Probability Mass Function Estimation Approaches with Application to Flow Cytometry Data Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Probability Mass Function Estimation Approaches with Application to Flow Cytometry Data Analysis

Résumé

In this paper, we study three recently proposed probability mass function (PMF) estimation methods for flow cytometry data analysis. By modeling the PMFs as a mixture of simpler distributions, we can reformulate the PMF estimation problem as three different tensor-based approaches: a least squares coupled tensor factorization approach, a least squares partially coupled tensor factorization approach, and a Kullback-Leibler divergence (KLD)-based expectation-maximization (EM) approach. In the coupled methods, the full PMF is estimated from lower-order empirical marginal distributions, while the EM approach estimates the full PMF directly from the observed data. The three approaches are evaluated in the context of simulated and real data experiments.
Fichier principal
Vignette du fichier
_CAMSAP_2023__PMF_CPD_estimation-4.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04331910 , version 1 (11-12-2023)

Licence

Identifiants

  • HAL Id : hal-04331910 , version 1

Citer

Philippe Flores, Joseph Kibugi Chege, Konstantin Usevich, Martin Haardt, Arie Yeredor, et al.. Probability Mass Function Estimation Approaches with Application to Flow Cytometry Data Analysis. 9th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Dec 2023, Los Sueños, Costa Rica. ⟨hal-04331910⟩
0 Consultations
2 Téléchargements

Partager

More