~ —cap(cet) NGl
0

We shall now separate the proof according as 5 > 1 or 5 < 1.

Assume first 8 > 1. Bounding the right-hand side of (3.5) leads to

/0 PILY) > (1—e)tP 7 +a)dt > 6P inﬁtfgé{u_ﬂ_V(ngZH) — LN >y 1< T, < oo,

whence

]P{ inf {u_ﬂ_”(Liﬁ(ZJrl)

— LY > —p T,
it w )} > —n, T < 00

< 5_1/ PIL) > (1 - )P 4 2]dt + P[T, < 1]. (3.6)
0

We next observe that the contribution of IP[T,, < 1] in the right-hand side of (3.6) is
negligible, using the obvious bound
PIT, <1] < P[r, <1]
with 7, = inf{t > 0, Lgﬁ) = z}, the crude estimates
logP[r, <1] < logP[Ly > ] < —x=-1

and the strict inequality
ay—1 < @
(@=1)B+y)  a-1

Above, the crude estimates are a consequence of (1.3), (2.5) and

]P[Lgﬁ) >z < Plrp, <1] < P {sup{Lt} > x] = aP[L; > 7],
t<1

the last equality being well-known as the reflection principle for spectrally negative
stable Lévy processes - see e.g. Exercises 29.7 and 29.18 in [19]. Finally, we notice that

1+t
o - — L'U.S
u’ V(Lfﬁz)t-rl) L)) = 5/0 ((1+t—s)ﬁ L_o(1-s)” 11{S§1}) Fds

is an increasing functional of {L,, s > 0}, because # > 1. Since 17, is also an
increasing functional of L, we deduce from Lemma 3.1 that

; —B=(1,P)
P |:u21{1,f§6{u (Lu(t+1)

~LPN >, T, < OO}
> | int_ (0, - L) 2 | PIL < o] = wPIT <o

for some x > 0 not depending on x. Putting everything together, we get

lim sup 2@ 055 log PIT, < 00] < —casy el 07
Tr— 00

which, letting € — 0, completes the proof in the case 5 > 1.
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Cramér’s estimate for stable processes with power drift

Assume second 8 < 1. We set

ot ﬂ/o {1 ) (1+t—s)571}57ds

which is a positive increasing function on (0, c0) such that oy — 0 as ¢ — 0. Replacing
Tzﬁ‘i"Y by

T
120 = [T - - g - s

we deduce using a change of variable that

1+t
B B N _ n
Ly~ L0+ 5120 2 672 [ (-9 s Th0 sup { 1 - 0|

1 u>0 Ot
where hg(t) = 1+t — (1 + t)? is increasing in ¢. Going back to (3.5), and taking a < 4,
the right-hand side is then greater than :

op [ Fy(r) — 2200 G {Ls - %37} > /2, ba7 < T, < oo} (3.7)

OV B >0
where
1+t L
F(;(L):ﬁinf/ (1+t—s)"inf = ds
1

t<s u>1 uY

is an increasing functional of L. We next observe that, cutting (3.7) in two as in (3.6),
the second term will be negligible by taking ¢ small enough since

P[T, < 6277] < Plr, < §z77]

and
1 _g_1 _ay—1 _aB+1 ay—1
log P[ry < 6277 =< logP[Ly > 6 #3679 = —§~ ST g0,

Thus, it remains to deal with the term :

P [F5(L) > —n/4, T, < oo] — P {hﬁ(a) sup {LS - SW} > gmﬂ%] .

s>0 Oq
From Theorem A and using the scaling of L, the second term behaves as
1 7] 7] v 1 ya—1
logP | hg(d) (04) 71 sup {LS - 557} > Z(YYxBM =< — (04) 7D g@=DGFH
s>0

which is negligible by taking a small enough. The proof is then concluded as in the case
B8 > 1 by applying Lemma 3.1 to the term P [F5(L) > —n/4, T, < 0.
O

Remark 3.2. In the particular case g = 1 of the integrated stable process, we may
proceed as in the proof of Theorem A, and obtain a more precise upper bound. The
strong Markov property at 7T, for the two-dimensional process

(LY, Ly), t >0},

a scaling argument and (1.3) imply firstly

/ o PILY > 147 4 o] dt
0

_ 14 > 17
- P [1{T’“<°°} E /0 WO L Er v (a7 ) X
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Cramér’s estimate for stable processes with power drift

where 1, ~(t) = t 717V *((t+1)'*7 — 1 — (1 +7)t) is again an homeomorphism from (0, 00)
to (0,00), and T, and L] are independent. We can then bound

/0 o PILY > 17 4 2]dt > E {1{Tm<oo}Tz”"° /0 (L+ )" Lz po-v/e wa,w(w}dt} ,

using the crucial fact that the derivative of ¢t — Lgl) — t'*7 at T, which equals L7, —

(14 )T, is a.s. non-negative. This leads to

(d+vp)e

1 ~ a—1 oa—~ T
Ly () T (2 mm]

1+Z/O

E

/ tO P[LT > Yo ) dt >
0

where
(14vg)a

\I/aﬁ(x) = g a1 ((1+7/);_3y($))1+uo 71)

is again bounded away from zero and oo, by the fateful choice of vy. We finally obtain

P[T, < oo] < Ky / O P[LT > 7YV 4ox)]dt
0

for some x4 € (0,00), and an appropriate modification of Lemma 1 yields

1 “ __ya—1
P, 2 0] < i exp{ o, a7 )

at infinity, for some other 4, € (0,00). Unfortunately, the precise lower bound which
can be derived from (2.5) is different: one gets

P[M(l) >:L'] > KR $2(011)W(61Y+’Y) ex —c x(ajl();(zl‘#v)
a,l/ay = = = p a1,y

for some k- € (0,00), and the exact polynomial speed before the exponential term
remains unknown. We believe that this speed is given in the lower bound, and we refer
to Remark 3.4 (c) below for a general conjecture.

3.4 A more precise estimate in the Brownian case

In this paragraph we specify the general results of [12] to the process L) in the case
a = 2, and we get a refinement of Theorem B (b). Observe that in this framework we
can also consider the wider range 8 > —1/2. The following proposition is a consequence
of Theorem 1 in [12] but the exact asymptotics does not seem to have been written
down anywhere, and we hence provide a detailed proof. It turns out that a transition
phenomenon occurs at 5 = 1/2.

Proposition 3.3. Assume v > 1/2.
(a) If B € (—1/2,1/2), there exists k3., > 0 such that

(8) 28(1—27) 291
]P[M2,1/2,'y > ZC] ~ KB~ x @BFDH+A) exp {—02,6771' VB } .

(b) If 8 > 1/2, there exists kg, > 0 such that

8) B 1-24 2y—1
IP[MQ_;/Q,»Y > x| ~ Rgq x0T exp {—czﬁﬁx ERE] } .

Proof. With our normalization for the characteristic exponent, one has L; ~ N(0,2) and
a scaling argument implies

Y+8

(8) 2\ 3
M2,1/277 B (25+1) M
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Cramér’s estimate for stable processes with power drift

where .
Mﬂ,v = sup{vQﬁ—f—l/ (t—S)ﬂ dBs — ﬁ’H‘ﬂ}
t>0 0

and { B, t > 0} is a standard linear Brownian motion. Setting H = /3 + 1/2, the process

t
X, = «/2ﬂ+1/ (t—s)?dBs, t>0,
0
is Gaussian with mean 0 and variance 27
tion of Section 1 in [12], we have

26 + 1\ 77 Capy
- d A=2 /280 3.8
50 (271) an 25 +1 (3.8)

We now wish to apply Theorem 1 in [12], whose statement deals with case H € (0,1)
but we can actually consider any H > 0 by Remark 1 therein. Following (7) in [12], we
need to evaluate the behaviour of E[(Y; —Y;)?] as t,s — so, having set Y; = ¢t~ X, for all
t > 0. Because of the time normalization, we have not found any precise reference for
this behaviour in the literature and so we give the details. For 0 < s < t, we compute

, and self-similar with index H. With the nota-

E(Y; - Y.)?] = 2 — Is(a)

with z = st~ € (0,1) and

Ig(z) = 2(28+ 1)\/5/0 (1 —u)?(1 — zu)”? du.

We need to study the asymptotic behaviour of Ig(z) asy = 1 —z — 0. If 3 > 1/2,
rewriting

Ig(z) = 2(25+1)\/17y/0 (1 —u)?’(1+yu(l —u)~ Y du,

making a Taylor expansion of order 2 of both quantities in y and evaluating the two
underlying Beta integrals leads to

@5+1)y*

o) =2 = Y-

+ o(y?).
This shows that (7) in [12] holds with

26+1)

=2 S > R e sV
« an 428 — 1)s3

(3.9)
If B < 1/2, the argument does not apply because the second Beta integral diverges. We
first rewrite

2028 + 1)z

Ig(z) = 11

) X )
B+2 Y
where the first equality follows from Euler’s integral representation and the second one
from Pfaff’s transformation for the hypergeometric function - see respectively 2.1.3(10)
and 2.1.4(22) in [8]. Applying next the residue transformation 2.1.4(17) in [8], we obtain

Ir2(3+41)

_ 28+1 2
2 (26 + 1) cos(w) y T+ O,

-1 1 2028+ 1)y’ -8 B+1 _
2F1[5+2’$] —Tﬂﬂ{ —xy~!
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Cramér’s estimate for stable processes with power drift

This shows that (7) in [12] holds with

_ (B +1) .
['(26 + 1) cos(nf) s’

a = 28+1 and (3.10)
Putting (3.8) and (3.9) resp. (3.10) together with (10) resp. (9) in [12], using the
standard estimate /27U (u) ~ u~Le~*"/2 for the tail of the unit normal distribution, and
proceeding to the necessary simplifications, we obtain our required asymptotics with
the two different regimes.

O

Remark 3.4. (a) For g = 1/2, the transformation 2.1.4(18) in [8] with m = 2 exhibits a
logarithmic term: one has the non-trivial closed formula

y2

2(1-y)

where 7 is the digamma function. This implies

Lip(x) = 2+ (¥(3/2) — ¥(3) + log(y) — log(1 —y))

(t —s)?log |t — s

E[(Yt*Ys)Q] ~ - 28%

as t,s — sg, and we cannot apply the results of [12]. We believe that

]P[M;%{/Q;ﬂ >z] ~ k(logzx)’ w exp {—0271/277 2 G/ }

for some x > 0 and ¢ # 0 to be determined, the logarithmic correction being heuristi-
cally due to the 1-self-similarity of

t
t — / Vit — s dB;.
0

(b) The constants kg and <z, can also be evaluated from Theorem 1 in [12], but
they have a complicated form in general. For 8 > 1/2, one gets

Y B TC R B
P T N\ meapy (26— 1)(2y - 1)
For 8 € (—1/2,1/2), one obtains

28(2v—1)

_ Hop 1 rh 2y — 1\ @FFOGTA 28+ 1) >ﬁ
0= Tmrneon T (25+1) <r(25+1) cos(mB)

where
1
Hopiq = Th—I;El)o TE {exp{ max (V2B (t) — tQH)}}

0<t<T
for {Bg(t), t > 0} a standard fractional Brownian motion with Hurst parameter H =
B + 1/2. In the literature on extreme values, the constant Hosyq is usually called the
Pickands constant and we refer to [7] for more detail. It does not seem to the authors
that the Pickands constant is explicit, save for § = 0 where the reflection principle and
Laplace’s method yield

\/_ T3/2 rl o0 _ sT(z—1)2
E [exp{ogltzsz( QBt—t)H =1+ ﬁ ; \/5(/0 Te 1 dac) ds ~ T,
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Cramér’s estimate for stable processes with power drift

so that H; = 1 and

1
f0 = =T

in accordance with Theorem A (b).

(c) From Proposition 3.3, it is plausible to conjecture that for « € (1,2) one has

aB(l—vya)

(ﬂ) (a—1+aB)(a—1)(~+8) Ai}giLgi
P[Ma,l/a,y > 2] ~ Ko @@ @ DEEE) eXp 3 —Co gy T @ DOTE

if € (0,1—1/a)and

P[Ma,l/a,'y Z $] ~ Ka,By T (a—=1)(v+8) exp {7Ca,ﬁ,'yz(a7 )(7+g)}

if 5 >1— 1/, where kg and k4 3,4 are some positive and finite constants.

4 Proof of Theorem C
Following the notation of [16], we will set

p

R
a(l—p)+1

once and for all. The upper bound follows easily from

P |: sup {Lgl) +'u/t1+ﬁ/} < €:| < P |: sup {Lgl)} §€:| < H&-aa—fl
0<t<1 0<t<1
for some k € (0,00), where the first inequality follows from p > 0 and the second one
from Theorem A in [16] and scaling.

The lower bound is more involved and we will need the strong Markovian character
of the two-dimensional process {(Lgl), L), t > 0}, setting by P(, , for its law starting
from (z,y) € R?, with the convention P = P(9,0). Define the stopping time

R. = inf {t >0, Lgl) + Mgwaafll Y — 0}
and observe first that, by scaling and translation,

P [ sup {Lgl) +ut1+7} < 5] = P10 [RE > sfa%l] .
0<t<1
Notice also that P(, ,y [R. < Ro] = 1 for every < 0 and y € R, because p > 0. Applying
the strong Markov property at R., we obtain

P10 [RO = 257“%1] = K1, [lP [Ro +z2> 25*%“}

{w—RE}:|

1@—1
(—pe oFT RITY Lg,)

whose right-hand side is, by comparison, smaller than

O -

Ymece @ty P8 g e ¥5 m)
Indeed, the derivative of ¢ — Lgl) + ue ST at R. equals Ly, + p(1+ fy)swaaill RY and
is a.s. non-negative under IP_; o). On the other hand, a further scaling argument shows
that

P_. ylRo>t] =P
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Cramér’s estimate for stable processes with power drift
for every x,y,t > 0. If we now assume p < 1 this implies, again by comparison,
_ o o o > e att
fio {I{Rsﬁf 41y P e85 piv e By (0 2 ﬂ

= a ya—1 1+’Y 7(371 %ﬂ > 7%
E(—1,0) ll{Ra<sa_+1}]P(1,ua‘11(1+7)(5a1135) afl ) [Om e ) Hoze +1]{Z—R }]

a(y+1) _a?(v+D)

<E1,0

:| {z=Rc}

~ o+l e _a2('y+1)
S Pg 1) [Ro™™ Ry > poiTe” o

where ﬁo is an independent copy of Ry. Putting everything together, we obtain

_ o __a ~% e _o?(y+D)
P_1,0) [Re > e 3T > P_y0) [Ro > 27347 |=P(_y,_1_+ [Ro T Rg > pTedTeT et }

Now by Theorem A in [16] we have
P14 [Ro>1 = t7*

for every x € R and since a(y + 1) > a + 1, we can also infer from Lemma 2 in [17] that

~aly+1) 0(at+1)
Pi—1oq) |[Ry™" Ro > t| = teGi.

This implies that there exists two finite constants ko > x; > 0 independent of y, ¢ such
that
o b _6 _ab
P10 [Rg >e¢ aﬂ} > KpE€otl — Ko piytleatt,

which completes the proof of the lower bound for p < o with pg = (k1/2k2)7FD/¢ > 0.

(o3
ay—1

Assuming finally u > po and setting g = MM{I and fip = pug for simplicity, we
have

P [ sup {L,(gl) +,ut1+7} < 5}
0<t<1

=P | sup {Lgl) —l—t“‘"’} < g/fT“]
lo<t<p

[ 1), 14y el
>P | sup <Ly’ +t < gjig
lo<t<m

at1
>P| sup {Lgl) +t1+7} <0, sup {Lgl) —|—t1+”} < efy© }
Lio<t<p 0<t<fio

>P| sup {L§1)+t1+7}
Lao<t<pi

=P | sup {Lgl) +t1+7} < O] P [ sup {Lgl) +M0t1+”} < 5]

0<t<1

IN

atl
0]1?{ sup {L,E”H”V} < efip” ]

0<t<po

for some x > 0, where the first and fifth equalities are obtained by scaling, the fourth
inequality follows from Lemma 3.1, and the last inequality is a consequence of the strict
positivity of fig. This completes the proof.
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Remark 4.1. Using the same argument and Lemma VIII.4 in [4], one can show the
following lower tail probabilities estimate for the Lévy stable process with a positive
power drift. If ay > 1 and p € (0, 1), then for every u > 0 one has

P [ sup {L:+pt"} < 5] = %P, 4.1)
0<t<1
We leave the detail, which is simpler than the above, to the interested reader. This esti-
mate for small values echoes the persistence result for large time obtained in Theorem
1 of [2], which reads

’ { sup {L;+ pt"} < 1] = T 4.2)

0<t<T

for every p > 0, with oy < 1,p € (0,1), and under the additional assumption « € (0,1).
Observe that in the absence of self-similarity, the estimates (4.1) and (4.2) are different
ones and cannot be deduced from one another, save for y = 0.
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