SCHEMATIC: Compile-time checkpoint placement and memory allocation for intermittent systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

SCHEMATIC: Compile-time checkpoint placement and memory allocation for intermittent systems

Jean-Luc Béchennec
STR
Mikaël Briday
STR
Sébastien Faucou
STR

Résumé

Battery-free devices enable sensing in hard-to-access locations, opening up new opportunities in various fields such as healthcare, space, or civil engineering. Such devices harvest ambient energy and store it in a capacitor. Due to the unpredictable nature of the harvested energy, a power failure can occur at any time, resulting in a loss of all non-persistent information (e.g., processor registers, data stored in volatile memory). Checkpointing volatile data in non-volatile memory allows the system to recover after a power failure, but raises two issues: (i) spatial and temporal placement of checkpoints; (ii) memory allocation of variables between volatile and non-volatile memory, with the overall objective of using energy as efficiently as possible. While many techniques rely on the developer to address these issues, we present SCHEMATIC, a compiler technique that automates checkpoint placement and memory allocation to minimize the overall energy consumption. SCHEMATIC ensures that programs will eventually terminate (forward progress property). Moreover, checkpoint placement and memory allocation adapt to the size of the energy buffer and the capacity of volatile memory. SCHEMATIC takes advantage of volatile memory (VM) to reduce the energy consumed, by automatically placing the most used variables in VM. We tested SCHEMATIC for different experimental settings (size of volatile memory and capacitor) and results show an average energy reduction of 51 % compared to related techniques.
Fichier principal
Vignette du fichier
SCHEMATIC.pdf (657.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04345348 , version 1 (14-12-2023)
hal-04345348 , version 2 (19-03-2024)

Licence

Identifiants

  • HAL Id : hal-04345348 , version 1

Citer

Hugo Reymond, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou, Isabelle Puaut, et al.. SCHEMATIC: Compile-time checkpoint placement and memory allocation for intermittent systems. CGO 2024 - IEEE/ACM International Symposium on Code Generation and Optimization, Mar 2024, Edinburgh, United Kingdom. pp.1-12. ⟨hal-04345348v1⟩
427 Consultations
240 Téléchargements

Partager

More