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Computing Geometrical Measures of Topological Holes

Yann-Situ Gazull∗, Alexandra Bac, Aldo Gonzalez-Lorenzo

Aix Marseille Université, CNRS, LIS, Marseille (France)

Abstract

In algebraic topology, persistent homology is a method that computes the homology of an object growing in time. Intuitively, this
technique detects holes and provides information about their importance. By combining this topological approach to a notion of
distance, it is possible to define geometric relevant measures associated with these holes. This paper introduces two theoretical
methods for computing hole measures in volumetric objects defined by surface meshes. Our approach combines the geometrical and
topological properties of the medial axis with the efficiency of persistent homology. We present a practical implementation and results
on 3D meshed objects.

Keywords: Geometric Modeling, Algebraic Topology, Medial Axis, Persistent Homology, Surface Mesh.

1. Introduction

In computational geometry, many works aim at analyzing, un-
derstanding or classifying geometrical shapes. To carry out this
task, they need shape descriptors, which correspond to global or
local information of the shape. Topology provides several theo-
retical descriptors, a large amount of which are highly relevant
in the field of computational geometry. Because of its computa-
tional properties, homology defines relevant descriptors that pro-
vide topological information on the holes of an object.
However, by definition, topology does not take into account ge-
ometry. That is why, in order to compute relevant descriptors,
a collection of works in computational topology aim at associ-
ating geometrical features to topological holes. Such topolog-
ical/geometric descriptors are useful for classification, as high-
lighted in [1].

Prior works. In [2], two geometrical measures of topological
holes were introduced. The first is the thickness, which intu-
itively represents the “fragility” of a hole and where to break it.
The second is the breadth, which represents the “size” of a hole
and where to fill it. The thickness is visualized as a ball inside
the object and the breadth as a ball outside the object.
In the initial paper, those measures where defined and computed
in the context of cubical complexes. However cubical complexes
are topological structures that inherently integrate a notion of
distance and geometry.

The first aim of the present work was to extend the definition
for non cubical objects. In addition, our work proposes ideas
about how to geometrically measure topological holes, both theo-
retically and computationally, on volumetric objects. We largely
use the notion of medial axis. It is a geometric construction that
preserves topological features, and hence is well suited to our
problem. We investigate the idea that the computation of the me-
dial axis gives enough information to compute hole measures.
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More precisely, instead of performing persistent homology algo-
rithms on the analyzed object (which would require a precise and
expensive tetrahedralization), performing these algorithms on the
medial axis is sufficient to obtain the thickness and breadth of the
holes of the object.

We developed two different approaches. On the one hand, the
link approach intends to compute every thickness and breadth
measures of an object as well as their homological link. On
the other hand, the medial axes approach is a faster method
that computes thickness and breadth measures without their
homological link.

The structure of the paper is as follows. In Section 2 we intro-
duce theoretical notions used in following sections such as ho-
mology, Alexander duality and medial axis. Section 3 establish a
central result concerning the homology of the medial axis. Both
of our methods are described in Section 4: we give a definition
of hole measures and we then detail the theoretical foundation of
both methods. In Section 5 we present results and algorithmic
stakes of our approach.

Technical proofs of the lemmas in this paper are provided in
the Appendix 6.

2. Theoretical tools

2.1. Homology

Algebraic topology intends to associate algebraic structures
to topological objects such that the algebraic properties reflect
topological ones. As a branch of this field, homology associates
groups to topological objects. Those groups are deeply related
to what is intuitively seen as holes. In this section we present a
brief introduction to homology and persistent homology. For the
sake of simplicity, we focus on the definitions of simplicial com-
plexes and Z/2Z simplicial homology, more general homology
definitions can be found in [3].

Definition 2.1 (Simplicial complex). A finite n dimensional sim-
plicial complex K is a set of 0-simplices (vertices), 1-simplices
(edges), 2-simplices (triangles), 3-simplices (tetrahedra)... n-
simplices such that:
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1. for all q-simplex in K, the (q − 1)-simplices of its boundary
belong to K.

2. The intersection of two q-simplices is either empty, either a
common subface simplex.

Definition 2.2 (q-chains). Given a n-dimensional complex K,
we denote Cq the Z/2Z vector space generated by the set of q-
dimensional simplices. Elements of Cq are called q-chains.

Definition 2.3 (Chain complex). A chain complex (C, ∂) is a se-
quence of chains together with boundary operators:

· · · → Cq

∂q

→ Cq−1

∂q−1

→ . . .C1

∂1

→ C0

∂0

→ 0

with ∂q ◦ ∂q+1 = 0 (and so Im(∂q+1) ⊆ Ker(∂q)).

Definition 2.4 (Homology groups). Homology groups of a chain
complex (C, ∂) are the following quotients:

Hq(C) = Ker(∂q)/Im(∂q+1)

In our theoretical work, we consider a n-volumetric set X ⊂
R

n whose homology groups are finitely generated. Under those
conditions, Hq(X) is a Z/2Z-vector space of dimension βq, where
βq is called the q-th Betti number. The reduced homology groups
are defined as follows:

H̃0(X) = (Z/2Z)β0−1 H̃q(X) = (Z/2Z)βq for q > 0

Betti numbers are relevant topological invariants, as they in-
tuitively count the holes of an object in each dimension. For
instance, in 3D, β0 gives the number of connected components
(0-holes), β1 the number of tunnels (1-holes) and β2 the number
of cavities (2-holes). In our theoretical work, we use singular
homology, which is the counterpart of simplicial homology for
arbitrary topological objects.
See [3] for more details on homology and algebraic topology.

Persistent homology. Persistent homology is a recent theory,
closely related to Morse theory. It associates a notion of im-
portance to homological holes by following their appearance and
disappearance through the growth of a discrete object along time.
More precisely, persistent homology captures the changes in ho-
mology along a filtration.

Definition 2.5 (Filtration). A filtration is a sequence (Ft)t∈I of
sets verifying t ≤ t′ =⇒ Ft ⊂ Ft′ , where I can be a real interval
or a finite ordered set.

Persistence keeps track of the birth and death of holes along
the filtration. This information is summed up trough a persis-
tence diagram:

Definition 2.6 (Persistence diagram). The persistence diagram
D ((Ft)t∈I) of a filtration (Ft)t∈I is a multi set of R2. An element
(x, y) of multiplicity µ

x,y
q means that µ

x,y
q holes of dimension q

were born in Fx and died entering Fy.

A hole that is still alive at the end of the filtration is represented
by a point (x,∞). y − x represents the “lifetime” of the hole
and significant holes are points of D ((Ft)t∈I) lying far from the
diagonal y = x. See Fig. 4 for an example of persistence diagram.

In practice, X is a finite simplicial complex and the filtration
consists in labeling every simplex with its date of birth. The stan-
dard algorithm to compute the persistence diagram of a filtration
on a simplicial complex X uses operations on the matrix of the
boundary operator [4]. It has a complexity in O(n3) where n is
the number of simplices in X. For more information on persistent
homology see [4].

2.2. Alexander Duality

We will write A � B iff A and B are homologous (i.e. they
have isomorphic homology groups).

Alexander duality provides a link between the homology of an
object and its complement in the sphere.

Proposition 2.1 (Alexander Duality). [3, p.255] If X is a locally
contractible nonempty compact of the n-sphere S n, then:

∀q, H̃q(S n\X) ≈ H̃n−q−1(X)

Where H̃q is the q-th reduced cohomology group, and ≈ stands
for isomorphism.

For instance, Alexander duality implies that we can obtain the
Betti numbers of X from those of S n\X (See an illustration of
Alexander duality in Fig. 1).

Figure 1: An illustration of Alexander duality and the extended medial axis

M∗(X). In green: X (left) and Xc (right). In red: M̌∗(X). In blue: M̂∗(X)

which equals to M̌∗(X
c). R2

∗ is mapped to the sphere S 2 for visual clarity.

In 2D, Alexander duality implies that β0(X) = β1(Xc)+1 and β1(X) = β0(Xc)−1:

X has one 0-hole and one 1-hole. Xc has two 0-holes but no 1-hole.

Alexander duality is an important tool in our work. It justifies
that studying objects in the Alexandorff extension of Rn is more
pertinent than in R

n.

Definition 2.7 (Alexandorff extension [5]). The Alexandorff ex-
tension of Rn is Rn

∗ := R
n∪{p∞}. R

n
∗ can be seen as a topological

space by considering that the opens of Rn
∗ are the opens of Rn

together with all the sets (Rn\K) ∪ {p∞}, where K is a compact
of Rn.

More precisely, we are mapping R
n to R

n
∗ by identifying all the

points that are located at infinity to a single point p∞. Particularly
we can consider that we have R

n ⊂ R
n
∗.

This construction implies that Rn
∗ is homeomorphic to the n-

sphere. As a consequence, Alexander duality can be extended
to R

n
∗. Moreover, if an object has finitely generated homol-

ogy groups (for example a finitely triangulable object), its q-
homology and q-cohomology groups are isomorphic (see [3,
Corollary 3.3]). Therefore, we can deduce the following propo-
sition:

Proposition 2.2 (Alexander Duality extension). We denote Xc

for Rn
∗\X. If X is a locally contractible nonempty compact of Rn

∗

with finitely generated homology groups, then:

∀q, H̃q(Xc) ≈ H̃n−q−1(X)
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2.3. Medial axes and Voronoi diagram

The medial axis of a set X is a geometric object that has a
large number of characterizations [6]. In this work, we will use
the following definitions:

Definition 2.8 (Set of closest boundary points). For any X ⊂ R
n
∗

whose boundary ∂X is nonempty and bounded in R
n we define:

AX : Rn → P(∂X)

x 7→
{

s ∈ ∂X | d(x, s) = d(x, ∂X)
}

Definition 2.9 (Medial axis). The medial axisM(X) of X is the
set of points in R

n that have two or more closest points on ∂X:

M(X) =
{

x ∈ Rn / |AX(x)| > 1}

Definition 2.10 (Extended medial axis). The extended medial
axisM∗(X) of X is defined as follows:

M∗(X) =M(X) ∪ {p∞} ⊂ R
n
∗

We define the inner medial axis M̌∗(X) and the outer medial axis

M̂∗(X) (see Fig. 1 for an illustration) as:

M̌∗(X) =M∗(X) ∩ X

M̂∗(X) =M∗(X) ∩ Xc = M̌∗(X
c)

Voronoi diagram. The medial axis plays an important role in our
work. For implementation purpose, a discrete representation of
the medial axis is needed. As methods that compute the exact
medial axis are too costly in time [7], we focus on approxima-
tions of the medial axis. Several algorithms have been developed
in the literature, as exposed in [6]. Most of them rely on the no-
tion of Voronoi diagram (and its dual the Delaunay triangulation)
of a sampling of the object’s boundary [8, 9, 10] (see Fig. 2).

These approximations are sufficient for our method because,
given a precise enough sampling (see section 5.3), they preserve
the homology of the medial axis and they provide enough in-
formation to capture the important points. Moreover, Voronoi
diagrams naturally have a chain complex structure.

Figure 2: A sampling of the surface and its Voronoi diagram (left). The resulting

medial axes approximation is displayed in red and blue. An ϵ-sampling of the

surface with its Voronoi diagram (right).

3. Homology Properties of the Medial Axes

In this section we will write A ≡ B iff A is homotopy equiv-
alent to B. In particular A ≡ B =⇒ A � B (see in [3, p.111,
Theorem 2.10]).

Our theoretical work strongly relies on the homological prop-
erties of the medial axis. More precisely, given an object X, we
use the fact that X and its inner medial axis have the same holes.
This idea has been studied in the literature, however all theoreti-
cal results only apply to bounded objects of Rn:

Theorem 3.1 (Lieutier [11]). For all open X bounded in R
n we

have M̌(X) ≡ X.

For our theoretical work, we require an extension of those
properties to unbounded objects in R

n
∗ that have a bounded

boundary in R
n. Unfortunately, the proof of Theorem 3.1 can

hardly be transposed for unbounded objects.
For now, we achieve to extend homological properties of the

medial axis to a specific class of objects that have some “reg-
ularity” and can be unbounded (see Theorem 3.3). Hence, we
introduce the following definition, which encompasses a large
variety of “real world” geometrical shapes:

Definition 3.1 (Regular object). A set X ⊂ R
n
∗ is a regular object

if it satisfies the following properties:

1. X is a closed set of R
n
∗ whose boundary is nonempty

bounded in R
n;

2. X is a subanalytic set of R
n (see [12] for a definition of

subanalytic sets);

3. M∗(X) is closed in R
n
∗.

The third required property is the most restrictive assumption
because it discards objects with sharp corners. This hypothesis
is most probably unnecessary and we are currently working on a
proof in this broader context.

We require objects that are subanalytic in order to have the
following properties:

Proposition 3.2 (Stability and properties of subanalytic sets).
Let X be a subanalytic set of Rn:

1. The closure X, the interior X̊, the boundary ∂X, the com-
plement Rn\X and the medial axis M(X) are subanalytic
subsets of Rn (from theorem 4.1 and 2.1 in [12]);

2. X is triangulable, its homology groups are finitely generated
and it is locally contractible (see [13]).

We show the following theorem that states a homological link
between an object and its medial axes:

Theorem 3.3 (Medial axes homology). Let X be a regular object
of Rn

∗, then

M̂∗(X) � Xc M̌∗(X) � X̊

Proof. Given Y a nonempty closed subset of Rn
∗ whose boundary

∂Y is bounded in R
n, we define the following function:

pY : M̂∗(Y)c −→ Y

y 7−→ argmin
x∈Y

(d(x, y))

pY is well defined and continuous. The proof is technical and
can be found in Appendix 6.
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Let us X be a regular object. Using the function pX , we can
define the following homotopy:

H : [0, 1] × M̂∗(X)c −→ M̂∗(X)c

(t, y) 7−→ tpX(y) + (1 − t)y

• H is well defined because pX is well defined and for every

(t, y) we have H(t, y) ∈ M̂∗(X)c.

To prove H(t, y) ∈ M̂∗(X)c for y < X, consider the max-

imal closed ball contained in Xc centered on y. This ball

intersects ∂X only at pX(y). Having H(t, y) in M̂∗(X) im-
plies that the ball contains two points of ∂X (more details in
Appendix 6).

• H satisfies the properties of a deformation retract from

M̂∗(X)c to X:

– X ⊂ M̂∗(X)c

– H(0, y) = y and H(1, y) = pX(y) ∈ X

– ∀t ∀y ∈ X, H(t, y) = y

– H is continuous (by continuity of pX).

As a consequence M̂∗(X)c ≡ X. This directly implies M̂∗(X)c
�

X. To conclude the proof, we want to use Alexander duality to
“apply” the complementary operator on this homology equiva-
lence. To do that, we need to show that the medial axes satisfies
the necessary properties for Proposition 2.2.

• X is a compact subanalytic subset of Rn
∗, so by Theorem 3.2-

2, it is a locally contractible nonempty compact with finitely
generated homology groups.

• Similarly, we can deduce from Theorem 3.2 that M̂∗(X) is
a locally contractible set of Rn

∗ with finitely generated ho-
mology groups. In addition, it is compact because it is an

intersection of compact sets in R
n
∗: M̌∗(X) =M∗(X) ∩ X.

Hence, using Proposition 2.2 on X and M̂∗(X), we ob-

tain that for all q, Hq(Xc) ≈ Hn−q−1(X) and Hq(M̂∗(X)c) ≈

Hn−q−1(M̂∗(X)). Therefore the homology equivalence between

M̂∗(X)c and X translates to: M̂∗(X) � Xc. Using Theorem 3.2

we can show that Xc is also a regular object (see Appendix 6).

Applying the whole proof on Xc gives: M̌∗(X) � X̊.

All in all, the medial axes characterize the homology of an
object and its complement in the Alexandorff extension R

n
∗.

4. Measuring holes in volumetric objects

4.1. Preliminaries

4.1.1. Hole measures definition

Persistent homology can provide geometrical information on
topological artifacts if the filtration itself has a geometrical mean-
ing. As stated in the introduction, early works were carried out by
Gonzalez-Lorenzo et al. [2] to define and use such a geometric
filtration. However, these works heavily relied on the structure
of cubical complexes and could not be generalized to more gen-
eral objects and spaces. In order to overcome those limitations,
we first introduce the signed distance function and its associated
filtration:

Definition 4.1. Given a set X in R
n
∗, the signed distance function

of X is the following function:

sd fX : Rn
∗ → R ∪ {±∞}

x ∈ X 7→ −d(x, ∂X)

x ∈ Xc 7→ d(x, ∂X)

Where d is the euclidean distance in R
n
∗ (that matches the dis-

tance in R
n and ∀x, d(p∞, x) = ∞).

Definition 4.2 (sd f filtration). We define

Ft(X) := sd f −1
X ([−∞, t[)

(Ft(X))t∈R is a filtration. We refer to it as the sd f filtration. It
corresponds to erosion if t < 0 and dilation otherwise.

The persistence homology of the sd f filtration provides differ-
ent holes, which can be classified in two non-disjoint categories:

• Early-birth holes, whose birth date is before 0.

• Late-death holes, whose death date is after 0.

Remark. We also use the terms late-birth for birth date after 0,
and early-death for death date before 0.

The holes we are interested in are those in the object at t = 0, i.e.
those in the intersection of early-birth holes and late-death holes.
We refer to them as the present holes, they correspond to points
in the upper-left quadrant of the persistence diagram (see Fig. 4).
Other holes are refered as non-present holes.

In this general setting, works of Gonzalez-Lorenzo et al. [2]
actually appear as a special case (a discretization) of the sd f fil-
tration. Given a present hole with birth date x and death date y,
we define the thickness T and the breadth B of the hole as fol-
lows:

T = −x B = y

Intuitively, the thickness of the hole corresponds to the fragility
of the hole handle. The breadth, on the other side, corresponds
to the size of the hole. Those measures can be associated with
balls: the T-ball (respectively the B-ball) is the ball of radius T
(respectively B) whose center is the point that induced the birth
of the hole at time −T (respectively the death of the hole at time
+B).

Such points are called topologically critical points and play
a key role in our work. We refer to T -balls and B-balls as
hole-balls.

In the persistence diagram of the sd f -filtration, two differ-
ent informations are provided. On the one hand, the thickness
and breadth values, on the other hand their homological relations
which state which thickness corresponds to which breadth. We
define the notion of T B-pair to integrate this subtle topological
information. A T B-pair is a thickness value together with the
breadth value corresponding to the same homological hole. Hav-
ing only thickness and breadth values without every T B-pairs
results in what we call a partial persistence diagram (see an il-
lustration on Fig. 5).
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Figure 3: Overview of the two approaches for measuring holes.

Figure 4: The sd f filtration (in green) of the object X for eight different values:

(t1, . . . , t8) with t5 = 0.

The persistent diagram is displayed on the bottom left: X has a 0-hole (born at

before t1 that does not die) and a 1-hole. Their respective balls are represented

on the right (breadth in blue, thickness in red).

The persistence diagram shows that two non-present holes appeared during the

filtration, a 0-hole with lifetime within [t2, t4] and a 1-hole with lifetime within

[t5, t7].

Figure 5: Two objects (left) that have the same partial persistence diagram (right).

They have different T B-pairs: in the first shape, the big B-ball is associated with

the big T -ball whereas it is not the case in the second one.

4.1.2. Overview of our approach

The aim of our work is to study the properties of such hole
measures and provide algorithms to compute them for 3D shapes.
Computationally, we are dealing with 3D compact volumes, the
boundary of which is an oriented mesh (2-manifold). Yet, our
theoretical work is more general and applies to R

n.
We aim at computing the persistence diagram of the sd f

filtration and the topologically critical points associated to each
hole because it provides the hole-balls. A naive and costly
idea would be to triangulate R

3 in order to approximate the
dilation and erosion of the object. Nevertheless, our work
shows that computing the persistence on a filtration built using
the medial axis of our object is sufficient to obtain hole measures.

We develop two approaches. The first one is the link approach
and is developed in Section 4.2. It consists in building a single
filtration that links the inner and outer medial axes along the sd f
values. Computing the persistence of this filtration gives every
hole-ball. In addition, it gives the complete persistence diagram
of the sd f filtration which provides the T B-pairs.

The second approach is the medial axes approach and is devel-
oped in Section 4.3. It consists in building two distinct filtrations:
one based on the sd f filtration restricted to the inner medial axis,
the other based on the opposite sd f filtration restricted to the
outer medial axis.
We show that every T -ball can be obtained from the persistence
of the inner medial axis filtration and every B-ball can be de-
duced from the persistence of the outer medial axis filtration us-
ing Alexander duality.
In practice, this approach is faster because the total size of the
inner and outer medial axis filtration is much smaller than the
size of the filtration used in the link approach. However, it only
computes a partial persistence diagram and does not provide the
T B-pairs. This might not be a problem, as the user might only be
interested in the balls and not in their homological relations.

Both approaches are summarized in Fig. 3.

4.2. Link approach

In the sd f filtration, it appears that the interesting homological
information are localized on specific locations in space-time: the
topologically critical points and their associated birth and death
dates. Therefore, the whole sd f filtration is not necessary and we
can focus on smaller sets. As the medial axis preserves homology
and topologically critical points (see Section 4.3), it appears as a
good candidate to build a simpler filtration.

The link approach was developed with the idea of reducing the
sd f filtration to its crucial part. It consists in a single filtration
that links the inner medial axis to the outer one along the sd f
values.
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Figure 6: The link filtration (above) and its discrete counterpart the Voronoi filtration (below).

Definition 4.3 (Link Graph). We define the bipartite link graph
GX(V, E) of X with:

V :=M∗(X) = M̌∗(X) ∪ M̂∗(X)

E :=
{

(č, ĉ) ∈ M̌∗(X) × M̂∗(X) / AX(č) ∩ AX(ĉ) , ∅
}

We define the link function:

ξ : P(V) → P(Rn
∗)

C 7→ C ∪
⋃

(č,ĉ)∈E∩C2

conv(č, ĉ)

Definition 4.4 (Link filtration). We define

ξt(X) := ξ (Ft(X) ∩M∗(X))

(ξt (X))t∈R is a filtration. We refer to it as the link filtration (see
Fig. 6).

We conjecture that the link filtration provides the same persis-
tence diagram as the sd f filtration. Moreover, we also think it
provides the same topologically critical points.

Conjecture 4.1 (Link filtration persistence).

D
(

(Ft(X))t∈R

)

= D
(

(ξt(X))t∈R

)

In addition, the topologically critical points of (Ft(X))t∈R are ex-
actly the topologically critical points of (ξt(X))t∈R.

For t < 0 the link filtration corresponds to what we call the

inner medial axis filtration (Ft(X) ∩ M̌∗(X))t<0. We have proved
the part of the conjecture where t < 0 using the geometrical and
topological properties of the inner medial axis (see Theorem 4.4
and Theorem 4.5 in Section 4.3). The conjecture is under work
for t > 0, where the link filtration links the inner medial axis
to the outer one. Fortunately, experiments tend to validate the
conjecture as pointed out in Section 5.

The main advantage of this filtration is that it can be ap-
proached algorithmically using a Voronoi diagram (see Fig. 6).
Indeed, the Voronoi diagram of a surface sampling also provides
an approximation of the link function. More precisely, the du-
als of Delaunay faces that lie on ∂X give an approximation of ξ.
We define the Voronoi filtration, which can be see as a discrete
version of the link filtration:

Definition 4.5 (Voronoi Filtration). Consider the nD Voronoi di-
agram of a sampling on ∂X.
We build a filtration by labelling each Voronoi cell to a value:
the value of a Voronoi vertex is its sd f value. The value of a
given i-cell c is defined as the maximum between the values of
the (i − 1)-cells in the boundary of c. The induced filtration is
the Voronoi filtration and is the discrete counterpart of the link
filtration. See an illustration in Fig. 6.

4.3. Medial axes approach

Besides being essential for the computation of the T B-pairs,
the link between the two medial axes is not necessary to obtain
the hole-balls. Moreover, this link is quite expensive when deal-
ing with the Voronoi filtration in practice. This motivated the
medial axes approach, in which we discard the link and build
two distinct filtration: the inner medial axis filtration and outer
medial axis filtration which respectively give every T -ball and
B-ball, without the T B-pairs.

4.3.1. Obtaining thickness balls from the inner medial axis

In this part, a deeper link between the topology and the ge-

ometry of M̌∗(X) and X is introduced: the persistence diagram
of the sd f filtration on ] − ∞, 0] is the same as the one obtained

with the sd f filtration restricted to M̌∗(X).
This result is stated in Theorem 4.4. It implies that computing the

persistent homology of M̌∗(X) on ] − ∞, 0] provides early-birth
and early-death dates with their associated topologically critical
points and therefore the T -balls of X.

Definition 4.6 (Inner medial axis filtration). Given t, we define

M̌t(X) := Ft(X) ∩ M̌∗(X). The sequence (M̌t(X))t∈]−∞,0] is a fil-
tration. We refer to it as the inner medial axis filtration. Note
that this definition is similar to the definition of the λ-medial
axis [14].

Theorem 4.2. Given X a regular object and a filtration value
t < 0 such that Ft(X) is nonempty:

M̌∗(Ft(X)) = M̌t(X)

Let t < 0. For simplicity we will write Ft instead of Ft(X) The
proof of Theorem 4.2 requires the two following properties:

Lemma 4.2.1. 1. ∂Ft ⊂ sd f −1
X

({t})
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2. ∀c ∈ Ft, d(c, ∂X) = d(c, ∂Ft) − t

The proof of this lemma is technical and can be found in Ap-
pendix 6.

x̂0x̂1

x1 x0

c

d(c, ∂X)

t

d(c, ∂Ft)

Figure 7: Illustration of the different points defined in the proof of the Theo-

rem 4.2.

Proof of Theorem 4.2.

Proof of M̌t(X) ⊂ M̌(Ft). Let c ∈ M̌t(X). We have c ∈ M̌(X)
so we choose x̂0, x̂1 ∈ AX(c) such that x̂0 , x̂1. As d(c, ∂X) >
−t > 0, we define:

x0 = µc + (1 − µ)x̂0 x1 = µc + (1 − µ)x̂1

with µ = −t
d(c,∂X)

∈ ]0, 1[. We hence have x0 , x1. To prove

c ∈ M̌(Ft), let us show that x0 and x1 belong to AFt
(c).

Let i ∈ {0, 1}. As c ∈ Ft, we only need to show d(xi, c) =
d(c, ∂Ft) and xi < Ft:

d(xi, c) = (1 − µ)d(c, x̂i) =
d(c, ∂X) + t

d(c, ∂X)
d(c, ∂X)

= d(c, ∂Ft) by Lemma 4.2.1-2

Moreover, we have:

d(xi, x̂i) = µ d(c, x̂i) = −t

So, as x̂i ∈ ∂X, d(xi, ∂X) ≤ −t. This implies xi < Ft.

Proof of M̌(Ft) ⊂ M̌t(X). Let c ∈ M̌(Ft). We choose x0, x1 ∈
AFt

(c) such that x0 , x1.
Let i ∈ {0, 1}. Let x̂i ∈ AX(xi). xi ∈ ∂Ft so by Lemma 4.2.1-1 we
have d(x̂i, xi) = −t. By triangle inequality we have:

d(x̂i, c) ≤ d(x̂i, xi) + d(xi, c) ≤ −t + d(c, ∂Ft)

≤ d(c, ∂X) by Lemma 4.2.1-2

As x̂i is in ∂X we obtain d(c, ∂X) = d(x̂i, c) so x̂i belongs to
AX(c). To conclude the proof, let us show that x̂0 , x̂1: the
previous triangle inequality resulted in an equality, which means
that x̂i, xi and c are co-linear. As d(c, ∂X) > −t > 0, we get:

x0 = µc + (1 − µ)x̂0 x1 = µc + (1 − µ)x̂1

with µ = −t
d(c,∂X)

∈]0, 1[. Hence we have x̂0 , x̂1 since x0 ,

x1.

Theorem 4.2 implies the following property:

Corollary 4.3. Given X a regular object and t ≤ 0 such that
Ft(X) , ∅:

Ft(X) � M̌t(X)

Proof. Ft(X) is a regular object. Indeed, it is closed with
nonempty bounded boundary, subanalytic (see [14]) and its me-
dial axis is closed (by Theorem 4.2).

Theorem 3.3 on Ft(X) gives:

M̌∗(Ft(X)) � Ft(X)

Combined to Theorem 4.2 we get the wanted result.

As a consequence, the sd f filtration persistence diagram of
X on ] − ∞, 0] can be obtained by performing the persistence
algorithm on its inner medial axis.

Theorem 4.4 (Hole measures from inner medial axis). Given X
a regular object of Rn

∗:

D
(

(Ft(X))t∈]−∞,0]

)

= D

(

(

M̌t(X)
)

t∈]−∞,0]

)

The studied interval is ] − ∞, 0], so this diagram gives every
early-birth and early-death date, but we also need the ball centers
in order to fully obtain the T -balls. Fortunately, we have the
following proposition, which can be deduced from results in [15,
16]:

Proposition 4.5. The topologically critical points of
(Ft(X))t∈]−∞,0] are exactly the topologically critical points

of
(

M̌t(X)
)

t∈]−∞,0]
.

As the standard persistence algorithm also computes the topo-
logically critical points, performing the persistence algorithm on
(

M̌t(X)
)

t∈]−∞,0]
fully provides the T -balls.

4.3.2. Obtaining breadth balls from the outer medial axis

In this part we aim at capturing the persistence on [0,+∞[ (i.e.
the B-balls, late-death and late-birth dates) using the outer medial
axis and Alexander duality. To begin with, given our regular
object X, we define the filtration of the complement:

Definition 4.7 (sd f c filtration). (Ft(X
c))t∈R is a filtration. We

refer to it as the sd f c filtration (see Fig.8). Intuitively, erosions
in the sd f filtration correspond to dilations in the sd f c filtration
and vice-versa.

The persistence diagram of the sd f filtration of X on [0,+∞[
can be deduced from the diagram of the sd f c-filtration restricted

to M̂∗(X). This result is stated more precisely in Corollary 4.8.

Corollary. 4.3 applied to Xc gives:

Corollary 4.6. Given X a regular object and t ≤ 0 such that
Ft(X

c) , ∅:

Ft(X
c) � M̌t(X

c)

As in section 4.3.1, this implies that the persistence diagram of
Xc on ]−∞, 0] can be obtained by computing the persistence dia-
gram of the outer medial axis of X. Then we need to use Alexan-
der duality to deduce the persistence diagram of X on [0,+∞[.
This deduction is stated in the following conjecture, which is still
under work:

7



Figure 8: The sd f c filtration in R
2
∗ : (Ft(X

c))t∈]−∞,0] (above). The filtration of the outer medial axis in R
2
∗ :
(

M̌t(X
c)
)

t∈]−∞,0]
(below). R2

∗ is displayed as the 2-sphere.

Conjecture 4.7 (Alexander persistence duality). Considering
two filtrations (Ft)t∈I and (F′t )t∈I such that ∀t ∈ I, (Ft)

c = F′−t,
we have:

D ((Ft)t∈I) = D
c
(

(

F′t
)

t∈I

)

WhereDc(·) stands for the dual of the underlying persistence di-
agram following Alexander duality:
the i-holes of coordinates (x, y) become (n − i − 1)-holes of coor-
dinates (−y,−x) (with a special case for 0-dimensional holes).

Corollary 4.6 and Conjecture 4.7 imply the following corol-
lary:

Corollary 4.8 (Hole measures from outer medial axis). Assum-
ing Conjecture 4.7:

D
(

(Ft(X))t∈[0,+∞[

)

= Dc
(

(

M̌t(X
c)
)

t∈]−∞,0]

)

In particular, computing the persistent homology on M̂∗(X)
with the sd f c-filtration provides every late-death and late-birth
dates of X.

To fully find the B-balls of X, we also need a proposition anal-
ogous to Proposition 4.5 which can be deduced from results in
[15, 16] combined with Conjecture 4.7:

Corollary 4.9. Assuming Conjecture 4.7, the topologically crit-
ical points of (Ft(X))t∈[0,+∞[ are exactly the topologically critical

points of
(

M̌t(X
c)
)

t∈]−∞,0]
, but they appear in the reverse order.

Hence, the persistence diagram of the outer medial axis M̂∗(X)
with the sd f c-filtration induces the deduction of every late-death
and late-birth date of X with their critical points. Therefore, it
fully provides the B-balls.

All in all, computing the persistence of the inner and outer
medial axes of X (using their appropriate filtration) gives enough
information to obtain every hole-ball of X.

5. Implementation and validation on 3D objects

5.1. Implementation and results

We implemented the two methods for 3D models in C++
using CGAL [17] for geometry and PHAT [18] for persistent
homology. We experimented our methods on different 3D
models, mostly from the Thingi10k [19] dataset. We focused on

objects that we regarded as topologically interesting (non trivial
shapes with multiple holes of different dimensions) and we used
uniform samplings with different densities to build the medial
axis approximation using Voronoi diagram. The code can be
find on a GitHub repository [20].

Given a correct approximation of the medial axis, the results
obtained using the medial axes approach are valid. We tested the
method on tricky objects such as the knot (Fig. 9d), which seems
complicated but has only one 1-dimensional hole. We also
tested the method on egg-in-a-box (Fig. 9b), which consists in a
component within another component. The algorithm returned
the appropriate 0-dimensional hole-balls corresponding to the
two components and the 2-dimensional hole-balls corresponding
to the inside of the box. We tested the approach on symmetrical
objects such as the hollow-cubic-ball (Fig. 9c) and the triakis-
tetrahedron (Fig. 9a). As expected, the algorithm returned
1-dimensional T -balls (respectively B-balls) with almost exactly
the same radii.

Given the same approximation of the medial axis, the Voronoi
filtration gives similar results as the medial axes approach: nearly
the same thickness and breadth values and most of the time close
ball centers. In addition, the Voronoi filtration provided the ex-
pected T B-pairs. For instance, in the four-components object
(Fig. 9e), each 0-dimensional T -ball inside a component is re-
lated to the 0-dimensional B-ball that links this component to the
others. Similarly, the 1-dimensional T -ball of a holy component
is related to the 1-dimensional B-ball in the same component. In
the eight object (Fig. 9f), each 1-dimensional T -ball is related to
its tangent B-ball.
All in all, this provides an experimental validation of the
Link approach, which is not theoretically established yet (see
Conjecture 4.1).

Notice that in some cases, the ball centers returned by the two
methods are far apart. This is due to the unstability of topolog-
ically critical points which might not be unique, for instance on
long portions with a constant distance to medial axes (as between
the rings in Fig. 10a 10b).
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(a) 0-dimensional (left) and 1-dimensional (right) hole-balls of triakis-

tetrahedron.

(b) 0-dimensional (left) and 2-dimensional (right) hole-balls of egg-in-a-box.

(c) 0-dimensional (left) and 1-dimensional (right) hole-balls of a hollow-cubic-

ball.

(d) 0-dimensional (left) and 1-dimensional (right) hole-balls of knot.

(e) 0-dimensional (left) and 1-dimensional (right) hole-balls of four-components

with three 1-holes.

(f) 0-dimensional (left) and 1-dimensional (right) hole-balls of eight.

Figure 9

(a) 0-dimensional (left) and 1-dimensional (right) hole-balls of two-rings using medial

axes approach.

(b) 0-dimensional (left) and 1-dimensional (right) hole-balls of two-rings using link

approach.

Figure 10: Comparison between the hole-balls computed by both approaches.

5.2. Catching the right ball centers

Using both methods with filtration defined by the sd f values
at Voronoi vertices can result in balls not exactly located where
they are expected. This is due to the fact that in rare cases, some
topologically critical points are not approached by Voronoi ver-
tices, even though they belong to the induced medial axis approx-
imation and whatever the precision of the initial sampling is (see
Fig. 11c).

(a) (b) (c) (d)

Figure 11: Two squares and its medial axis in green (a), its topologically critical

points (b), the Voronoi vertices of a surface sampling (c) and the Delaunay critical

points of this sampling (d).

The Voronoi vertices miss the central topologically critical point (c) whereas the

Delaunay critical points catch all of them (d).

Inspired by [9, 15, 16], we define a new notion of “critical
points”:

Definition 5.1 (Delaunay critical points). Given a Delaunay tri-
angulation of a point set P, a Delaunay critical point is the in-
tersection point of a Delaunay face with its dual Voronoi face (if
the intersection exists). These critical points actually correspond
to topologically critical points of the discrete object P.

Despite the fact that topologically critical points are not ap-
proached by Voronoi vertices in some particular cases, we con-
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Figure 12: two-cubes object and its 0-dimensional hole-balls obtained with (left)

and without (right) taking into account Delaunay critical points.

jecture that under some regularity assumptions they can always
be approached by Delaunay critical points (see Fig. 11):

Conjecture 5.1. Given a set A we denote T (A) the set of topo-
logically critical points induced by A.
Let X be a regular object of Rn

∗. Suppose that for all ϵ, Pϵ is an
ϵ-sampling of ∂X. Then we have:

max
c∈T (X)

d(c,T (Pϵ)) −→
ϵ→0

0

We implemented an improvement of our methods that incor-
porates Delaunay critical points within the filtrations. To realize
this task, we only modify the sd f values of some cells and asso-
ciate each critical cell to its Delaunay critical point. As comput-
ing intersections between Delaunay and Voronoi cells is cheap,
the extra cost is negligible. This improvement has been tested
experimentally without any wrong results (see Fig. 12).

Conjecture 5.1 would theoretically guarantee that our imple-
mented methods indeed approximate the hole measures, as in-
creasing the sampling precision would make the balls converge
to the true hole-balls.

5.3. Heuristics for sampling

The major limitation of our approach is the quality of the sam-
pling: in order to obtain the theoretical guarantees on homology
that imply the correctness of our methods, we need a sampling
accurate enough. More precisely, the perfectly suited sampling
would be an ϵ-sampling, which is a sampling with a density vary-
ing according to the distance to the medial axes (see Fig. 2):

Definition 5.2 (ϵ-sampling [9]). An ϵ-sampling of the surface
∂X of X is a set P ⊂ ∂X such that:

∀x ∈ ∂X, ∃p ∈ P / d(x, p) ≤ ϵ · d(x,M∗(X))

It has been showed in [9, 8] that an ϵ-sampling with ϵ small
enough provides topological guaranties. The sampling is impor-
tant in practice because a sampling not dense enough results in
wrong holes (see Fig. 13a and Fig. 13b), whereas an overly dense
one could be too costly because it creates a significant number of
faces.

5.4. Complexity

The complexity of the algorithm highly depends on the initial
sampling for computing the Voronoi approximation: the com-
plexity of the persistence algorithm is O(m3) where m is the num-
ber of cells in the filtration (see [4]). In our methods m is bounded
by the size of the Voronoi approximation of the medial axis. For-
tunately, if the sampling of size n is uniform enough, it is known

(a) 1-dimensional T -balls (left), 1-dimensional B-balls (right) of a gear obtained from
an appropriate sampling.

(b) 1-dimensional T -balls (left), 1-dimensional B-balls (right) of a gear obtained from
a bad sampling.

Figure 13

that the computation and the size of the Voronoi diagram is linear
in n (see [21, 22]). This implies that the theoretical complexity
in time of our two methods is O(n3).

Fortunately, with a sparse matrix implementation, the persis-
tence algorithm takes less time in practice: as pointed out in [4]
the running time is at most proportional to the sum of squares of
hole lifetimes.
This gives a total complexity of O(βn2) where β is the number of
holes and n the number of samples.

It is worth noting that the medial axes approach is theoretically
faster. Indeed, the Voronoi filtration has a lot more cells than
medial axes filtrations combined (about the number of Delaunay
cells that belong to the object boundary). This is the counterpart
of only computing a partial persistence diagram.

Table 1 aggregates the running times of our implementation of
the two approaches. As expected the persistence running time
in the medial axes approach is lower than in the link approach
(about 3 times lower). Nevertheless, concerning the filtration(s)
construction, the medial axes approach is about 1.5 slower than
the link approach due to our current implementation. There is
room for optimization in the filtration(s) construction step, which
is currently much slower than the persistence step using PHAT.

6. Conclusion

We developed new methods to compute measures of holes in
volumetric shapes. In addition we implemented it for 3D objects
represented by a surface mesh. Our approach is based on the the-
ory of persistent homology and uses the notion of medial axis,
which provides a powerful link between geometry and topology.
Both of our methods intend to compute every hole-ball of the an-
alyzed shape, and one of both also provides the pairing between
thickness-balls and breadth-balls. An advantage of our approach
is that it directly focuses on the part that carries the information
we need: the medial axis. From a complexity point of view, this
is an important advance because the computation of hole mea-
sures does not require an expensive triangulation of the space but

10



3D model
sampling

size

Medial axes approach Link approach Number of

holestotal size of the

filtrations

filtration

time (s)

persistence

time (s)

size of the

filtration

filtration

time (s)

persistence

time (s)

gear 11 182 261 406 24.92 2.94 321 825 16.81 10.40 13

four-components 6 536 145 166 12.47 1.70 181 405 8.35 5.69 7

hollow-cubic-ball 5 434 108 674 9.74 1.57 126 513 6.83 4.19 6

triakis-tetrahedron 3 745 81 178 6.42 1.32 100 751 4.16 3.05 12

knot 3 200 74 896 6.02 1.19 91 325 4.13 2.83 2

egg-in-a-box 1 727 27 184 2.63 0.70 32 011 1.62 1.01 3

two-rings 1 000 22 564 1.54 0.64 26 473 1.08 1.02 4

eight 315 7 396 0.51 0.29 8 699 0.33 0.42 3

two-cubes 196 2 300 0.25 0.11 2 541 0.20 0.25 2

Table 1: Summary of the experiments, comparing sampling size (points per model), filtration size (total number of elements in the inner and outer medial filtrations

combined and number of elements in the Voronoi filtration), running time for the construction of the filtration(s) and running time for the persistent homology algorithm.

simply a discretization of the mesh surface and computation of
the persistence on the medial axes.

From a theoretical point of view, we extended the definition
of hole measure to arbitrary volumetric objects and put forward
the theoretical links between geometry and topology that are pro-
vided by medial axes and persistent homology. Yet, to fully en-
sure the correctness of our methods, some conjectures about al-
gebraic topology and discrete geometry still remain to be proved
(see Conjectures 4.1, 4.7 and 5.1).

Future work and prospects. As highlighted in Section 5.3, the
major stake of our approach is about the sampling. A future
work would be to implement an ϵ-sampling algorithm. Such an
algorithm is provided in [23]. It essentially needs to compute a
local lower bound of the distance to the medial axis. However,
this lower bound is often obtained by computing the medial axis,
which is what we want to compute with the ϵ-sampling.
A solution to this vicious circle would be to first use a sufficiently
precise uniform sampling in order to compute this lower bound,
then compute an ϵ-sampling and finally use the resulting set to
approximate the medial axis. Another idea is to first run the
whole algorithm on the first sampling, and refine near the sample
points that induced hole measures.

An additional implementation improvement would be to use a
more appropriate medial axis approximation. A good candidate
is the core [9] because it is smaller than the medial axis and
preserves homology and topologically critical points. However,
it also needs an ϵ-sampling. Additionally, it uses the notion of
unstable flow complex, which is numerically unstable and must
be implemented with exact computation (see [15]).

We plan to compute the hole measures on the CAD models
of the ABC dataset [24] and compare them to the geometrical
parameters of their holes. Intuitively, the hole measure should
coincide with those values. This could be used as a formal topo-
logical method in CAD reverse engineering.

Another relevant geometric hole descriptor is the notion
of minimal cycles. Minimal cycles are homology generators
that minimize a quantity (typically a length, area or volume
depending on the dimension of the cycle). The extended notion
of minimal persistent cycles was introduced in [25]: minimal
persistent cycles correspond to minimal cycles along a filtration
and can be associated to points in a persistent diagram. We
plan to put in parallel this concept with our hole balls, as they
both represent two different geometrical measures of topological
holes.

(a) hole-balls of 0-holes (including non-present holes) for hollow-cubic-ball and knot.
Light blue balls are B-balls with B < 0.

(b) hole-balls of non-present 2-holes for hollow-cubic-ball and triakis-tetrahedron.
Magenta balls are T -balls with T < 0.

Figure 14: hole-balls of non present holes.

Lastly, both our methods compute not only the present holes
but also every late-birth and early-death holes. It is possible to
extend the definition of hole-balls for those non-present holes,
potentially inducing negative thickness or breadth.
Even though those holes are not present in the object, their hole-
balls can give interesting intuitive geometrical information. For
instance, non-present holes of dimension 0 can give a hint about
how to segment an object in a meaningful way (see Fig. 14(a)).
Non-present holes of dimension 2 can tell where the object looks
like a cage or a prison and where is the easiest place for a ball to
escape it (see Fig. 14(b)). It may be interesting to investigate this
idea a bit further.
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Appendix A: technical proofs

Homology of inner and outer medial axes

In this section, we explain the complete proof of the following
theorem in details:

Theorem 3.3 (Medial axes homology). Let X be a regular object
of Rn

∗, then

M̂∗(X) � Xc M̌∗(X) � X̊

Given Y a nonempty closed subset of Rn
∗ whose boundary ∂Y

is bounded in R
n, we define the following function:

pY : M̂∗(Y)c −→ Y

y 7−→ argmin
x∈Y

(d(x, y))

Lemma 6.0.1. pY is well defined and continuous.

Proof. pY is well defined. Indeed:

• if y ∈ Y: we simply have pY (y) = y.

• If y ∈ M̂∗(Y)c \ Y: then y < Y so we have d(y,Y) = d(y, ∂Y)
by closeness of Y . Moreover y ∈ M∗(Y)c (becauseM∗(Y) =

M̂∗(Y) ⊔ M̌∗(Y) and M̌∗(Y) ⊂ Y) so AY (y) has only one
element which is pY (y).

Now we prove pY is continuous. Firstly, remind that distance

functions are continuous. Take y ∈ M̂∗(Y)c and (yn) a sequence

of M̂∗(Y)c such that yn

n→∞
−→ y.

By continuity of distance we have :

d(yn,Y)
n→∞
−→ d(y,Y)

As we consider the sequence (pY (yn))n∈N in the compact space
R

n
∗, Bolzano-Weierstrass theorem implies Adh((pY (yn))) , ∅.

Let’s prove that Adh((pY (yn))) = {pY (y)}:
Let x ∈ Adh((pY (yn))). There exists some subsequence in such

that (yin , pY (yin ))
n→∞
−→ (y, x) so by continuity of distance:

d(yin , pY (yin ))
n→∞
−→ d(y, x)

As d(yin ,Y)
n→∞
−→ d(y,Y) and d(yin ,Y) = d(yin , pY (yin )), we have

d(y, x) = d(y,Y). Moreover x ∈ Y (by closeness of Y).
Hence, by well-definition on pY , x = pY (y) and

Adh((pY (yn))) = {pY (y)}.

As a result, pY (yn)
n→∞
−→ pY (y) therefore pY is continuous.
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Proof of Theorem 3.3. Let’s X be a regular object. We can define
the following homotopy:

H : [0, 1] × M̂∗(X)c −→ M̂∗(X)c

(t, y) 7−→ tpX(y) + (1 − t)y

• H is well defined: Firstly, pX is well defined. Indeed,
by Definition 3.1-1, X is a nonempty closed subset whose
boundary is bounded in R

n.

Secondly, for every t and y we have H(t, y) ∈ M̂∗(X)c. To

prove that, let y be an element of M̂∗(X)c. Firstly, M̂∗(X) ∩

X = ∅ so pX(y) < M̂∗(X). Let t ∈]0, 1[ and let yt := H(t, y).
For every x ∈ R

n we denote B(x) the minimal closed ball
centered in x and intersecting ∂X. In particular, B(x)∩∂X =
AX(x).

If y ∈ X then yt < M̂∗(X) so we consider the case where
y < X. As y, yt and pX(y) are aligned, we have that B(yt) ⊂
B(y), in particular, as AX(y) = {pX(y)} and AX(yt) , ∅, we
can deduced that B(yt) ∩ ∂X = {pX(y)}. This implies that
yt <M∗(X).

• H verifies the properties of a deformation retract from

M̂∗(X)c to X:

– X ⊂ M̂∗(X)c

– H(0, y) = y

– H(1, y) = pX(y) ∈ X

– ∀t ∀y ∈ X, H(t, y) = y

– H is continuous (by Lemma 6.0.1).

As a consequence M̂∗(X)c ≡ X. This directly implies:

M̂∗(X)c
� X (1)

To conclude the proof, we want to use Alexander duality to
“apply” the complementary operator on Eq. 1. To do that, we
need to show that the medial axes verifies the necessary proper-
ties for Proposition 2.2.

• X is a compact subanalytic subset of Rn
∗, so by Theorem 3.2-

2. it is a locally contractible nonempty compact with finitely
generated homology groups.

• Similarly, we can deduce from Theorem 3.2 that M̂∗(X) is
a locally contractible set of Rn

∗ with finitely generated ho-
mology groups. In addition, it is compact because as an

intersection of closed sets in R
n
∗: M̌∗(X) =M∗(X) ∩ X.

Hence, using Proposition 2.2 on X and M̂∗(X) we ob-

tain that for all q, Hq(Xc) ≈ Hn−q−1(X) and Hq(M̂∗(X)c) ≈

Hn−q−1(M̂∗(X)). Therefore the homologous Equation 1 translates
to:

M̂∗(X) � Xc

As Xc is also a regular object. Indeed, if p∞ is in the interior of
X, then Xc = R

n\X is subanalytic (Theorem 3.2-1). If p∞ is in
the interior of Xc, then Xc = {p∞} ∪R

n\X is still subanalytic. p∞
can’t be in ∂X because ∂X is bounded in R

n. Therefore, using

Theorem 3.2-1 again, Xc is subanalytic. Moreover, it is a regular

object because ∂X = ∂Xc is nonempty bounded in R
n.

Applying the whole proof on Xc gives:

M̌∗(X) � X̊

The t-medial axis is the medial axis of the t-erosion

In this section, we explain the complete proof of the following
theorem in details:

Theorem 4.2. Given X a regular object and a filtration value
t < 0:

M̌∗(Ft(X)) = M̌t(X)

Let t < 0 (case t = 0 of 4.2 is trivial). For simplicity we will
write Ft instead of Ft(X) The proof of Theorem 4.2 requires the
two following lemmas:

Lemma 6.0.2.
∂Ft ⊂ sd f −1

X ({t})

Proof of Lemma 6.0.2. Ft is open because sd f is continue and
p∞ is in not in ∂X (∂X is bounded in R

n). Moreover the comple-
mentary of sd f −1([−∞, t[) in R

n
∗ is sd f −1([t,+∞]).

By definition, the boundary of an open T is ∂T = T∩T c, where T
is the closure of T and T c its complementary. Hence, the bound-
ary of Ft is:

∂Ft = sd f −1([−∞, t[) ∩ sd f −1([t,+∞])

By continuity of sd f , the sd f value of a point in sd f −1([−∞, t[)
is in [−∞, t].
Therefore, the sd f value of a point in ∂Ft is in [−∞, t]∩[t,+∞] =
{t}.

Lemma 6.0.3.

∀c ∈ Ft, d(c, ∂X) = d(c, ∂Ft) − t

Proof of Lemma 6.0.3. let us take c in Ft.

• We choose x ∈ AFt
(c) and x̂ ∈ AX(x). We have the following

inequality by triangle inequality:

d(c, ∂X) ≤ d(c, x̂)

≤ d(c, x) + d(x, x̂)

≤ d(c,Ft) + d(x, ∂X)

By using the definition of AFt
(c) and AX(x).

x ∈ ∂Ft so d(x, ∂X) = −t by Lemma 6.0.2. This implies:

d(c, ∂X) ≤ d(c,Ft) − t (2)

• Conversely, by contradiction, suppose

d(c, ∂X) < d(c, ∂Ft) − t (3)

Then let x̂ ∈ AX(c). As d(c, ∂X) > −t > 0, we define:

λ :=
d(c, ∂X) − d(c, ∂Ft) − t

2d(c, ∂X)

x := λc + (1 − λ)x̂

Thus, we have:

d(c, x) = (1 − λ)d(c, x̂) =
d(c, ∂X) + d(c, ∂Ft) + t

2

d(c, x) < d(c, ∂Ft) using 3.

So, as c is in Ft, we have x ∈ Ft.
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Moreover we have:

d(x, x̂) = λ d(c, x̂) =
d(c, ∂X) − d(c, ∂Ft) − t

2

d(x, x̂) < −t using 3.

So d(x, ∂X) ≤ d(x, x̂) < −t, therefore we have x < Ft. By
contradiction we have d(c, ∂X) ≥ d(c, ∂Ft) − t.

Thus, with 2 we get:

d(c, ∂X) = d(c, ∂Ft) − t

x̂0x̂1

x1 x0

c

d(c, ∂X)

t

d(c, ∂Ft)

Figure 15: Illustration of the different points defined in the proof of the Theo-

rem 4.2 and Lemma 6.0.3.

Proof of Theorem 4.2.

• Proof of M̌t(X) ⊂ M̌(Ft):

let c ∈ M̌t(X). We have directly c ∈ M̌(X) so we choose
x̂0, x̂1 ∈ AX(c) such that x̂0 , x̂1.

As d(c, ∂X) > −t > 0, we define:

x0 = µc + (1 − µ)x̂0

x1 = µc + (1 − µ)x̂1

with µ =
−t

d(c, ∂X)
∈ ]0, 1[

We easily have x0 , x1.

To prove c ∈ M̌(Ft), let us show that x0 and x1 belong to
AFt

(c).
Let i ∈ {0, 1}. We only need to show d(xi, c) = d(c, ∂Ft) and
xi ∈ ∂Ft:

d(xi, c) = (1 − µ)d(c, x̂i)

=
d(c, ∂X) + t

d(c, ∂X)
d(c, ∂X)

= d(c, ∂X) + t by Lemma 6.0.3

Moreover, we have:

d(xi, x̂i) = µ d(c, x̂i) = −t

So, as x̂i ∈ ∂X we obtain d(xi, ∂X) ≤ d(xi, x̂i) ≤ −t. This
implies xi < Ft. xi is not in Ft but d(xi, c) = d(c, ∂Ft) (with
c ∈ Ft), therefore xi belongs to ∂Ft.

• Proof of M̌(Ft) ⊂ M̌t(X):

let c ∈ M̌(Ft). We choose x0, x1 ∈ AFt
(c) such that x0 , x1.

Let i ∈ {0, 1}. Let x̂i ∈ AX(xi). xi ∈ ∂Ft so by Lemma 6.0.2
we have d(x̂i, xi) = −t. By triangle inequality we have:

d(x̂i, c) ≤ d(x̂i, xi) + d(xi, c) (4)

≤ −t + d(c, ∂Ft)

≤ d(c, ∂X) by Lemma 6.0.3

As x̂i is in ∂X we obtain d(c, ∂X) = d(x̂i, c) so x̂i belongs to
AX(c).To conclude the proof, let us show that x̂0 , x̂1: the
triangle inequality 4 is in the equal case, which means that
x̂i, xi and c are co-linear. As d(c, ∂X) > −t > 0, we get:

x0 = µc + (1 − µ)x̂0

x1 = µc + (1 − µ)x̂1

with µ =
−t

d(c, ∂X)
∈ ]0, 1[

Hence we have x̂0 , x̂1 since x0 , x1.
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