Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Pattern Analysis and Machine Intelligence Année : 2024

Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification

Résumé

Bayesian Neural Networks (BNNs) have long been considered an ideal, yet unscalable solution for improving the robustness and the predictive uncertainty of deep neural networks. While they could capture more accurately the posterior distribution of the network parameters, most BNN approaches are either limited to small networks or rely on constraining assumptions, e.g., parameter independence. These drawbacks have enabled prominence of simple, but computationally heavy approaches such as Deep Ensembles, whose training and testing costs increase linearly with the number of networks. In this work we aim for efficient deep BNNs amenable to complex computer vision architectures, e.g., ResNet-50 DeepLabv3+, and tasks, e.g., semantic segmentation and image classification, with fewer assumptions on the parameters. We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer. Our approach, called Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles. LP-BNNs attain competitive results across multiple metrics in several challenging benchmarks for image classification, semantic segmentation, and out-of-distribution detection.
Fichier principal
Vignette du fichier
final_draftLPBNN.pdf (4.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04320979 , version 1 (03-04-2024)

Identifiants

Citer

Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson, Isabelle Bloch. Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (4), pp.2027-2040. ⟨10.1109/TPAMI.2023.3328829⟩. ⟨hal-04320979⟩
226 Consultations
24 Téléchargements

Altmetric

Partager

More