
HAL Id: hal-04345348
https://hal.science/hal-04345348v1

Submitted on 14 Dec 2023 (v1), last revised 19 Mar 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SCHEMATIC: Compile-time checkpoint placement and
memory allocation for intermittent systems

Hugo Reymond, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou,
Isabelle Puaut, Erven Rohou

To cite this version:
Hugo Reymond, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou, Isabelle Puaut, et al..
SCHEMATIC: Compile-time checkpoint placement and memory allocation for intermittent systems.
CGO 2024 - IEEE/ACM International Symposium on Code Generation and Optimization, Mar 2024,
Edinburgh, United Kingdom. pp.1-12. �hal-04345348v1�

https://hal.science/hal-04345348v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

SCHEMATIC: Compile-time checkpoint placement
and memory allocation for intermittent systems

Hugo Reymond∗, Jean-Luc Béchennec†, Mikaël Briday†, Sébastien Faucou†, Isabelle Puaut∗ and Erven Rohou∗
∗Univ Rennes, Inria, CNRS, IRISA - name.surname@irisa.fr

†Nantes Université, École Centrale Nantes, CNRS, LS2N - name.surname@ls2n.fr

Abstract—
Battery-free devices enable sensing in hard-to-access locations,

opening up new opportunities in various fields such as healthcare,
space, or civil engineering. Such devices harvest ambient energy
and store it in a capacitor. Due to the unpredictable nature of
the harvested energy, a power failure can occur at any time,
resulting in a loss of all non-persistent information (e.g., processor
registers, data stored in volatile memory). Checkpointing volatile
data in non-volatile memory allows the system to recover after
a power failure, but raises two issues: (i) spatial and temporal
placement of checkpoints; (ii) memory allocation of variables
between volatile and non-volatile memory, with the overall
objective of using energy as efficiently as possible.

While many techniques rely on the developer to address
these issues, we present SCHEMATIC, a compiler technique that
automates checkpoint placement and memory allocation to min-
imize the overall energy consumption. SCHEMATIC ensures that
programs will eventually terminate (forward progress property).
Moreover, checkpoint placement and memory allocation adapt to
the size of the energy buffer and the capacity of volatile memory.
SCHEMATIC takes advantage of volatile memory (VM) to reduce
the energy consumed, by automatically placing the most used
variables in VM.

We tested SCHEMATIC for different experimental settings (size
of volatile memory and capacitor) and results show an average
energy reduction of 51 % compared to related techniques.

Index Terms—Embedded systems, Intermittent computing,
Memory management, Checkpointing

I. INTRODUCTION

Battery-free devices allow sensing in hard-to-access loca-
tions, with low maintenance costs and environmental impact
[1–4]. These devices harvest energy from their environment
(sun, wind, vibrations) [5,6]. Instead of relying on a battery,
they store the harvested energy in a small energy buffer
(super-capacitor, capacitor for short in the rest of the paper).
The harvested energy is usually neither sufficient nor stable
enough to power the device continuously and perform long-
running computations. Therefore, program execution spans
over several computation phases, interleaved by power-off
states. The underlying model of computation is known as
intermittent computing [6].

Intermittent computing raises challenges for system design-
ers since all volatile data (CPU registers, such as the program
counter, and volatile memory, if any) is lost upon power-off. In
such context, any progress made since the last power failure is
lost, hindering the successful completion of the program. As
of today, different approaches have been designed to ensure
that programs will eventually terminate despite power failures

(forward progress property [7]). Such techniques rely on spe-
cialized hardware or on specific software techniques. At a soft-
ware level, many solutions have been developed to regularly
save volatile data into non-volatile memory (checkpointing).
Some solutions perform static checkpointing by computing
at compile-time the locations in program code where backup
operations will be performed [8,9]. Other solutions rely on
measurements to estimate the energy available in the capacitor
and trigger checkpointing operations just before the capacitor
runs out of energy (dynamic checkpointing [10,11]).

Microcontrollers used in intermittent computing often have
two kinds of memory: a fast, small and energy-efficient volatile
memory (VM) and a larger non-volatile memory (NVM).
The energy efficiency of VM would suggest storing all data
in VM to save energy (even with efficient emerging NVM
technologies such as FRAM, NVM accesses still consume
up to 2.47× more than VM accesses [12]). However, data
allocated in VM are lost in case of power failures, and
therefore have to be checkpointed in NVM, which introduces
an overhead. Additionally, the size of VM is limited, and in
general small (a few KB on most platforms). This is why
hybrid VM/NVM architectures allow splitting the memory of
a program between VM and NVM. Nonetheless, storing data
in NVM may result in inconsistencies between VM and NVM
when the application code is re-executed after a power failure
(memory anomalies [13,14]).

Our contribution. Putting the placement of checkpoints
and the memory allocation of variables under the exclusive
responsibility of the developers is time-consuming, error-
prone and may yield sub-optimal performance. We propose
SCHEMATIC1 to automate checkpoint placement and variable
allocation in hybrid VM/NVM architectures. The objective
of SCHEMATIC is to minimize the program’s energy con-
sumption while ensuring forward progress. At compile-time,
SCHEMATIC places checkpoints and decides of the memory
allocation of variables in polynomial time. At run-time, when
a checkpoint location is reached, volatile data is saved in NVM
and the platform waits until the capacitor is fully replenished.

SCHEMATIC relies on an energy-aware approach: it assumes
that the worst-case energy consumption (WCEC) of any ac-
tivity in the system is known and leverages this knowledge
to place checkpoints, such that all the code between two
checkpoints can always be executed with no power failure.

1SCHEMATIC stands for Simultaneous Checkpoint Placement and Memory
Allocation Tailored for Intermittent Computing

2

Therefore, SCHEMATIC ensures that any code will eventually
terminate (forward progress). Execution never rolls back, thus
no energy is wasted in re-executions.

In contrast to previous approaches that concentrate on either
checkpoint placement or memory allocation, SCHEMATIC is,
to the best of our knowledge, the first contribution to address
both problems simultaneously. Additionally, SCHEMATIC
takes into account the restricted size of VM, a considera-
tion overlooked by related work. An extensive evaluation of
SCHEMATIC compared to existing techniques shows that it
allows significant energy reductions (51 % on average), and
that it is able to run programs correctly until termination when
other solutions cannot.

The remainder of this paper is organized as follows. Sec-
tion II first gives a motivating example for SCHEMATIC
and describes the research problem addressed. Section III
is then devoted to an in-depth description of the compile-
time and run-time operations carried out by SCHEMATIC. An
experimental evaluation of SCHEMATIC is given in Section
IV. SCHEMATIC is compared to related work in Section V.
We discuss SCHEMATIC safety in Section VI. Finally, Section
VII concludes the paper.

II. MOTIVATIONS AND PROBLEM STATEMENT

A. Motivating example

Let us motivate the rationale behind SCHEMATIC on a
simple yet realistic example, depicted in Figure 1. The C
code in the figure computes the sum of the elements of
an array (variable array) and stores it in the scalar variable
sum. Variable sum is subsequently used as a parameter to a
function call to function f. For the sake of demonstration, we
assume that compiler optimizations do not promote variables
to registers. Let us consider a static checkpointing scheme,
that saves all volatile data (variables and registers) in NVM
at predetermined code locations (through a call to function
save state in the figure).

1 i n t sum = 0 ;
2 s a v e s t a t e () ;
3 f o r (i n t i = o f f s e t ; i<SIZE ; i ++)
4 sum += a r r a y [i] ;
5 / * * /
6 s a v e s t a t e () ;
7 c l a s s = f (sum) ;
8 s a v e s t a t e () ;

Fig. 1. Source code for a motivating example

1) Motivation for energy-efficient memory allocation:
During the first phase of the program (lines 3–4), variable sum
is frequently accessed. Thus, the energy gain of storing sum
in VM counterbalances the cost of loading it from NVM at
startup and saving it in NVM on a checkpoint. Allocating sum
to VM is the best option in this case.

During the second phase of the program (line 7), assumed
to take place much later, keeping sum in NVM is more
appropriate, since loading it in VM would consume more
energy than the energy gained for the unique access to sum.
This motivates the need for a method that changes the memory
allocation of variables during the program execution.

Since the size of the VM is limited, not all variables
can be allocated in VM, even though it would be energy-
efficient to do so. To avoid the cumbersome task of manual
memory allocation of variables, compiler support for memory
allocation, as provided by SCHEMATIC is obviously valuable.

2) Motivation for joint memory allocation and check-
point placement: The decision-making process for check-
point placement is inherently linked to memory allocation. For
instance, it may happen in Figure 1 that there is not enough
energy to execute the code between lines 2 and 6 if variable
sum is allocated to NVM, whereas it becomes possible to do
so when sum is stored in VM.

Conversely, the selection of a memory allocation depends on
the location of the checkpoints. As an example, if a checkpoint
is placed in the loop body (line 4) there may no longer be a
benefit in allocating sum to VM as it would require checkpoint-
ing at each iteration. Furthermore, checkpoint locations are
natural points to change the memory allocation of variables,
since saving a checkpoint copies a variable in NVM and
therefore hides variable migration overhead.

As one can see, the memory allocation and checkpoint
placement problems are inter-dependent and should be solved
jointly. The complexity of solving both problems simultane-
ously motivates compiler support.

SCHEMATIC provides such a compiler support for statically
selecting the location of checkpoints in the code and jointly
selecting the allocation of variables, that may change only
at these points. The technique is fully automatic, minimizes
the overall energy consumption (including checkpointing over-
head) and copes with the limited capacity of the VM.

B. Problem statement
More formally, the research problem addressed by

SCHEMATIC is the following.
Inputs and assumptions:
• SCHEMATIC assumes a hybrid architecture with NVM

and VM, as displayed in Figure 2. The NVM is assumed
to be large enough to store all application code and data.
The VM is assumed to be smaller, with a size SVM.

• The platform is equipped with a capacitor with known
limited energy storage EB .

• A safe yet precise worst-case energy consumption model
is provided as an input to SCHEMATIC.

The energy available in the capacitor (EB) depends on
many factors such as manufacturing, aging or temperature
[15,16]. The evaluation of EB is discussed in Section VI and
is considered as outside of the scope of this paper.

Problem statement: SCHEMATIC addresses the problem of
checkpoint placement and variable allocation in intermittent
computing systems, in order to minimize energy consumption.

Guarantees:
• Forward progress. Checkpoint placement in SCHEMATIC

guarantees that any calculation eventually terminates: the
execution will not remain trapped in endless re-executions
due to repetitive power failures.

• Absence of memory anomalies. SCHEMATIC prevents
code re-executions by making sure that the energy re-
quired to run the program between any two successive

3

CPU

VM NVM

Energy
buffer

Energy source
(solar panel)

Fig. 2. Considered architecture

Save
volatile data

Replenish
capacitor

Restore
volatile data

Execute
program

Time

E
n
er
gy EB

Ent
er

slee
p mode Exi

t

slee
p mode Ent

er

slee
p mode

Checkpoint location reached Checkpoint location reached

Fig. 3. Checkpointing strategy of SCHEMATIC

checkpoints is always below EB , and that the capacitor
is replenished at each checkpoint location. As a conse-
quence, inconsistencies between VM and NVM (memory
anomalies) are avoided by design.

• Best-effort energy minimization. Checkpoint placement
and memory allocation are designed to minimize energy
consumption on the most frequently executed paths.

• Efficient usage of VM. SCHEMATIC allocates variables
in VM to reduce energy consumption, and transparently
ensures that at any time, the volume of data allocated to
VM is lower than or equal to SVM.

III. SCHEMATIC: JOINT CHECKPOINT PLACEMENT AND
MEMORY ALLOCATION

A. Overview of SCHEMATIC

SCHEMATIC provides a compile-time technique that both
determines (i) the locations where volatile data is saved in
NVM (checkpoint locations) and (ii) the allocation of variables
(VM or NVM) between checkpoint locations.

At run-time, when a statically-selected checkpoint location
is reached, volatile data (processor registers, data allocated
in VM) is saved in NVM (see Figure 3, label). Then
the system remains in standby until the capacitor is fully
charged (). During this standby period, the system is put
into sleep mode and wakes up regularly to measure the voltage
across the capacitor. Should a power failure occur during a
standby period, the system goes back to sleep on restart. When
measurements indicates that the capacitor is fully charged, the
state of the program is restored (), and the execution is
resumed (). The top curve in Figure 3 depicts the evolution
of the state of charge of the capacitor during the different
phases (program execution, energy replenishment).

SCHEMATIC determines variable allocations (VM or NVM)
at compile-time. The allocation of a variable may change
at run-time, but the points where the allocation may change
(checkpoint locations) are defined at compile-time. Memory

allocation is performed at the granularity of variables in the
source code (scalars, structs, arrays considered as a whole).

SCHEMATIC analyzes and modifies a program using its
Control Flow Graph (CFG) representation. The execution of a
program may give rise to a number of execution paths at run-
time, a path being defined as an ordered sequence of basic
blocks, starting from the CFG’s entry point and ending at one
of its exit points.

SCHEMATIC positions the checkpoint locations and selects
the allocation of variables with the objective of minimizing
the energy required to run the most frequently executed paths
(path frequency is determined experimentally as detailed in
section III-A3). The flow of the algorithm is as follows:

1) Select a path to analyze.
2) Decide on checkpoints placement and memory alloca-

tion along this path, such that computations between
checkpoints, given the selected allocation of variables,
can be executed within the energy budget EB .

3) Modify the program code to insert save/restore instruc-
tions at selected checkpoint locations and set the targets
of memory accesses (VM or NVM) according to the
selected memory allocation.

4) Repeat the process until all basic blocks of the CFG
have been analyzed. The decisions made by SCHEMATIC
along a path are final. When examining a yet unpro-
cessed path, the memory allocations and checkpoint
placements are inherited from the previous iterations.

The locations SCHEMATIC is considering for checkpoint
placement are the CFG edges. During the program analysis
performed by SCHEMATIC, some of the potential checkpoints
locations become enabled, meaning that instructions are in-
serted in the code to save and restore volatile data. The
remaining checkpoints locations are disabled. They do not
result in any overhead since checkpoint locations are selected
at compile-time.

Sections III-A1 to III-A3 first describe SCHEMATIC check-
point placement and memory allocation on a simple pro-
gram. Section III-B then focuses on how SCHEMATIC handles
function calls and loops. Finally, Section III-C derives the
complexity of SCHEMATIC’s analysis.

1) Analysis on one path using the Reachable Checkpoint
Graph (RCG): In this section, we describe how SCHEMATIC
analyzes a path on an example CFG depicted in Figure 4.a. The
locations SCHEMATIC is considering for checkpoint placement
are edges AB, AC, BD and CD, resulting in four potential
checkpoint locations (cAB, cAC , cBD and cCD)2. Let us consider
that the path (A,B,D) is analyzed first. Figure 4.b displays
information along this path before analysis. The goal of the
analysis is to set the memory allocation of sum on this path,
as well as the status of the checkpoint locations cAB and cBD:
enabled (a checkpoint will be inserted at this location) or
disabled.

The analysis uses the concept of Reachable Checkpoint
Graphs (RCGs). A RCG is built from a given CFG path, and

2Without loss of generality, we assume that basic blocks need less than
EB energy to execute (those requiring more than EB are split to fit in the
energy budget).

4

A

B C

D

cAB cAC

cBD cCD

a. Analyzed CFG

A

sum 3

B

sum 2

D

sum 5

cAB?

cBD?

b. Path (A,B,D)
before analysis

A

sum 3

B

sum 2

D

sum 5

cAB✓

cBD✗

c. Path (A,B,D)
after analysis

su
m

in
N
V
M

su
m

in
V
M

Basic block Potential checkpoint location?

Checkpoint location enabled✓ Checkpoint location disabled✗

Fig. 4. Analysis of path (A,B,D) for checkpoint placement and memory
allocation selection. Part a. depicts the analyzed CFG. Part b. depicts the status
of path (A,B,D) before the analysis: potential checkpoint locations (cAB ,
cBD) are tagged with “?” because it is yet undecided if a checkpoint will be
inserted at those locations; for each basic block the figure depicts the variables
accessed (here only a variable named sum) and the number of accesses (read
and write accesses aggregated for brevity). Part c. depicts the result of the
analysis: a checkpoint is inserted on edge AB, variable sum is allocated in
NVM before that checkpoint and in VM after.

captures the energy consumed between potential checkpoint
locations. A node of the RCG represents a potential checkpoint
location cx. An edge (c1, c2) in the RCG links two potential
checkpoint locations c1 and c2. An edge (c1, c2) exists if it
is possible to reach c2 from c1 in less than the energy budget
EB . Each edge is associated with an energy cost and a memory
allocation. The cost corresponds to the energy needed to reach
c2 from c1 considering the memory allocation of each variable
(VM or NVM) that results in minimal energy consumption.
The energy cost includes:

• The energy to restore the volatile data at location c1.
• The energy to execute the basic blocks along the analyzed

path with the selected memory allocation. Selection of a
memory allocation is detailed in the next paragraph.

• The energy to save volatile data into NVM at location c2.

The absence of an edge from c1 to c2 means that there is
no memory allocation that makes it possible to reach c2 from
c1 with energy budget EB .

Two virtual nodes start and end represent the beginning
and the end of the analyzed path. Each path from start to
end corresponds to a valid placement of checkpoints for the
analyzed path, with its corresponding memory allocations.
The shortest path from start to end therefore represents the
checkpoint placement and memory allocation that minimizes
the energy consumed along the path. All checkpoint locations
along the shortest path are enabled, while other checkpoint
locations in the RCG are disabled. The selected memory
allocations are the ones appearing on the edges of the shortest
path.

Figure 5 represents the RCG for the CFG path (A,B,D).
We consider a platform energy budget EB of 20 energy units.
Potential checkpoint locations for this path are cAB and cBD.
The RCG contains two possible paths from start to end. We

Start

cAB

cBD

End

E = 16
sum in
NVM

E > EB :
cannot reach

cBD from Start
E > EB :

cannot reach
End from StartE = 9

sum in
NVM

E = 12
sum in
VM

E = 19
sum in
VM

Fig. 5. Reachable Checkpoint Graph (RCG) for path (A,B,D) for an energy
budget EB of 20 energy units. Each edge in the RCG indicates the energy
consumed (labeled E) to go from one potential checkpoint location to another
one, for a given allocation of variables (here variable sum). Dashed lines
indicate edges absent from the RCG due to E exceeding the budget EB .

can either choose cAB and cBD as checkpoint locations – path
(start, cAB, cBD, end) –, or only enable cAB – path (start, cAB,
end). The shortest path in this case is (start, cAB, end) thus
we will only insert instructions to save/restore volatile data at
checkpoint location cAB (between the basic blocks A and B).
The total cost of executing this path is 35 energy units. Figure
4.c depicts the result of the analysis.

2) Selection of a memory allocation: In order to build the
RCG, the energy required to go from a potential checkpoint
location c1 to another potential checkpoint location c2 has
to be determined, and this cost obviously depends on the
allocation of variables referenced in the interval [c1, c2], for
the path under analysis.

The selection of the memory allocation of each variable is
based on a cost function, that defines the gain obtained by
placing a variable v in VM compared to NVM.

There is an energy gain when performing each access to VM
instead of NVM (∆EW for a write access, ∆ER for a read
access). On the downside, there is an energy cost of Esave/restore
when allocating a variable v in VM, due to the overhead of
restoring the variable at checkpoint c1 and saving it in NVM
at checkpoint c2. The overall gain is therefore:

gainv = ∆EW × nW +∆ER × nR − Esave/restore (1)

where nW and nR are the numbers of write and read accesses
to v in the interval. Repetitive accesses to a variable are
required to recoup the overhead of checkpointing the variable.

Calculating this gain for all variables not only gives infor-
mation on the benefit of placing a variable in VM, but also
allows us to prioritize variables to be stored in VM in case
of limited VM space. In order to maximize the overall gain
for a limited size memory, SCHEMATIC sorts the variables
by decreasing gain to size ratios. Thus, if multiple variables
share the same gain, the smaller ones are allocated in priority,
allowing to fit more variables in VM. Variables are allocated in
VM contiguously, until either the list of variables with positive
gains is exhausted or the VM is full.

Remark that each variable v in SCHEMATIC has a single
address in NVM, attributed by the compiler toolchain. Addi-
tionally, when SCHEMATIC allocates a variable in VM in an
interval [c1, c2], it is given an address in VM, that does not

5

change in the interval. Nevertheless, v may be attributed a
different address in VM if loaded in VM for another interval.

Optimization of checkpointing by accounting for vari-
able liveness. SCHEMATIC exploits information about the
liveness of variables to reduce the checkpointing overhead.
If a VM variable v is not used after a checkpoint c2, we do
not need to save it. Similarly, if the first access to v after a
checkpoint c1 is a write access, we do not restore it, as its
value will be overwritten.

The overhead Esave/restore used in SCHEMATIC (see Equation
1) for a variable v depends on its size but also on its liveness,
and is computed as follows:

Esave/restore = Erestore × live c1 + Esave × live c2 (2)

where Erestore represents the cost to restore v, Esave the cost
to save v and live X equals 1 if v is live at the checkpoint
location X , and equals 0 otherwise.

3) Path exploration and coverage issues: To reduce con-
sumed energy in priority for the most common paths, the dif-
ferent paths are iteratively analyzed, by decreasing frequency.
The decisions made by SCHEMATIC along a path are final.
Path prioritization is performed by extensive instrumentation
of the code with varied input data, to gather execution traces,
formed of sequences of executed basic blocks. Traces are
sorted on a per-function basis. It may happen that despite
extensive instrumentation, some portions of code never get
executed. Paths are formed from these never-executed codes
from the CFG, and are analyzed at the end of the algorithm
to ensure complete code coverage.

When analyzing a new path p, only the segments of p that
do not overlap with already analyzed paths are explored. The
exploration of those segments inherits from the results for
already analyzed paths, in the following way. Information is
attached to the basic blocks from already analyzed paths: the
memory allocation for the basic block, the energy left after its
execution Eleft and the energy to leave to the basic block in
order to be able to reach the next checkpoints Eto leave.

When constructing the reachable checkpoint graph for a
segment of path p containing already analyzed basic blocks,
the criteria to determine if an edge (ci, cj) is present in the
RCG slightly changes. Specifically, the following adjustments
are made:

• When evaluating the edges originating from the start
node, the criterion taken into account is Eleft, rather than
the energy budget EB .

• Similarly, for the edges directed towards the end node, the
criterion shifts from the EB to the difference between the
energy budget and the energy to leave (EB −Eto leave).

The energy left and energy to leave are recomputed and
propagated after each new path analysis. Through the whole
analysis, the energy left can only decrease while the energy
to leave can only increase. By doing so, the analysis of new
paths adapts to the constraints imposed by previously analyzed
paths, guaranteeing a conservative checkpoint placement.

In our example, basic block A holds the information that the
energy left after its execution is 4 (EB = 20, A’s execution cost
is 16). The energy to leave to A in order to reach checkpoint

cAB is 16. This energy may increase if no checkpoint is placed
at cAC .

B. Handling of function calls and loops

1) Handling of function calls: The main challenge with
functions is that they can be called from different places in
the code. As checkpoint placement and memory allocation
of a function is decided at compile-time and is context-
independent, the decisions taken have to be the same for all
calling contexts.

Functions are analyzed through a traversal of the function
call graph, in reverse topological order, such that every func-
tion is always analyzed before its caller. SCHEMATIC currently
handles non-recursive functions only.3 A decision (checkpoint
placement, memory allocation), taken for a given function in
the call graph is imposed to the predecessor function(s) in the
call graph. Analysis of functions is greedy: once a decision is
taken for a given function, it is never reconsidered later on.

The analysis of leaf functions (functions with no successor
in the call graph) proceeds as previously described in Section
III-A. For a function fcaller that includes a call to a function
fcallee, one must take into account the constraints established
by the analysis of fcallee.

If fcallee does not include any checkpoint, then all of its
basic blocks share the same memory allocation, as changes
of memory allocation are performed on checkpoints. In this
case, we can treat the function call to fcallee as a single
basic block in the analysis of fcaller. On the other hand, if
fcallee does have one or several checkpoints, then there may
be different variable allocations when entering and exiting the
function. Therefore, when analyzing fcaller, we must take into
account the memory allocation and energy required to execute
fcallee up to the first checkpoint(s) in fcallee, as well as the
memory allocation and remaining energy when exiting fcallee.
We further impose when analyzing a function that there is a
single memory allocation when exiting the function, regardless
of the number of exit points.

2) Handling of loops: We handle loops in a manner sim-
ilar to functions. SCHEMATIC handles natural loops (strongly
connected components of the CFG with a single entry point,
called loop header). Without loss of generality, our description
of loop handling in SCHEMATIC will assume a single back-
edge (CFG edge from any basic block of the loop body back
to the loop header) per loop. The source node of the back edge
is named loop latch.

Loops are analyzed through a bottom-up traversal of the
loop nesting tree (i.e., in the case of nested loops, inner loops
are analyzed before outer loops).

A straightforward approach for handling loops would be
to place a checkpoint on the loop back-edge and ensure
one iteration of the loop can be executed within the energy
budget. This guarantees the loop forward progress, but leads
to unnecessary checkpointing overhead. Instead, we estimate
the maximum number of loop iterations that can be executed
before it is necessary to perform a checkpoint and then

3We do not consider this as a significant restriction, since recursion is
usually considered as a bad practice in embedded system development.

6

implement a conditional checkpointing scheme based on the
number of iterations performed.

Loop analysis is performed in two steps, detailed below and
shown in Algorithm 1:

Step 1. Analysis of one iteration (line 1). This first step
processes one iteration of the loop using the algorithm of
Section III-A. The algorithm is applied on the loop body
with the back-edge removed. The result of the analysis is the
memory allocation of the variables accessed in the loop body
and the placement of checkpoints for one iteration of the loop.
The algorithm will choose to place a checkpoint only if there
is not enough energy to execute the entire loop body.

Step 2. Analysis of the entire loop (lines 2–10). The ob-
jective of this step is to decide if a checkpoint has to be
placed on the loop back-edge, and how many iterations can
be performed without saving volatile data. If the loop header
and loop latch memory allocations are not the same, we need
to place a checkpoint in order to change memory allocations
between those two basic blocks (line 2).

If the loop header and the loop latch share the same memory
allocation, it is not necessary to change memory allocation
at each iteration. To reduce the overhead of checkpointing,
a conditional checkpointing scheme is designed: save/restore
operations occur once every numit loop iterations,with numit
the number of loop iterations that can be executed within the
energy budget of the platform EB (lines 5–10).

When numit is greater than the maximum number of it-
erations of the loop, no conditional checkpointing code is
inserted. The maximum number of iterations of loops is
provided using annotations.

Algorithm 1 Loop analysis in SCHEMATIC

▷ Step 1. Analyze the loop body, without the backedge
1: ANALYZECFG(LoopBodyNoBackedge)
▷ Step 2. Determine if a backedge checkpoint is needed
2: if header.mem alloc ̸= latch.mem alloc then
3: backedge chkpt← yes
4: return
5: Eloop ← header.Eleft − latch.Eleft

6: numit ← ⌊
EB

Eloop
⌋

7: if numit > maxit then
8: backedge chkpt← no
9: else

10: backedge chkpt← every numit iterations

C. Complexity considerations

In this section, we derive the complexity of the analysis of
SCHEMATIC, based on the number of edges (E) and nodes
(V) in a CFG.

To do so, we first focus on the complexity of the analysis of
one path, that involves three main steps, namely building the
RCG, identifying the shortest path in the RCG, and inserting
checkpointing instructions into the code.

Building the RCG involves examining every possible com-
bination of potential checkpoint location (ci, cj) where i < j.
This process can be accomplished in polynomial time, specif-
ically O(E2). The next step, finding the shortest path in the

RCG, is accomplished using Dijkstra’s shortest-path algo-
rithm, which has a time complexity of O((E + V)× log(V)).
Finally, inserting checkpointing instructions into the code
involves examining each edge of the analyzed path, and can be
performed in linear time, specifically O(E). Overall, the time
complexity of analyzing a path is O((E+V)× log(V)+E2).

Since, in SCHEMATIC, a path is analyzed only if one of its
basic block has not already been analyzed, there is at most
one path analyzed per basic block. As a result, there will be
a maximum of V analyses performed, leading to an overall
polynomial complexity of O(V × ((E + V)× log(V) +E2))
for analyzing.

Empirically, the execution time of the analysis of
SCHEMATIC is around 1 min (71 s on average) when applied
on the benchmarks considered in Section IV.

IV. EXPERIMENTAL EVALUATION

Contrary to many intermittent computing systems,
SCHEMATIC memory allocation enables the execution of
applications even when their data exceeds VM size. This
property is evaluated in Section IV-B. SCHEMATIC also
provides automatic placement of checkpointing operations
to guarantee forward progress. This facility is evaluated in
Section IV-C. Section IV-D compares the energy consumption
of SCHEMATIC with the one of related techniques. The
memory allocation performed by SCHEMATIC is evaluated
in Section IV-E. Finally, the impact of the capacitor size on
consumed energy is studied in Section IV-F. The experimental
setup is first presented in Section IV-A.

A. Experimental setup

a) Target hardware and energy model: Our experi-
ments target the MSP430FR5969 [12], a deterministic low-
power platform with a 64 KB ferromagnetic RAM NVM and
a 2 KB SRAM VM. By default a 16 MHz operating frequency
is assumed.

The worst-case energy consumption model used in experi-
ments focuses on CPU energy consumption. We use the same
energy model (taken from ALFRED [17]) for a fair comparison
between all techniques. The energy spent per instruction is
calculated from the instruction execution time and the type of
memory access (VM or NVM) (see [17] for details). We do
not currently consider the energy consumption of peripheral
devices in our model, since the tested benchmarks are not
using peripherals.

b) Baselines: We compared SCHEMATIC with four base-
lines: RATCHET, MEMENTOS, ROCKCLIMB and ALFRED.
These techniques were selected because they all rely on static
selection of checkpoints locations as SCHEMATIC does.

• RATCHET [9] is designed for systems only equipped with
NVM. To deal with memory incoherence resulting from
re-executions, RATCHET leverages compile-time instru-
mentation to place static checkpoints, in order to break
write-after-read dependencies (such as incrementing a
variable). Since RATCHET does not use VM, the CPU
registers are the only volatile data to checkpoint. We use
RATCHET as an All-NVM baseline.

7

• MEMENTOS [8] only uses VM as working memory and
relies on compile-time selection of potential checkpoint-
ing locations. At runtime, MEMENTOS takes decisions
about whether a checkpoint should be skipped or not,
given the energy left. To estimate the energy available, it
measures the voltage across the capacitor. MEMENTOS is
used as an All-VM baseline, since it uses NVM only for
checkpointing.

• ROCKCLIMB [18] is a compile-time checkpoint place-
ment algorithm using only NVM as working memory.
The first compiler pass of ROCKCLIMB systematically
places checkpoints at loop headers and before function
calls. Its second pass is responsible for inserting addi-
tional checkpoints, if needed, to ensure forward progress:
it traverses the program CFG and adds checkpoints on the
paths for which the energy consumption between succes-
sive checkpoints is higher than EB . We re-implemented
ROCKCLIMB and its loop unrolling optimization. That
optimization unrolls loops to avoid saving checkpoints at
each loop iteration (we nonetheless limit the unrolling
factor to 10 to keep code size limited).

• ALFRED [17] is the only compile-time technique that,
like SCHEMATIC, uses both VM and NVM as working
memories. It reduces checkpointing overhead, by per-
forming deferred restoration of variables (on their first
read) and anticipated saving of variables (on their last
write). ALFRED does not impose a checkpoint placement
strategy and rather relies on existing work for static
checkpoint selection. When reaching a checkpoint, only
the CPU registers are saved in NVM, since all other
volatile data has been saved previously. VM in ALFRED is
used as much as possible, to reduce energy consumption.

For MEMENTOS and ALFRED, we placed checkpoints on loop
latches, as described in the MEMENTOS publication [8].

c) Tools and implementation: Similarly to ALFRED,
SCHEMATIC operates on the Intermediate Representation (IR)
of the LLVM compiler infrastructure [19] (version 8), more
precisely, on the textual representation of the IR generated
by the clang compiler. To allow a fair comparison between
techniques, all of them were re-implemented inside SCEP-
TIC [13,20], the infrastructure developed by the authors of
ALFRED. SCEPTIC allows the analysis, modification and
emulation of programs at the IR level. It enables precise
monitoring of the energy consumption, allowing to understand
how the available energy is utilized (computation, memory
accesses, . . .)

SCHEMATIC is implemented in multiple compilation passes.
The first one (already implemented in SCEPTIC) gathers
information about the targets of the load and store instruc-
tions. Then, the CFG of the program, augmented with the
data gathered by the first pass, is fed into the central pass
of SCHEMATIC, which selects checkpoints placement and
memory allocation as described in Section III. The two final
passes modify the program by setting the memory targeted
by load/store operations according to the computed memory
allocations and inserting save/restore operations.

In the current implementation of SCHEMATIC, variables ac-
cessed through pointers are systematically allocated in NVM.

By doing so, we guarantee that their addresses do not change
during the program execution. We believe this does not cause
much performance loss since variables accessed through point-
ers are usually large arrays that SCHEMATIC would probably
allocate in NVM.

The evaluation of the runtime behavior of SCHEMATIC,
ALFRED, ROCKCLIMB, RATCHET and MEMENTOS relies
on the SCEPTIC emulator, which executes programs at IR
level, under intermittent power supply. To determine when
power failures happen in a simple and reproducible way,
the emulator relies on periodic power failures, through the
notion of time between power failures (TBPF), which defines
the time interval in cycles between power failures [9,18,21].
The SCEPTIC emulator monitors several program metrics at
the IR level and provides bindings to map those metrics to
machine-specific metrics, in particular the MSP430FR5969
energy consumption.

Execution traces of the basic blocks used by SCHEMATIC
for checkpoint placement and memory allocation were gener-
ated using the SCEPTIC emulator by executing each bench-
mark 1000 times with randomly-generated inputs for each run.

d) Benchmarks: SCHEMATIC is evaluated on the
MiBench2 benchmark suite [22]. We restrict our analysis to
the benchmarks whose overall memory consumption is lower
than 64 KB, the NVM size of the MSP430FR5969. We also
rule out benchmarks stringsearch and rsa that does not execute
correctly on the current version of SCEPTIC. The evaluated
benchmarks, that include the ones used in the evaluation of
ALFRED in [17], are: aes, basicmath, bitcount, crc, dijkstra,
fft, randmath and rc4.

B. Ability to support limited VM space

Volatile memory size can rapidly become a restricting factor
on low-power embedded platforms, even with very small
programs. To the best of our knowledge, no mixed VM/NVM
memory allocation method takes this constraint into account.
To highlight this issue, we have evaluated, for each studied
technique (RATCHET, MEMENTOS, ROCKCLIMB, ALFRED
and SCHEMATIC) if it could execute the benchmarks on a
MSP430FR5969 board (64 KB NVM, 2 KB VM). Results are
given in Table I.

RATCHET MEMENTOS ROCKCLIMB ALFRED SCHEMATIC

✓✓✓✓✓✓✓✓ ✓✓✓✓✗✗✓✗ ✓✓✓✓✓✓✓✓ ✓✓✓✓✗✗✓✗ ✓✓✓✓✓✓✓✓

✓: the benchmark can be executed with the limited VM size
✗: VM size is not large enough

TABLE I
ABILITY TO SUPPORT LIMITED VM SPACE. THE SERIES OF EIGHT

SYMBOLS REPRESENTS THE BENCHMARKS: aes, basicmath, bitcount, crc,
dijkstra, fft, randmath, rc4.

RATCHET and ROCKCLIMB use NVM as working memory
so they do not require VM at all. They can therefore, by design,
run all benchmarks. However, as NVM-only techniques, they
do not benefit from the energy reductions that would be
possible with VM.

MEMENTOS uses VM as working memory for all variables.
Thus, it cannot run benchmarks with cumulated variable size

8

larger than the VM size, which is the case for dijkstra (that
needs 30 KB of VM), fft (16.7 KB) and rc4 (6.5 KB).

ALFRED relocates memory accesses to use VM only when
profitable regarding energy consumption. However, since it
uses the same offset to access both data in VM and data in
NVM, a large VM size (identical to NVM size) is needed,
even if only a few bytes are actually accessed. This explains
why ALFRED, like VM-only techniques, is unable to run
benchmarks dijkstra, fft and rc4.

SCHEMATIC takes benefit of the energy reduction provided
by VM while accounting for its limited capacity. It is therefore
able to run all the benchmarks for any data size.

Overall, only RATCHET, ROCKCLIMB and SCHEMATIC are
able to execute all benchmarks with the VM size of the
MSP430FR5969 platform. However compared to RATCHET
and ROCKCLIMB, SCHEMATIC takes benefit from the energy
reduction resulting from the use of VM.

C. Ability to enforce forward progress

The ability of the studied techniques to enforce progress
is evaluated by testing them on the same simple intermittency
scenario, consisting of periodic power failures of period TBPF
(time interval between power failures). The techniques were
tested for different values of TBPF, that were chosen according
to the duration of the benchmarks. We measured the execution
time (in clock cycles, with all data in VM) of the benchmarks
to select a range of TBPF that allows us to cover different
situations, from no failure during the program execution to
frequent failures (see Table II). The resulting TBPF are 1k,
10k, and 100k clock cycles. For each value of TBPF we set
EB to the average amount of energy that is consumed by the
platform in the interval.

Benchmark Execution time Minimal number of power failures
(in clock cycles) for TBPF= 1k 10k 100k

aes 1 079 363 1080 108 11
basicmath 169 599 170 17 2
bitcount 819 411 820 82 9
crc 41 133 42 5 0
dijkstra 1 381 746 1382 139 14
fft 377 578 378 38 4
randmath 15 062 16 2 0
rc4 437 335 438 44 5

TABLE II
EXECUTION TIME AND MINIMAL NUMBER OF POWER FAILURES FOR EACH

time between power failures PER BENCHMARK (IN CLOCK CYCLES)

Table III shows if the benchmarks finish their execution or
not, for all baselines and TBPF values.

ALFRED, MEMENTOS and RATCHET do not adapt to
the platform characteristics thus they cannot ensure for-
ward progress for small values of TBPF. ROCKCLIMB and
SCHEMATIC, on the other hand, adapt their checkpoint place-
ment to always ensure forward progress. We consider a TBPF
of 10k as a good trade-off between extreme-intermittency and
no-intermittency for the benchmarks considered. Therefore, we
used this value for the experiments presented in Sections IV-D
and IV-E.

Baseline TBPF (cycles)
1k 10k 100k

RATCHET ✗✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓
MEMENTOS ✗✓✗ ✗ ✗ ✗ ✗ ✗ ✗✓✓✓✗ ✗ ✗ ✗ ✓✓✓✓✗✓✓✓

ROCKCLIMB ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓
ALFRED ✗ ✗✓✓✓✓✗✓ ✓✓✓✓✓✓✗✓ ✓✓✓✓✓✓✓✓

SCHEMATIC ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓

✓: the benchmark could terminate. ✗ : the benchmark could not complete.

TABLE III
ABILITY TO ENFORCE FORWARD PROGRESS. THE SERIES OF EIGHT

SYMBOLS REPRESENTS THE BENCHMARKS: aes, basicmath, bitcount, crc,
dijkstra, fft, randmath, rc4.

D. Overall energy consumption

Reducing the energy consumption of intermittent programs
is crucial, as it enables battery-less devices to accomplish more
computations with the same amount of harvested energy. This
also reduces the time spent replenishing the capacitor, thereby
improving the system’s throughput. This section evaluates the
energy consumption of the eight considered benchmarks (in-
termittency management included) for periodic power failures.

Figure 6 displays the energy consumption of the considered
benchmarks for a TBPF of 10k cycles for all analyzed tech-
niques. Each bar in the figure splits the energy consumption
in four categories:

• Computation (): energy for program execution, includ-
ing the energy cost of memory accesses, and excluding
the energy costs of re-executions after a power failure for
the techniques that need re-executions;

• Save (): cumulated energy spent saving volatile data in
NVM at checkpoint locations. This energy cost depends
on the number of checkpoints saved and the size of
checkpointed data;

• Restore (): cumulated energy spent restoring volatile
data when re-starting the platform after a power outage;

• Re-execution (): cumulated energy spent re-executing
code for the techniques that roll-back to the previous
checkpoint after a power failure.

Common observations can be made regardless of the bench-
mark under analysis.

First, SCHEMATIC allows in general a reduction of the
overall energy consumption compared to the other solutions.
On average, SCHEMATIC consumes 51 % less energy than
the four baselines (the comparison was performed on the
benchmarks that completed only).

Secondly, SCHEMATIC and ROCKCLIMB do not spend any
energy in re-execution as they safely place checkpoints in the
program and wait for full-replenishment of the capacitor.

Third, the energy consumption devoted to computations
differs among techniques. This comes from their different
memory allocations. As expected, MEMENTOS consumes the
least energy in program execution since all data is allocated in
VM, unlike RATCHET and ROCKCLIMB, which store all data
in NVM. ALFRED and SCHEMATIC, on the other hand, opt
for mixed memory allocation allowing them to consume less
than All-NVM techniques.

Fourth, in comparison to the other techniques, SCHEMATIC
saves checkpoints far less often and for a reduced subset of

9

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

0

50

100

150

✗✗✗

E
n
er
g
y
co

n
su

m
p
ti
o
n
(µ

J
)

basicmath crc randmath

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

Ra
tc
he
t

M
em

en
to

s

Ro
ck
cl
im
b

Al
fr
ed

Sc
he
ma

ti
c

0

500

1,000

1,500

✗✗✗✗

Reexecution

Restore

Save

Computation

aes bitcount fft dijkstra rc4

Fig. 6. Overall energy consumption of the eight benchmarks for the different techniques and a TBPF of 10k cycles. Benchmarks that could not be completed
are marked with a red cross (✗).

memory. Thus, the overall overheads for saving volatile data
in SCHEMATIC are smaller than those of the other techniques.

Finally, SCHEMATIC and ROCKCLIMB tend to spend more
energy in variable restoration compared to the other tech-
niques. This comes from the fact that both techniques save and
restore volatile data at all checkpoint locations, conservatively
assuming that the platform goes into deep sleep and thus VM
is lost. A more efficient handling of the sleep modes (e.g.,
that would avoid saving data when there is enough energy
to do so) is left for future work. It should be noted that,
even in this case, there is still an incompressible cost for
saving/restoring variables whose memory mapping is changed
at the checkpoint.

In summary, checkpoint placement and memory allocation
in SCHEMATIC results in significant reduction of energy
consumption. As for the execution time, similar experiments
were conducted and show analogous results with an overall
execution time reduction of 54 % on average compared to
related techniques.

E. Quality of memory allocation in SCHEMATIC

SCHEMATIC aims at reducing the energy consumed by a
program by taking advantage of hybrid VM/NVM architec-
tures. In order to measure how SCHEMATIC benefits from data
allocation in VM, we compared the SCHEMATIC algorithm
(joint checkpoint placement and memory allocation) to a
modified version of SCHEMATIC called All-NVM, where no
memory allocation in VM is performed (all data is stored in
NVM). We focus on the energy spent for the computations,
excluding energy used for intermittency management. We split
the overall energy usage into three categories: computations
without memory accesses, VM accesses and NVM accesses.
Results are displayed in Figure 7.

For all benchmarks, memory allocation in VM allows to
greatly reduce the energy usage: on average, SCHEMATIC
requires 25 % less energy compared to All-NVM. The memory
allocation of SCHEMATIC allows to efficiently exploit the VM
capabilities, with 69 % of the memory accesses performed
targeting VM on average, representing 33 % of the energy
spent on computations.

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

0

20

40

60
E
n
er
g
y
co

n
su

m
p
ti
o
n
(µ

J
)

basicmath crc randmath

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

Al
l NV

M

Sc
he

ma
tic

0

200

400

600

Restore Save NVM accesses

VM accesses No memory accesses

aes bitcount fft dijkstra rc4

Fig. 7. Energy consumption of SCHEMATIC and All NVM on the benchmark
suite (time between power failures of 10k clock cycles)

F. Impact of capacitor size

The size of the energy buffer (EB) plays an important
role in the energy consumption of all techniques, as a small
EB results in more frequent power failures. The impact of
the energy budget on the energy consumption is depicted in
Figure 8 for the five techniques on benchmark crc (that was
selected because it best illustrates the influence of EB on
energy consumption).

As one could expect, the overall cost of intermittency
management (sum of , and) decreases when EB

increases. However, the decrease is smaller for ALFRED and
RATCHET than for SCHEMATIC, because their placement
of checkpoints (and therefore energy for saving variables
in NVM) does not depend on the platform characteristics,
and is therefore constant. MEMENTOS performs conditional
checkpointing given the energy available at runtime, thus it
adapts to the variation energy budget. ROCKCLIMB adapts its
checkpoint placement to the platform characteristics. However,
as it places checkpoints on all loop headers and before all
function calls, its checkpointing and restore overhead stays

10

1k10
k
10

0k 1k10
k
10

0k 1k10
k
10

0k 1k10
k
10

0k 1k10
k
10

0k
0

20

40

60

✗

E
n
er
g
y
co

n
su

m
p
ti
o
n
(µ

J
)

Reexecution

Restore

Save

Computation

Ratchet Mementos Rockclimb Alfred Schematic

Time between
power failures
(clock cycles)

Fig. 8. Impact of capacitor size, for benchmark crc. For implementation
simplicity on the ScEpTIC simulator, we do not directly vary EB but vary
the resulting TBPF, as a small EB results in a small TBPF.

high. In contrast, for SCHEMATIC, both save and restore
costs decrease when the value of EB increases because fewer
checkpoints are added to the program.

V. RELATED WORK

The early research in intermittent computing mostly focused
on different methods to ensure that programs will eventually
terminate (forward progress). To do so, snapshots of volatile
data are regularly saved into non-volatile memory to keep
track of the program progress. Some solutions, called dynamic
checkpointing [10,11,23,24] rely on hardware components to
monitor the available energy, and trigger a save operation right
before a power failure. Other techniques focused on static
checkpointing [8,9,18,25–27] consisting of inserting backup
operations at regular intervals in the program binary. Dynamic
checkpointing techniques feature important adaptability to the
varying harvesting conditions, at the cost of an important run-
time overhead. On the opposite, static checkpointing tech-
niques come with low run-time overhead, as they allow precise
control over the data to be checkpointed. Furthermore, static
checkpointing techniques support atomic sections, which make
them suitable for peripheral handling. SCHEMATIC falls in the
category of static checkpointing techniques, and takes benefit
of compiler insight about the code structure and its energy
consumption.

Many techniques exist to save volatile data. Some tech-
niques copy entire memory regions [8,11] while others are
more precise. Being more precise nonetheless requires either to
dynamically keep track of the memory usage [28–31], to rely
on user annotations [32], or to perform compile-time analysis
[9,17,33]. SCHEMATIC avoids saving entire memory regions
using a simple compile-time analysis of variable liveness.

Early solutions often selected a single class memory as
working memory: either VM [8,11,11,34] or NVM [9,10].
Using VM as working memory allows faster and more energy-
efficient computations but comes at an important checkpoint-
ing overhead. On the other hand, NVMs do not need to be
checkpointed but can be subject to memory anomalies: upon
a restart after a power failure, a portion of the program may
be re-executed and re-apply operations on NVM data [13,14],

such as incrementing a variable twice. To mitigate this issue,
many solutions have been developed [9,35].

Recently, Choi et al., proposed a method called ROCK-
CLIMB [18] which prevents the consequences of code re-
execution, by guaranteeing that no power failure can happen
during program execution. To do so, ROCKCLIMB places
checkpoints at compile-time such that from one checkpoint it
is possible to reach the next checkpoint(s) with the energy of a
full capacitor. Then, at run-time, ROCKCLIMB shuts down the
platform when a checkpoint is reached, and resumes execution
only when the capacitor is full. ROCKCLIMB and SCHEMATIC
rely on the same technique to avoid memory anomalies.
However, SCHEMATIC benefits from energy reduction due to
its dual VM/NVM memory allocation and its efficient loop
and function handling.

So-called task-based solutions use both VM and NVM.
They leverage compile-time variable liveness analysis [36,37]
or user-provided annotations [32,33,38,39] to determine which
variables are task-local and which ones are shared between
tasks. The variables used only in a task are then allocated in
VM, whereas the variables shared between tasks are allocated
to NVM. While task-based techniques result in important
energy savings, they do not not take into account the limited
size of the VM. Moreover, some shared variables, because
they are referenced frequently, would deserve to be allocated
in VM. This observation made Jayakumar et al., propose an
Energy-Aware memory mapping method for NVM-VM sys-
tems [40]. The proposed method evaluates, for each function,
where to allocate the data and stack sections (VM or NVM),
using energy measurements. Compared to SCHEMATIC, the
allocation of entire sections is coarse-grain and therefore does
not allow for variable-level allocations.

Maioli and Mottola recently developed ALFRED [17]. AL-
FRED works on a program already instrumented with a
static checkpointing technique, and determines at compile-time
where variables should be allocated (VM or NVM). It also
introduces deferred and anticipated checkpointing by saving
variables on their last access preceding a checkpoint and
restoring them on their first access after a checkpoint. ALFRED
uses the energy-efficient VM as much as possible, while
enabling forward progress using NVM. However, memory
allocation in ALFRED assumes that VM is large enough to
store all variables. In contrast, SCHEMATIC accounts for the
limited size of VM when deciding on variable allocation, and
further performs memory allocation jointly with checkpoint
placement.

VI. DISCUSSION

SCHEMATIC, as many intermittent computing systems [11,
18,41], relies on the energy buffer characteristics to ensure
the system safety (forward progress and absence of memory
anomalies, cf. II-B). However, the capacity of the energy buffer
may change over time for a given capacitor due to aging or
temperature variations [16].

Fortunately, models exist to reflect the impact of aging/tem-
perature on capacitor size [42]. Such models can be used to: (i)
select a capacitor size that will be valid for a certain period

11

of time (resp. temperature range); (ii) program an over-the-
air update [43] when the selected capacitor size is not valid
anymore.

It is important to note that underestimating the energy buffer
capacity or overestimating the WCEC results in conserva-
tive checkpoint placement but does not impact the device
operability. Furthermore, any energy surplus resulting from
the conservative approach will shorten the duration of the
hibernation phase.

In the event of a power failure occurring between two
checkpoints, our technique detects that it restarted from the
same checkpoint twice and restores the system to its initial
state. If such events occur frequently over time, one could
recalculate checkpoint placement using a smaller capacitor
size and perform an over-the-air update [43].

In this work we focused on the CPU energy consumption,
but our technique could easily be extended to incorporate
peripheral devices in the analysis. To achieve this, we would
require WCEC estimation techniques that consider peripheral
devices [44] and we would need the user to delimit atomic
sections for code using peripheral devices, in which checkpoint
placement would be forbidden.

Note on the usage of harvested energy: Since the rate
at which energy builds up in the capacitor is by nature
unpredictable, SCHEMATIC does not consider harvested energy
but only the maximum available energy in the capacitor (EB).
Nevertheless, energy harvesting benefits SCHEMATIC, as it
reduces the amount of time spent in sleep mode, waiting for
the capacitor to replenish.

VII. CONCLUDING REMARKS

This paper presents SCHEMATIC, a compiler technique
that automates checkpoint placement and memory allocation
to minimize energy consumption in intermittent computing
systems. SCHEMATIC ensures forward progress, and adapts
checkpoint placement and memory allocation to architectural
parameters (size of the energy buffer, volume of volatile mem-
ory). An experimental evaluation of SCHEMATIC shows that it
is capable of executing benchmarks in situations where other
solutions could not (short intervals between failures, small
volatile memories). Experiments also shows that it allows
significant energy reductions compared to existing systems.

As future work, one direction is to reduce the volume of data
saved at each checkpoint by improving the liveness analysis
of variables performed in SCHEMATIC. Pointer management
could also be improved to allow the pointed variables to
change their memory allocation using static point-to analysis.
Finally, a direction would be to take advantage of the low-
energy sleep modes of the MSP430, to avoid saving the entire
volatile data (variables and registers) at every checkpoint.

ACKNOWLEDGEMENTS

This work has received a French government support
granted to the Labex Cominlabs excellence laboratory and
managed by the National Research Agency in the “Investing
for the Future” program under reference ANR-10-LABX-07-
01.

REFERENCES

[1] I. Zalbide, E. D’Entremont, A. Jiménez, H. Solar, A. Beriain, and
R. Berenguer, “Battery-free wireless sensors for industrial applications
based on UHF RFID technology,” in IEEE SENSORS, 2014.

[2] L. Wang, Y. Yang, D. K. Noh, H. K. Le, J. Liu, T. F. Abdelzaher, and
M. Ward, “AdaptSens: An Adaptive Data Collection and Storage Service
for Solar-Powered Sensor Networks,” in 30th IEEE Real-Time Systems
Symposium, 2009.

[3] J. Hester and J. Sorber, “The future of sensing is batteryless, intermittent,
and awesome,” in ACM Conference on Embedded Network Sensor
Systems, ser. SenSys, 2017.

[4] B. T. Malik, V. Doychinov, A. M. Hayajneh, S. A. R. Zaidi, I. D.
Robertson, and N. Somjit, “Wireless Power Transfer System for Battery-
Less Sensor Nodes,” IEEE Access, 2020.

[5] S. Priya and D. J. Inman, Energy harvesting technologies. Springer,
2009, vol. 21.

[6] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
Computing: Challenges and Opportunities,” in 2nd Summit on Advances
in Programming Languages (SNAPL), 2017.

[7] M. Surbatovich, B. Lucia, and L. Jia, “Towards a formal foundation of
intermittent computing,” Proc. ACM Program. Lang., 2020.

[8] B. Ransford, J. Sorber, and K. Fu, “Mementos: system support for
long-running computation on RFID-scale devices,” in International
Conference on Architectural support for programming languages and
operating systems, ser. ASPLOS XVI, 2011.

[9] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 2016,
pp. 17–32.

[10] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A
Low Overhead HW/SW Approach for Enabling Computations across
Power Cycles in Transiently Powered Computers,” in 27th International
Conference on VLSI Design and 13th International Conference on
Embedded Systems, 2014.

[11] D. Balsamo, A. Weddell, G. Merrett, B. Al-Hashimi, D. Brunelli,
and L. Benini, “Hibernus: Sustaining Computation During Intermittent
Supply for Energy-Harvesting Systems,” Embedded Systems Letters,
IEEE, 2015.

[12] MSP430FR5969 datasheet, Texas Instruments, 2012.
[13] A. Maioli, L. Mottola, M. H. Alizai, and J. H. Siddiqui, “Discovering

the Hidden Anomalies of Intermittent Computing,” in International
Conference on Embedded Wireless Systems and Networks, ser. EWSN,
2021.

[14] B. Ransford and B. Lucia, “Nonvolatile memory is a broken time ma-
chine,” in Workshop on Memory Systems Performance and Correctness,
ser. MSPC, 2014.

[15] A. Riaz, M. R. Sarker, M. H. M. Saad, and R. Mohamed, “Review
on comparison of different energy storage technologies used in micro-
energy harvesting, WSNs, low-cost microelectronic devices: Challenges
and recommendations,” Sensors, 2021.

[16] A. Gupta, O. P. Yadav, D. DeVoto, and J. Major, “A Review of Degra-
dation Behavior and Modeling of Capacitors,” in ASME International
Technical Conference and Exhibition on Packaging and Integration of
Electronic and Photonic Microsystems, 2018.

[17] A. Maioli and L. Mottola, “ALFRED: Virtual Memory for Intermittent
Computing,” in ACM Conference on Embedded Networked Sensor
Systems, ser. SenSys, 2021.

[18] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-
performance intermittent computation with power failure immunity,”
in 28th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2022.

[19] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in International Symposium on
Code Generation and Optimization (CGO), 2004.

[20] A. Maioli, “Sceptic Repository.” [Online]. Available:
https://bitbucket.org/neslabpolimi/sceptic/

[21] B. Yarahmadi and E. Rohou, “So Far So Good: Self-Adaptive Dynamic
Checkpointing for Intermittent Computation based on Self-Modifying
Code,” in 24th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), 2021.

[22] Matthew Hicks, “MiBench2: MiBench benchmark suite ported for IoT
devices.” 2016.

[23] H. Williams, M. Moukarzel, and M. Hicks, “Failure Sentinels: Ubiqui-
tous Just-in-time Intermittent Computation via Low-cost Hardware Sup-
port for Voltage Monitoring,” in ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021.

12

[24] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and
C. Jung, “ReplayCache: Enabling Volatile Cachesfor Energy Harvesting
Systems,” in 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO, 2021.

[25] J. Choi, Q. Liu, and C. Jung, “CoSpec: Compiler Directed Speculative
Intermittent Computation,” in Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2019.

[26] M. Zhao, Q. Li, M. Xie, Y. Liu, J. Hu, and C. J. Xue, “Software as-
sisted non-volatile register reduction for energy harvesting based cyber-
physical system,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2015.

[27] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia, and C. J.
Xue, “Stack-Size Sensitive On-Chip Memory Backup for Self-Powered
Nonvolatile Processors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2017.

[28] N. A. Bhatti and L. Mottola, “Efficient State Retention for Transiently-
powered Embedded Sensing,” in International Conference on Embedded
Wireless Systems and Networks, ser. EWSN, 2016.

[29] J. Choi, H. Joe, Y. Kim, and C. Jung, “ELASTIN: Achieving Stagnation-
Free Intermittent Computation with Boundary-Free Adaptive Execu-
tion,” IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019.

[30] F. A. Aouda, K. Marquet, and G. Salagnac, “Incremental checkpointing
of program state to NVRAM for transiently-powered systems,” in
9th International Symposium on Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2014.

[31] G. Berthou, K. Marquet, T. Risset, and G. Salagnac, “MPU-based
incremental checkpointing for transiently-powered systems,” in 23rd
Euromicro Conference on Digital System Design (DSD), 2020.

[32] A. Colin and B. Lucia, “Chain: tasks and channels for reliable in-
termittent programs,” in ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA, 2016.

[33] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” in OOPSLA, 2017.

[34] W. S. Lim, C.-H. Tu, C.-F. Wu, and Y.-H. Chang, “iCheck: Progres-
sive Checkpointing for Intermittent Systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2021.

[35] M. Hicks, “Clank: Architectural support for intermittent computation,”
in 44th Annual International Symposium on Computer Architecture, ser.
ISCA, 2017.

[36] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018, pp. 129–144.

[37] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” SIGPLAN Not., 2015.

[38] E. Ruppel and B. Lucia, “Transactional concurrency control for in-
termittent, energy-harvesting computing systems,” in ACM/SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI, 2019.

[39] A. Y. Majid, C. D. Donne, K. Maeng, A. Colin, K. S. Yildirim, B. Lucia,
and P. Pawełczak, “Dynamic Task-based Intermittent Execution for
Energy-harvesting Devices,” ACM Trans. Sen. Netw., 2020.

[40] H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan,
“Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs
in Intermittently-Powered IoT Devices,” ACM Trans. Embed. Comput.
Syst., 2017.

[41] B. Yarahmadi and E. Rohou, “Compiler Optimizations for Safe Insertion
of Checkpoints in Intermittently Powered Systems,” in International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), 2020.

[42] F. Perisse, P. Venet, G. Rojat, and J. M. Rétif, “Simple model of an
electrolytic capacitor taking into account the temperature and aging
time,” Electrical Engineering, 2006.

[43] D. Wu, L. Lu, M. J. Hussain, S. Li, M. Li, and F. Zhang, “R3:
Reliable over-the-air reprogramming on computational RFIDs,” ACM
Transactions on Embedded Computing Systems (TECS), 2017.

[44] P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-
Preikschat, “Whole-system worst-case energy-consumption analysis for
energy-constrained real-time systems,” ECRTS, 2018.

