Computing Geometrical Measures of Topological Holes - Archive ouverte HAL
Article Dans Une Revue Computer-Aided Design Année : 2023

Computing Geometrical Measures of Topological Holes

Résumé

In algebraic topology, persistent homology is a method that computes the homology of an object growing in time. Intuitively, this technique detects holes and provides information about their importance. By combining this topological approach to a notion of distance, it is possible to define geometric relevant measures associated with these holes. This paper introduces two theoretical methods for computing hole measures in volumetric objects defined by surface meshes. Our approach combines the geometrical and topological properties of the medial axis with the efficiency of persistent homology. We present a practical implementation and results on 3D meshed objects.
Fichier principal
Vignette du fichier
YS-Computing_Geometrical_Measures_of_Topological_Holes-Author-Accepted-Manuscript.pdf (3.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04322031 , version 1 (05-12-2023)

Identifiants

Citer

Yann-Situ Gazull, Alexandra Bac, Aldo Gonzalez-Lorenzo. Computing Geometrical Measures of Topological Holes. Computer-Aided Design, 2023, 163, pp.103563. ⟨10.1016/j.cad.2023.103563⟩. ⟨hal-04322031⟩
69 Consultations
62 Téléchargements

Altmetric

Partager

More