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Encoding the latent posterior of Bayesian Neural
Networks for uncertainty quantification

Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Member, IEEE, Séverine Dubuisson and Isabelle Bloch

Abstract—Bayesian Neural Networks (BNNs) have long been considered an ideal, yet unscalable solution for improving the robustness
and the predictive uncertainty of deep neural networks. While they could capture more accurately the posterior distribution of the network
parameters, most BNN approaches are either limited to small networks or rely on constraining assumptions, e.g., parameter
independence. These drawbacks have enabled prominence of simple, but computationally heavy approaches such as Deep Ensembles,
whose training and testing costs increase linearly with the number of networks. In this work we aim for efficient deep BNNs amenable to
complex computer vision architectures, e.g., ResNet-50 DeepLabv3+, and tasks, e.g., semantic segmentation and image classification,
with fewer assumptions on the parameters. We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the
latent distribution of the parameters at each network layer. Our approach, called Latent-Posterior BNN (LP-BNN), is compatible with the
recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing)
ensembles. LP-BNNs attain competitive results across multiple metrics in several challenging benchmarks for image classification,
semantic segmentation, and out-of-distribution detection.

Index Terms—Uncertainty estimation, Deep Neural Network ensembles, Bayesian Neural Network.

F

1 INTRODUCTION

MOST top-performing approaches for predictive uncertainty
estimation with Deep Neural Networks (DNNs) [1], [2],

[3], [4] are essentially based on ensembles, in particular Deep
Ensembles (DE) [1], which have been shown to display many
strengths: stability, mode diversity, good calibration, etc. [5]. In
addition, through the Bayesian lens, ensembles enable a more
straightforward separation and quantification of the sources and
forms of uncertainty [1], [6], [7], which in turn allows for a better
communication of the decisions to humans [8], [9] or to connected
modules in an autonomous system [10]. This is crucial for real-
world decision making systems. Although originally introduced
as simple and scalable alternative to Bayesian Neural Networks
(BNNs) [11], [12], DE still have notable drawbacks in terms of
computational cost for both training and testing, that often make
them prohibitive in practical applications.

In this work we address uncertainty estimation with BNNs,
the departure point of DE. BNNs propose an intuitive and
elegant formalism suited for this task by estimating the posterior
distribution over the parameters of a network conditioned on
training data. Performing exact inference BNNs is intractable
and most approaches require approximations. The most common
one is the mean-field assumption [13], i.e., the weights are
assumed to be independent of each other and factorized by their
own distribution, usually Gaussian [14], [15], [16], [17], [18],
[19]. However, this approximation can be damaging [11], [20]
as a more complex organization can emerge within network
layers, and that higher level correlations contribute to better
performance and generalization [21], [22], [23]. Yet, even under
such settings, BNNs are challenging to train at scale on modern
DNN architectures [24], [25]. In response, researchers have looked
into structured-covariance approximations [19], [26], [27], [28],
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Figure 1: In a standard NN each weight has a fixed value. In most
BNNs all weights follow Gaussian distributions and are assumed to
be mutually independent: each weight is factorized by a Gaussian
distribution. For LP-BNN in each layer, weights follow a multivariate
Gaussian distribution with a latent weight space composed of indepen-
dent Gaussian distributions. This enables computing expressive weight
distributions in a lower dimensional space.

however they further increase memory and time complexity over
the original mean-field approximation.

Here, we revisit BNNs in a pragmatic manner. We propose
an approach to estimate the posterior of a BNN with layer-level
inter-weight correlations, in a stable and computationally efficient
manner, compatible with modern DNNs and complex computer
vision tasks, e.g., semantic segmentation. We advance a novel deep
BNN model, dubbed Latent Posterior BNN (LP-BNN), where the
posterior distribution of the weights at each layer is encoded with a
variational autoencoder (VAE) [29] into a lower-dimensional latent
space that follows a Gaussian distribution (see Figure 1). We switch
from the inference of the posterior in the high dimensional space of
the network weights to a lower dimensional space which is easier to
learn and already encapsulates weight interaction information. LP-
BNN is naturally compatible with the recent BatchEnsemble (BE)
approach [30] that enables learning a more diverse posterior from
the weights of the BE sub-networks. Their combination outperforms
most of related approaches across a breadth of benchmarks and
metrics. In particular, LP-BNN is competitive with DE and has
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significantly lower costs for training and prediction.

Contributions. To summarize, the contributions of our work are:
(1) We introduce a scalable approach for BNNs to implicitly capture
layer-level weight correlations enabling more expressive posterior
approximations, by foregoing the limiting mean-field assumption.
LP-BNN scales to high capacity DNNs (e.g., 50+ layers and
30M parameters for DeepLabv3+), while still training on a single
V100 GPU. (2) We propose to leverage VAEs for computing the
posterior distribution of the weights by projecting them in the latent
space. This improves significantly training stability while ensuring
diversity of the sampled weights. (3) We extensively evaluate
our method on a range of computer vision tasks and settings:
image classification for in-domain uncertainty, out-of-distribution
(OOD) detection, robustness to distribution shift, and semantic
segmentation (high-resolution images, strong class imbalance) for
OOD detection. We demonstrate that LP-BNN achieves similar
performances with high-performing Deep Ensembles, while being
substantially more efficient computationally.

In the rest of the paper, we will first introduce the background in
Section 2, then we present our approach in Section 3, we describe
all the notations used in the paper in Section 4, then we present the
related works in Section 5. Finally we present our experiments and
results in Section 6.

2 BACKGROUND

In this section, we present the chosen formalism for this work and
a short background on BNNs. All the notations used in the paper
are referenced in Table 1.

2.1 Preliminaries

We consider a training dataset D = {(xi, yi)}ni=1 with n samples
and labels, corresponding to two random variables X ∼ PX and
Y ∼ PY . Without loss of generality we represent xi ∈ Rd as
a vector, and yi as a scalar label. We process the input data xi
with a neural network fΘ(·) with parameters Θ, that outputs a
classification or regression prediction. We view the neural network
as a probabilistic model with fΘ(xi) = P (Y = yi | X = xi,Θ).
In the following, when there are no ambiguities, we discard the
random variable from notations. For classification, P (yi | xi,Θ)
is a categorical distribution over the set of classes over the domain
of Y , typically corresponding to the cross-entropy loss function,
while for regression P (yi | xi,Θ) is a Gaussian distribution of real
values over the domain of Y when using the squared loss function.
For simplicity we unroll our reasoning for the classification task.

In supervised learning, we leverage gradient descent for
learning Θ that minimizes the cross-entropy loss, which is
equivalent to finding the parameters that maximize the like-
lihood estimation (MLE) P (D | Θ) over the training set
ΘMLE = arg maxΘ

∑
(xi,yi)∈D logP (yi | xi,Θ), or equiva-

lently minimize the following loss function:

LMLE(Θ) = −
∑

(xi,yi)∈D

logP (yi | xi,Θ). (1)

The Bayesian approach enables adding prior information on
the parameters Θ, by placing a prior distribution P(Θ) upon them.
This prior represents some expert knowledge about the dataset and
the model. Instead of maximizing the likelihood, we can now find
the maximum a posteriori (MAP) weights for P(Θ | D) ∝ P(D |

Θ)P(Θ) to compute ΘMAP = arg maxΘ

∑
(xi,yi)∈D logP(yi |

xi,Θ) + logP(Θ), i.e. to minimize the following loss function:

LMAP(Θ) = −
∑

(xi,yi)∈D

logP (yi | xi,Θ)− logP (Θ), (2)

inducing a specific distribution over the functions computed by the
network and a regularization of the weights. For a Gaussian prior,
Eq. (2) reads as L2 regularization (weight decay).

2.2 Bayesian Neural Networks
In most neural networks only the ΘMAP weights computed during
training are kept for predictions. Conversely, in BNNs we aim
to find the posterior distribution P (Θ | D) of the parameters
given the training dataset, not only the values corresponding to
the MAP. Here we can make a prediction y on a new sample x
by computing the expectation of the predictions from an infinite
ensemble corresponding to different configurations of the weights
sampled from the posterior distribution:

P (y | x,D) =

∫
P (y | x,Θ)P (Θ | D)dΘ, (3)

which is also known as Bayes ensemble. The integral in Eq. (3),
which is calculated over the domain of Θ, is intractable, and in
practice it is approximated by averaging predictions from a limited
set {Θ1, . . .ΘJ} of J weight configurations sampled from the
posterior distribution:

P (y | x,D) ≈ 1

J

J∑
j=1

P (y | x,Θj). (4)

Although BNNs are elegant and easy to formulate, their
inference is non-trivial and has been subject to extensive research
across the years [11], [12], [14]. Early approaches relied on
Markov chain Monte Carlo variants for inference, while progress
in variational inference (VI) [13] has enabled a recent revival
of BNNs [15], [16], [17]. VI turns posterior inference into an
optimization problem. In detail, VI finds the parameters ν of a
distribution Qν(Θ) on the weights that approximates the true
Bayesian posterior distribution of the weights P (Θ | D) through
KL-divergence minimization. This is equivalent to minimizing
the following loss function, also known as expected lower bound
(ELBO) loss [16], [29]:

LBNN(Θ, ν) =−
∑

(xi,yi)∈D

EΘ∼Qν(Θ) log (P (yi | xi,Θ))

+DKL(Qν(Θ)||P (Θ)). (5)

The loss function LBNN(Θ, ν) is composed of two terms: the
KL term depends on the weights and the prior P (Θ), while
the likelihood term is data dependent. This function strives to
simultaneously capture faithfully the complexity and diversity
of the information from data D, while preserving the simplicity
of the prior P (Θ). To optimize this loss function, Blundell et
al. [16] proposed leveraging the re-parameterization trick [29],
[31], foregoing the expensive MC estimates.

2.3 Discussion about BNNs
BNNs are particularly appealing for uncertainty quantification
thanks to the ensemble of predictions from multiple weight con-
figurations sampled from the posterior distribution. However this
brings an increased computational and memory cost. For instance,
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Fig. 2: Diagram of a BatchEnsemble layer that generates for an
ensemble of size J=2, the ensemble weights Wj from shared weights
Wshare and fast weights Wj=rjs

>
j , with j ∈ [1, J ].

the simplest variant of BNNs with fully factorized Gaussian
approximation distributions [15], [16], i.e. each weight consists of a
Gaussian mean and variance, carries a double amount of parameters.
In addition, recent works [24], [25] point out that BNNs often
underfit, and need multiple tunings to stabilize training dynamics
involved by the loss function and the variance from weight
samplings at each forward pass. Due to computational limitations,
most BNN approaches assume that parameters are not correlated.
This hinders their effectiveness [20], as empirical evidence has
shown that encouraging weight collaboration improves training
stability and generalization [22], [23], [32].

In order to calculate a tractable weight correlation aware
posterior distribution, we propose to calculate the covariance matrix
implicitly. This implicit calculation is performed by considering
that each weight of the DNN has a latent variable following a
distribution that we want to estimate. Hence we propose a new layer
where a VAE encodes each layer to compute compressed latent
distributions from which we can sample new weight configurations.
We rely on the recent BatchEnsemble (BE) method [30] to further
improve the parameter-efficiency of BNNs. We now proceed to
describe BE and then derive our approach.

2.4 BatchEnsemble

Deep Ensembles (DEs) [1] are a popular and pragmatic alternative
to BNNs. While DEs boast outstanding accuracy and predictive
uncertainty, their training and testing cost increases linearly
with the number of networks. This drawback has motivated the
emergence of a recent stream of works proposing efficient ensemble
methods [2], [3], [4], [30], [33]. One of the most promising ones is
BatchEnsemble [30], which mimics in a parameter-efficient manner
one of the main strengths of DE, i.e. diverse predictions [5].

In a nutshell, BE builds up an ensemble from a single base
network (shared among ensemble members) and a set of layer-
wise weight matrices specific to each member. At each layer, the
weight of each ensemble member is generated from the Hadamard
product between a weight shared among all ensemble members,
called “slow weight”, and a Rank-1 matrix that varies among all
members, called “fast weight”. Formally, let Wshare ∈ Rm×p be
the slow weights in a neural network layer with input dimension
m and with p outputs. Each member j from an ensemble of size
J owns a fast weight matrix Wj ∈ Rm×p. Wj is a Rank-1
matrix computed from a tuple of trainable vectors rj ∈ Rm and
sj ∈ Rp, with Wj = rjs

>
j . BE generates from them a family

of ensemble weights as follows: Wj = Wshare �Wj , where �
is the Hadamard product. Each Wj member of the ensemble is

essentially a Rank-1 perturbation of the shared weights Wshare

(see Figure 2). The sequence of operations during the forward pass
reads:

h = a
(

(W>share(x� sj))� rj
)
, (6)

where a is an activation function and h the output activations.
The operations in BE can be efficiently vectorized, enabling

each member to process in parallel the corresponding subset
of samples from the mini-batch. Wshare is trained in a stan-
dard manner over all samples in the mini-batch. A BE net-
work fΘBE is parameterized by an extended set of parameters
ΘBE =

{
θslow : {Wshare}, θfast : {rj , sj}Jj=1

}
.

With its multiple sub-networks parameterized by a reduced set
of weights, BE is a practical method that can potentially improve
the scalability of BNNs. We take advantage of the small size of the
fast weights to capture efficiently the interactions between units
and to compute a latent distribution of the weights. We detail our
approach below.

3 EFFICIENT BAYESIAN NEURAL NETWORKS

3.1 Encoding the posterior weight distribution

Most BNN variants assume full independence between weights,
both inter- and intra-layer. Modeling precisely weight correlations
in modern high capacity DNNs with thousands to millions of
parameters per layer [34] is however a daunting endeavor due
to computational intractability. Yet, multiple strategies aiming to
boost weight collaboration in one way or another, e.g. Dropout [23],
WeightNorm [22], Weight Standardization [32], have proven to
improve training speed, stability and generalization. Ignoring
weight correlations might partially explain the shortcomings of
BNNs in terms of underfitting [24], [25]. This motivates us to find
a scalable way to compute the posterior distribution of the weights
without discarding their correlations.

Li et al. [35] have recently found that the intrinsic dimension
of DNNs can be in the order of hundreds to a few thousands.
The good performances of BE, that builds on weights from a
low-rank subspace, further confirm this finding. For efficiency, we
leverage the Rank-1 subspace decomposition in BE and estimate
here the distribution of the weights, leading to a novel form of
BNNs. Formally, instead of computing the posterior distribution
P (Θ | D), we aim now for P (θfast | D).

A first approach would be to compute Rank-1 weight distri-
butions by using rj and sj as variational layers, place priors on
them and compute their posterior distributions in a similar manner
to [16]. Dusenberry et al. [25] show that these Rank-1 BNNs
stabilize training by reducing the variance of the sampled weights,
due to sampling only from Rank-1 variational distributions instead
of full weight matrices. However this raises the memory cost
significantly, as training is performed simultaneously over all J
sub-networks: on CIFAR-10 for ResNet-50 with J=4, the authors
use 8 TPUv2 cores with mini-batches of size 64 per core.

We argue that a more efficient way of computing the posterior
distribution of the fast weights would be to learn instead the
posterior distribution of the lower dimensional latent variables of
{r, s} ∈ θfast.1 This can be efficiently done with a VAE [29]
that can find a variational approximation Qφ(z | r) to the
intractable posterior distribution Pψ(z | r),with z an unobserved
latent random variable. We assume that Qφ(z | r) comes from

1. To facilitate readability we discard the j indices.
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parametric families of distributions differentiable with respect to
the parameter φ. VAEs can be seen as a generative model that
can deal with complicated dependencies between input dimensions
via a probabilistic encoder that projects the input into a latent
space following a specific prior distribution. For simplicity and
clarity, from here onward we derive our formalism only for r at a
single layer and consider weights s to be deterministic. Here the
input to the VAE are the weights r and we rely on it to learn the
dependencies between weights and encode them into the latent
representation.

In detail, for each layer of the network fΘ(·) we introduce
a VAE composed of a one layer encoder genc

φ (·) with variational
parameters φ and a one layer decoder gdec

ψ (·) with parameters
ψ. Let the prior over the latent variables be a centered isotropic
Gaussian distribution Pψ(z) = N (z; 0, I). Like common practice,
we let the variational approximate posterior distribution Qφ(z | r)
be a multivariate Gaussian with diagonal covariance. The encoder
takes as input a mini-batch of size J (the size of the ensemble)
composed of all the rj weights of this layer and outputs as
activations (µj ,σ

2
j ). We sample a (realization) latent variable

zj of a random variable distributed from N (µj ,σ
2
jI) and feed

it to the decoder, which in turn outputs the reconstructed weights
r̂j = gdec

ψ (zj). In other words, at each forward pass, we sample
new fast weights r̂j from the latent posterior distribution to be
further used for generating the ensemble. The weights of each
member of the ensemble Wj = Wshare� (r̂js

>
j ) are now random

variables depending on Wshare, sj and zj . Note that while in
practice we sample J weight configurations, this approach allows
us to generate larger ensembles by sampling multiple times from
the same latent distribution. We illustrate an overview of an LP-
BNN layer in Figure 3.

The VAE modules are trained in the standard manner with the
ELBO loss function [29] jointly with the rest of the network. The
final loss function is:

LLP-BNN(ΘLP-BNN)=−
∑

(xi,yi)∈D

Ez∼Qφ(z|r) log (P (yi | xi,ΘLP-BNN, z))

+ 1/L
(
DKL(Qφ(z | r)||Pψ(z)) + ‖r− r̂‖2

)
, (7)

where ΘLP-BNN=
{
θslow, θfast:{rj , sj}Jj=1, θ

variational:{φ, ψ}
}

and L
the number of layers. The loss function is applied to all J members
of the ensemble.

At a first glance, the loss function LLP-BNN bears some similarities
with LBNN (Eq. 5). Both functions include likelihood and KL terms.
The likelihood in LBNN, i.e. the cross-entropy loss, depends on
input data xi and on the parameters Θ sampled from Qν(Θ),
while LLP-BNN depends on zj , a latent variable of a random variable
distributed from Qφ(zj | rj) that lead to the fast weights r̂j .
It guides the weights towards useful values for the main task.
The KL term in LBNN enforces the per-weight prior, while in
LLP-BNN it preserves the consistency and simplicity of the common
latent distribution of the weights rj . In addition, LLP-BNN has an
input weight reconstruction loss (last term in Eq. 7) ensuring
that the generated weights r̂j are still compatible with the rest
of the parameters of the network and do not cause high variance
and instabilities during training, as typically occurs in standard
BNNs [25].

At test time, we generate the LP-BNN ensemble on the fly
by sampling the weights r̂j from the encodings of rj to compute

Fig. 3: Diagram of a LP-BNN layer that generates for an ensemble
of size J=2, ensemble weights Wj from shared weights Wshare
and fast weights sj and r̂j , the latter sampled and decoded from the
corresponding latent projection zj of rj , with j ∈ [1, J ].

Wj . For the final prediction we compute the empirical mean of
the likelihoods of the ensemble:

P (yi|xi) =
1

J

J∑
j=1

P (yi | xi, θslow, sj , r̂j) (8)

3.2 Discussion on LP-BNN

We discuss here the quality of the uncertainty from LP-BNN. The
predictive uncertainty of a DNN stems from two main types of
uncertainty [36]: aleatoric uncertainty and epistemic uncertainty.
The former is related to randomness, typically due to the noise in the
data. The latter concerns finite size training datasets. The epistemic
uncertainty captures the uncertainty in the DNN parameters and
their lack of knowledge on the model that has generated the training
data.

In BNN approaches, through likelihood marginalization over
weights, the prediction is computed by integrating the outputs
from different DNNs weighted by the posterior distribution (Eq. 3),
allowing us to conveniently capture both types of uncertainties [7].
The quality of the uncertainty estimates depends on the diversity of
predictions and views provided by the BNN. DE [1] achieve excel-
lent diversity [5] by mimicking BNN ensembles through training
of multiple individual models. Recently, Wilson and Izmailov [37]
proposed to combine DE and BNNs towards improving diversity
further. However, as DE are already computationally demanding,
we argue that BE is a more pragmatic choice for increasing the
diversity of our BNN, leading to better uncertainty quantification.

Figure 4 shows a qualitative comparison of the prediction
diversity from different methods. We compare LP-BNN, BE,
and DE based on WRN-28-10 [38] trained on CIFAR-10 [39]
and analyze predictions on CIFAR-10, CIFAR10-C [40], and
SVHN [41] test images. SVHN contains digits which have a
different distribution from the training data, i.e., predominant
epistemic uncertainty, while CIFAR10-C displays a distribution
shift via noise corruption, i.e., more aleatoric uncertainty. The
expected behavior is that individual DNNs in an ensemble would
predict different classes for OOD images and have higher entropy
on the corrupted ones, reducing the confidence score of the
ensemble. We can see that the diversity of BE is lower for CIFAR10-
C and SVHN, leading to poorer results in Table 8.

In the next section we discuss about our posterior covariance
matrix (§ 3.3), the link between the size of the ensemble and
the covariance matrix approximation (§ 3.4), the computational
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complexity (§ 3.5), the training stability (§ 3.6) and stability (§ 3.7)
of LP-BNN, and diversity of LP-BNN.

3.3 Covariance Priors of Bayesian Neural Network

We consider a data sample (x, y), with x ∈ Rd and y ∈ R.
We process the input data x with a MLP network fΘ(·) with
parameters Θ composed of one hidden layer of h neurons. We
detail the composing operations of the function fΘ(·) associated to
this network: fΘ(x) = W>2 σ(W>1 x), where σ(·) is an element-
wise activation function. For simplicity, we ignore the biases in
this example. W1 ∈ Rd×h is the weight matrix associated with
the first fully connected layer and W2 ∈ Rh×1 the weights of the
second layer. In BNNs, W1 and W2 represent random variables,
while for classic DNNs, they are simply singular realizations of
the distribution sought by BNN inference. Most works exploiting
in some way the statistics of the network parameters assume, for
tractability reasons, that all weights of W1 and W2 follow inde-
pendent Gaussian distributions. Hence this leads to the following
covariance matrix for W1:

diag([var(Wi[1, 1]]), . . . , var(Wi[d, h]])) (9)

where var(W1[i, j]) is the variance of the coefficient [i, j] of
matrix W1, diag is the diagonal operator which takes a vector
as input and outputs a diagonal matrix whose diagonal values are
equal to the vector coefficients. Similarly, for W2 we will have a
diagonal matrix.

Now, let us assume that W1 and W2 have a la-
tent representation Z1=

[
Z1[1], Z1[2], Z1[3]

]
∈ R3 and

Z2=
[
Z2[1], Z2[2], Z3[3]

]
∈ R3, respectively, such that

for every coefficient [i, j] of W1 and W2 there exist
real weights {α[i,j]

1 [k]}3k=1 and {α[i,j]
2 [k]}3k=1 such that:

W1[i, j]=
∑3
k=1 α

[i,j]
1 [k]Z1[k] and W2=

∑3
k=1 α

[i,j]
2 [k]Z2[k],

respectively. In the case of LP-BNN, we consider that each
coefficient of Z1 and Z2 represents an independent random
variable. Thus, in contrast to approaches based on the mean-field
approximation directly on the weights of the DNN, we can have
for each layer a non-diagonal covariance matrix with the following
variance and covariance terms for W1:

var(W1[i, j]) =
3∑
k=1

(α
[i,j]
1 [k])2var(Z1[k]) (10)

cov(W1[i, j],W1[i′, j′]) =
3∑
k=1

α
[i,j]
1 [k]α

[i′,j′]
1 [k]var(Z1[k])

(11)
This allows us to leverage the lower-dimensional parameters of the
distributions of Z1 and Z2 for estimating the higher-dimensional
distributions of W1 and W2. In this manner, in LP-BNN we model
an implicit covariance of weights at each layer.

We note that several approaches for modeling correlation
between weights have been proposed under certain settings and
assumptions. For instance, Karaletesos and Bui [42] model correla-
tions between weights within a layer and across layers thanks to a
Gaussian process-based approach working in the function space via
hierarchical priors instead of directly on the weights. Albeit elegant,
this approach is still limited to relatively shallow MLPs (e.g., one
hidden layer with 100 units [42]) and cannot scale up yet to
deep architectures considered in this work (e.g., ResNet-50). Other
approaches [26], [27] model layer-level weight correlations through

Matrix Variate Gaussian (MVG) prior distributions, increasing the
expressiveness of the inferred posterior distribution at the cost
of further increasing the computational complexity w.r.t. mean-
field approximated BNNs [15], [16]. By contrast, LP-BNN does
not explicitly model the covariance thanks to LP-BNN’s fully
connected layers, which allow it to project the weights into a low-
dimensional latent space in which it infers the posterior distribution
there. This strategy leads to a lighter BNN that is competitive
in terms of computation and performance for complex computer
vision tasks.

3.4 The utility of Rank-1 perturbations
One could ask why using the Rank-1 perturbation formalism from
BE [30], instead of simply feeding the weights of a layer to the VAE
to infer the latent distribution. Rank-1 perturbations significantly
reduce the number of weights upon which we train the VAE, due
to the decomposition of the fast weights into r and s. This further
allows us to consider multiple such weights at each forward pass
enabling faster training of the VAE as its training samples are more
numerous and more diverse.

Next, we establish connections between the cardinality J of the
ensemble and the posterior covariance matrix. The mechanism of
placing a prior distribution over the latent space enables an implicit
modeling of correlations between weights in their original space.
This is a desirable property due to its superior expressiveness [20],
[42] but which can be otherwise computationally intractable or
difficult to approximate. The covariance matrix of our prior in the
original weight space is a Rank-1 matrix. Thanks to the Eckart-
Young theorem (Theorem 5.1 in [43]), we can quantify the error
of approximating the covariance by a Rank-1 matrix, based on the
second up to the last singular values.

Let us denote by Θ1, . . . ,ΘJ the J weights trained by our
algorithm, Θavg = 1

J

∑J
j=1 Θj and ∆j = Θj − Θavg. The

differences and the sum in the previous equations are calculated
element-wise on all the weights of the DNNs. Then, for each new
data sample x, the prediction of the DNN fΘavg (·) is equivalent to
the average of the DNNs fΘj (·) applied on x :

1

J

J∑
j=1

fΘj (x) = fΘavg (x) +O
(
‖∆‖2

)
(12)

with ‖∆‖ = maxj ‖∆j‖. The L2 norm is computed over all
weights. We refer the reader to the proof in §3.5 of [44]. One can
see that we do not learn a Rank-1 matrix, but an up to Rank-J
covariance matrix, if all the sj , rj are independent. Hence the
choice of J acts as an approximation factor of the covariance
matrix. Wen et al. [30] tested different values of J and found that
J = 4 was the best compromise, which we also use here.

3.5 Computational complexity
Recent works [5], [37] studied the weight modes computed by
Deep Ensembles under a BNN lens, yet these approaches are
computationally prohibitive at the scale required for practical
computer vision tasks. Recently, Dusenberry et al. [25] proposed a
more scalable approach for BNNs, which can still be subject to high
instabilities as the ELBO loss is applied over a high-dimensional
parameter space, all BatchEnsemble parameters. Increased stability
can be achieved by leveraging large mini-batches that bring
more robust feature and gradient statistics, at significantly higher
computational cost (large virtual mini-batches are obtained through
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distributed training over multiple TPUs). In comparison, our
approach has a smaller memory overhead since we encode rj
in a lower dimensional space (we found empirically that a latent
space of size only 32 provides an appealing compromise between
accuracy and compactness). The ELBO loss here is applied over
this lower-dimensional space which is easier to optimize. The only
additional cost in terms of parameters and memory used w.r.t. BE
is related to the compact VAEs associated with each layer.

In addition to the lower number of parameters, LP-BNN train-
ing is more stable than Rank-1 BNN [25] due to the reconstruction
term ‖rj − r̂j‖22 which regularizes the LLP-BNN loss in Eq. (7) by
controlling the variances of the sampled weights. In practice, to
train BNNs successfully, a range of carefully crafted heuristics
are necessary, e.g., clipping, initialization from truncated Normal
distributions, extra weight regularization to stabilize training [25].
For LP-BNN, training is overall straightforward even on complex
and deep models, e.g., DeepLabV3+, thanks to the VAE module
that is stable and trains faster.

3.6 Stability of Bayesian Neural Networks
In this section, we experiment on CIFAR-10 to evaluate the stability
of LP-BNN versus a classic BNN. For this experiment, we use the
LeNet-5 architecture and choose a weight decay of 10−4 along
with a mini-batch size of 128. Our goal is to see whether both
techniques are stable when we vary the learning rate. Both DNNs
were trained under the exact same conditions for 80 epochs. In
Table 2, we present two metrics for both DNNs. The first metric
is the accuracy. The second metric is the epoch during which the
training loss of the DNN explodes, i.e., is equal to infinity. This
phenomenon may occur if the DNN is highly unstable to train.

We argue that LP-BNN is visibly more stable than standard
BNNs during training. We can see from Table 2 that LP-BNN is
more stable than the standard BNN as it does not diverge for a
wide range of learning rates. Moreover, its accuracy is higher than
that of a standard BNN implemented on the same architecture, a
property that we attribute to the VAE regularization.

3.7 LP-BNN diversity
At test-time, BNNs and DE aggregate the different predictions. For
BNNs, these predictions come from the different realizations of
the posterior distribution, while, for the DE, these predictions are
provided by several DNNs trained in parallel. As proved in [5], [45],
the diversity among these different predictions is key to quantify
the uncertainty of a DNN. Indeed, we want the different DNN
predictions to have a high variance when the model is not accurate.
Figure 4 highlights this desirable property of high variance on out-
of-distribution samples exhibited by LP-BNN. Also, as in [45], we
evaluate the ratio-error introduced in [46]. The ratio-error between
two classifiers is the number of data samples on which only one
classifier is wrong divided by the number of samples on which
they are both wrong. A higher value means that the two classifiers
are less likely to make the same errors. We also evaluated the Q-
statistics [46], which measures the diversity between two classifiers.
The value of the Q-statistics is between −1 and 1 and is defined
as:

Q =
N11N00 −N10N01

N11N00 +N10N01
(13)

where N11 and N00 are the numbers of data on which both
classifiers are correct and incorrect, respectively. N10 and N01

are the number of data where just one of the two classifiers is

wrong. If the two classifiers are always wrong or right for all data,
then N10=N01=0 and Q=1, while if both classifiers always make
errors on different inputs, then Q=− 1. The maximum diversity
comes when Q is minimum.

Finally, we evaluated the correlation coefficient [46], which
assesses the correlation between the error vectors of the two
classifiers. Tables 3 and 4 illustrate that, for the normal case
(CIFAR-10), LP-BNN displays similar diversity with DE, while in
the corrupted case (CIFAR-10-C) LP-BNN achieves better diversity
scores. We conclude that in terms of diversity metrics, LP-BNN
has indeed the behavior that one would expect for uncertainty
quantification purposes.

4 NOTATIONS

In Table 1, we summarize the main notations used in the paper.
Table 1 should facilitate the understanding of Section 2 (the
preliminaries) and Section 3 (the presentation of our approach) of
the paper.

5 RELATED WORK

In this section, we discuss some of the recent works on uncertainty
quantification and Deep Learning.

Bayesian Deep Learning. Bayesian approaches and neural
networks have a long joint history [11], [12], [47]. Early approaches
relied on Markov chain Monte Carlo variants for inference on
BNNs, which were later replaced by variational inference (VI) [13]
in the context of deeper networks. Hernández-Lobato et al. [17]
propose a new backpropagation technique, called probabilistic
backpropagation, which allows them to estimate the posterior of
the BNN without variational inference. Gal et al. [18] use the
dropout during inference time to approximate variational BNN.
Most of the modern approaches make use of VI with the mean-
field approximation [14], [15], [16], [19] which conveniently makes
posterior inference tractable. However this limits the expressivity of
the posterior [11], [20]. This drawback became subject of multiple
attempts for structured-covariance approximations using matrix
variate Gaussian priors [26], [27] or natural gradients [19], [28].
However they further increase memory and time complexity over
the original mean-field approximation. Recent methods proposed
more simplistic BNNs by performing inference with structured
priors only over the first and last layer [48] or just the last layer [24],
[49]. Full covariance can be computed for shallow networks thanks
to a meta-prior in a low-dimensional space where the VI can be
performed [42], [50]. Rossi et al. [51] use the Walsh-Hadamard-
based factorization strategies to project the covariance on a space
where it is a diagonal matrix, leading to a BNN that tracks the
covariance in an easier way. Tran et al. [52] use a functional
prior on a BNN to better estimate the posterior. Most variational
inference based BNNs are still challenging to train, underfit and are
difficult to scale to big DNNs [24], [25], while the issue of finding
a proper prior is still open [53], [54]. Our approach builds upon the
low dimensional fast weights from BE and on the stability of the
VAEs, foregoing many of the shortcomings of BNN training.

Ensemble Approaches. Ensembles mimick and attain, to
some extent, properties of BNNs [5]. Deep Ensembles [1] train
multiple DNNs with different random initializations leading to
excellent uncertainty quantification scores. The major inherent
drawback in terms of computational and memory overhead has
been subsequently addressed through multi-head networks [55],



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Notations Meaning

D = {(xi, yi)}ni=1 the set of n data samples and the corresponding labels

Θ the set of weights of a DNN

P (Θ) the prior distribution over the weights of a DNN

Qν(Θ) the variational prior distribution over the weights of a DNN used in standard BNNs [16]

ν the parameters of the variational prior distribution over the weights of a DNN used in standard BNNs [16]

P (yi | xi,Θ) the likelihood that DNN outputs yi following a prediction over input image xi

J the number of ensembling DNNs

θslow = {Wshare} the shared “slow” weights of the network

θfast = {Wj}Jj=1 = {(rj , sj)}Jj=1 the set of individual “fast” weights of BatchEnsemble for ensembling of J networks

θfast = {(r̂j , sj)}Jj=1 the set of fast weights of LP-BNN for ensembling of J networks.
r̂j are sampled from the latent weight space of weights rj .

θvariational = {(φj ,ψj)}Jj=1 the parameters of the VAE for computing the low dimensional latent distribution of rj

genc
φ (·) the encoder of the VAE applied on r

gdec
ψ (·) the decoder of the VAE for reconstructing r̂ from latent code of r

Qφ(z | r) the variational distribution over the weights r to approximate the intractable posterior Pψ(z | r)

(µj ,σj) = genc
φ (rj) encoder output that parameterize a multivariate Gaussian with diagonal covariance

zj ∼ Qφ(z | r) = N (z;µj ,σ
2
jI) sampling a latent code z from the latent distribution

Pψ(zj) = N (z; 0, I) with j ∈ [1, J ] the prior distribution on zj

r̂j = gdec
ψ (zj) the reconstruction of rj from its latent distribution , i.e. the variational fast weights

Wj = Wshare � (rjs
>
j ) the weight of a BatchEnsemble network j computed from slow and fast weights

where � is the Hadamard product and (rjs
>
j ) the inner product between these two vectors.

Wj = Wshare � (r̂js
>
j ) the weight of LP-BNN network network j computed from slow and variational fast weights

TABLE 1: Summary of the main notations of the paper.

Learning Rate 0.2 0.1 0.05 0.01 0.005

BNN
accuracy 22.48 44.60 49.83 48.70 56.69

BNN
epoch div 3 25 65 None None

LP-BNN
accuracy 20.02 55.04 59.68 63.73 64.41

LP-BNN
epoch div 3 None None None None

TABLE 2: Stability analysis of BNNs. Stability experiment with
LeNet 5 architecture and 80 epochs on CIFAR-10. On the epoch
divergence row, None means that the DNN does not diverge.

ratio errors ↑ Q-statistic ↓ correlation coefficient ↓

DE 0.9825 0.9877 0.6583

BE 0.5915 0.9946 0.7634

LP-BNN 0.8390 0.9842 0.6601

TABLE 3: Comparative results of diversity scores for image
classification on the CIFAR-10 dataset.

snapshot-ensembles from intermediate training checkpoints [56],
[57], efficient computation of the posterior distribution from weight
trajectories during training [3], [4], use of multiple Dropout masks
at test time [18], multiple random perturbations to the weights of
a pre-trained network [4], [33], [58], multiple perturbation of the
input image [2], multiple low-rank weights tied to a backbone
network [30], simultaneous processing of multiple images by
the same DNN [59]. Most approaches still have a significant
computational overhead for training or for prediction, while
struggling with diversity [5].

Dirichlet Networks (DNs). DNs [7], [60], [61], [62], [63] bring
a promising line of approaches that estimate uncertainty from
a single network by parameterizing a Dirichlet distribution over
its predictions. However, most of these methods [7], [60] use
OOD samples during training, which may be unrealistic in many

ratio errors ↑ Q-statistic ↓ correlation coefficient ↓

DE 0.4193 0.9690 0.7568

BE 0.2722 0.9874 0.8352

LP-BNN 0.4476 0.9595 0.7332

TABLE 4: Comparative results of diversity scores for image
classification on the CIFAR-10-C dataset.

applications [62], or do not scale to bigger DNNs [64]. DNs have
been developed only for classification tasks and extending them to
regression requires further adjustments [65], unlike LP-BNN that
can be equally used for classification and regression.

Stochastic MCMC BNN. Among the different solutions for
sampling according to the posterior of the DNN we also consider
the methods based on Markov chain Monte Carlo (MCMC), which
lead to quantification of uncertainty. For example, one could use
traditional sampling strategies [66], however, these techniques
suffer from the curse of dimensionality. One technique that is
often used is based on stochastic Langevin gradient dynamics
(SGLD) [67] which relies on adding noise to the stochastic gradient
descent and an adapted Metropolis hasting algorithm. This method
does not take into account the moment of the Langevin gradient
which is a crucial term of the Hamiltonian Monte Carlo (HMC).
This term was added in stochastic gradient Hamiltonian Monte
Carlo (SGHMC) [68], [69]. Unfortunately, as pointed out by
Dauphin et al. (2014), DNNs often exhibit pathological curvature
and their posterior has numerous modes. Thus the authors in [70]
proposed a strategy to estimate the multi modes of the posterior
based on the flat histogram algorithm [71]. Kim et al. [72] proposed
to use an adaptive drift in the gradient to exit the saddle points
of the loss function. Marceau-Caron et al. [73] used the natural
Langevin dynamics combined with the natural gradient descent to
have a better estimate of the posterior samples.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Input

LP-BNN

Prob
ab

ilities

1.0
    
0.8

   
0.6

  
0.4
  
0.2

  
0.0

 0   1   2   3    4   5   6   7   8   9
Classes

Prob
ab

ilities

0.7

0.6

0.4

0.2

0.0

 0   1   2   3    4   5   6   7   8   9
Classes

Prob
ab

ilities

0.8
         

    

0.7
         

    

0.6
         

    

0.5
         

    

0.4
         

    

0.3
         

    

0.2

0.1
         

    

0.0
 0   1   2   3    4   5   6   7   8   9 
Classes

BE

Prob
ab

ilities

1.0
    
0.8

   
0.6

  
0.4
  
0.2

  
0.0

 0   1   2   3    4   5   6   7   8   9 
Classes

Prob
ab

ilities

         

    

0.8
         

    

  
         

    

0.6
         

    

           
    

0.4
         

    
0.2
    

         
    

0.0
 0   1   2   3    4   5   6   7   8   9
Classes

Prob
ab

ilities

0.8
         

    

0.7
         

    

0.6
         

    

0.5
         

    

0.4
         

    

0.3
         

    

0.2
         

0.1
         

    

0.0
 0   1   2   3    4   5   6   7   8   9 
Classes

DE

Prob
ab

ilities

1.0
    
0.8

   
0.6

  
0.4
  
0.2

  
0.0

 0   1   2   3    4   5   6   7   8   9 
Classes

Prob
ab

ilities

0.8
         

    

0.7
         

    

0.6
         

    

0.5
         

    

0.4
         

    

0.3
         

    

0.2
 
    

0.1
         

    

0.0
 0   1   2   3    4   5   6   7   8   9
Classes

Prob
ab

ilities

1.0
    
0.8

   
0.6

  
0.4

  
0.2

  
0.0

 0   1   2   3    4   5   6   7   8   9 
Classes

Fig. 4: Diversity of predictions of different ensemble methods. The first row contains in order two images from the test set of CIFAR-10, of
CIFAR-10-C and of SVHN, respectively. The next three rows represent the corresponding outputs of the different sub models for the three
ensembling algorithms being considered: LP-BNN, BatchEnsemble and Deep Ensembles.

6 EXPERIMENTS AND RESULTS

6.1 Implementation details

We evaluate the performance of LP-BNN in assessing the un-
certainty of its predictions. For our benchmark, we evaluate LP-
BNN on different scenarios against several strong baselines with
different advantages in terms of performance, training or runtime:
BE [30], DE [1], Maximum Class Probability (MCP) [74], MC
Dropout [18], TRADI [4], EDL [61], DUQ [75], MIMO [59],
Subspace Inference (SI) [76], Stochastic gradient Hamiltonian
Monte Carlo (SGHMC) [68], BBB [16], FBNN [77], and GPI-G
prior [52] .

First, we evaluate the predictive performance in terms of accu-
racy for image classification, MSE for regression, and mIoU [78]
for semantic segmentation, respectively. Secondly, we evaluate
the quality of the confidence scores provided by the DNNs by
means of Expected Calibration Error (ECE) [79]. For ECE we
use M -bin histograms of confidence scores and accuracy, and
compute the average of M bin-to-bin differences between the two
histograms. Similarly to [79] we set M = 15. To evaluate the
robustness to dataset shift via corrupted images, we first train the
DNNs on CIFAR-10 [39] or CIFAR-100 [39] and then test on the
corrupted versions of these datasets [40]. The corruptions include
different types of noise, blurring, and some other transformations
that alter the quality of the images. The following corruptions
are applied with different levels of severity: Gaussian Noise, Shot
Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion
Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast, Elastic,
Pixelate, JPEG. More details about these corruptions can be found

in [40].
For this scenario, similarly to [80], we use as evaluation

measures the Corrupted Accuracy (cA) and Corrupted Expected
Calibration Error (cE), that offer a better understanding of the
behavior of our DNN when facing shift of data distribution and
aleatoric uncertainty.

In order to evaluate the epistemic uncertainty, we propose to
assess the OOD detection performance. This scenario typically
consists in training a DNN over a dataset following a given
distribution, and testing it on data coming from this distribution
and data from another distribution, not seen during training. We
quantify the confidence of the DNN predictions in this setting
through their prediction scores, i.e., output softmax values. We
use the same indicators of the accuracy of detecting OOD data as
in [74]: AUC, AUPR, and the FPR-95%-TPR. These indicators
measure whether the DNN model lacks knowledge regarding some
specific data and how reliable are its predictions. For the regression,
we use the Negative Log Likelihood (NLL) as a performance metric
for the uncertainty.

For our implementation, we use PyTorch [81]. Our code
is available at https://github.com/giannifranchi/LP_BNN. In the
following we share the hyper-parameters for our experiments on
image classification and semantic segmentation. Please be aware
that the values in bold within the tables are linked to the top result
associated with the given metrics.

6.2 Regression
To verify whether our work also generalizes to trivial tasks, we
propose to study regression tasks on the UCI dataset [17]. We

https://github.com/giannifranchi/LP_BNN
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CIFAR-10 CIFAR-100
Method Acc ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓ cA ↑ cE ↓ Acc ↑ ECE ↓ cA ↑ cE ↓

MCP [74] 96.33 0.9600 0.9767 0.115 0.0207 32.98 0.6167 80.19 0.1228 19.33 0.7844

MC dropout [18] 96.50 0.9273 0.9603 0.242 0.0117 32.35 0.6403 77.92 0.0672 27.66 0.5909

SI [76] 96.31 0.9681 0.9842 0.101 0.0105 73.30 0.1079 81.89 0.0736 51.78 0.2283

DUQ [75]† 92.9 0.9338 0.9600 0.150 0.1572 69.10 0.2712 - - - -

DUQ Resnet18 [75]‡ 92.8 0.9138 0.9421 0.20 0.064 67.21 0.5912 - - - -

EDL [61]† 85.73 0.9002 0.9198 0.247 0.0904 59.54 0.3412 - - - -

SGHMC [68] 76.59 0.6023 0.7820 0.8367 0.1439 56.40 0.1640 - - - -

BBB [16] 75.11 0.6820 0.8079 0.7075 0.071 49.12 0.3647 - - - -

MIMO [59] 95.73 0.7740 0.8990 0.175 0.0261 67.95 0.2530 79.12 0.0718 47.12 0.2901

Deep Ensembles [1] 96.74 0.9803 0.9896 0.071 0.0093 68.75 0.1414 83.01 0.0673 47.35 0.2023

BatchEnsembles [30] 96.48 0.9540 0.9731 0.132 0.0167 71.67 0.1928 81.27 0.0912 47.44 0.2909

LP-BNN (ours) 95.02 0.9691 0.9836 0.103 0.0094 69.51 0.1197 79.3 0.0702 48.40 0.2224

TABLE 5: Comparative results for image classification tasks. We evaluate on CIFAR-10 and CIFAR-100 for the tasks: in-domain classification,
out-of-distribution detection with SVHN (CIFAR-10 only), robustness to distribution shift (CIFAR-10-C, CIFAR-100-C). We run all methods
ourselves in similar settings using publicly available code for related methods. Results are averaged over three seeds. †: We did not manage to
scale these methods to WRN-28-10 on CIFAR-100. A similar finding for EDL was reported in [64]. ‡ DUQ does not scale on CIFAR-100 and it
does not perfectly scale to WRN-28-10 on CIFAR-10 so we train it with ResNet-18 [34] architecture like in the original paper.
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Fig. 5: Calibration at different levels of corruption. We report ECE
scores for LP-BNN, BE [30], and DE [1] on CIFAR-10-C.

reproduce the framework developed in [17] and [1]. Similarly
to [17], we consider a MLP neural network with one hidden layer,
composed of 50 hidden units trained for 40 epochs with 20-fold
cross-validation.

Based on [82], we use the Gaussian NLL in Equation (14) using
networks with two output neurons which estimate the parameters
of a heteroscedastic Gaussian distribution [82], [83]. Hence we
consider that the outputs of the DNN are the parameters of a
Gaussian distribution (mean and variance).

L
(
µθm(xi), σθm(xi)

2, yi
)

=

(yi − µθm(xi))
2

2σθm(xi)2
+

1

2
log σθm(xi)

2 +
1

2
log 2π (14)

We compare LP-BNN, BBB [16], FBNN [77], GPI-G prior [52],
Deep Ensembles [1] on the UCI datasets in Table 6. The results
show that LP-BNN provides equivalent results to state-of-the-art
algorithms on most datasets.

6.3 Image classification with CIFAR-10/100 [39]
Protocol. Here we train on CIFAR-10 [39] composed of 10 classes.
For CIFAR-10 we consider as OOD the SVHN dataset [41]. Since
SVHN is a color image dataset of digits, it guarantees that the OOD
data comes from a distribution different from those of CIFAR-10.
We use WRN-28-10 [38] for all methods, a popular architecture
for this dataset, and evaluate on CIFAR-10-C [40]. For CIFAR-
100 [39] we use again WRN-28-10 and evaluate on the test sets of
CIFAR-100 and CIFAR-100-C [40]. Note that for all DNNs, even
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Fig. 6: ECE vs. network size and inference time. We report ECE
scores for LP-BNN, BE [30], MIMO [59], and DE [1] on CIFAR-10.
The size of each circle corresponds to the number of parameters of the
model.

for DE, we average results over three random seeds for statistical
relevance. We use cutout [84] as data augmentation, as commonly
used for these datasets. Please find in the supplementary material
the hyperparameters for this experiment.
Discussion. We illustrate results for this experiment in Table 8.
We notice that DE with cutout outperforms other methods on
most of the metrics except ECE, cA, and cE on CIFAR-10, and
cA on CIFAR-100, where LP-BNN achieves state of the art
results. This means that LP-BNN is competitive for aleatoric
uncertainty estimation. In fact, ECE is calculated on the test set of
CIFAR-10 and CIFAR-100, so it mostly measures the reliability
of the confidence score in the training distribution. cA and cE
are evaluated on corrupted versions of CIFAR-10 and CIFAR-100,
which amounts to quantifying the aleatoric uncertainty. We can see
that for this kind of uncertainty, LP-BNN achieves state of the art
performance. On the other hand, for epistemic uncertainty, we can
see that DE always attain best results. Overall, our LP-BNN is
more computationally efficient while providing better results for
the aleatoric uncertainty. Computation wise, DE takes 52 hours to
train on CIFAR-10, while LP-BNN needs 2 times less, 26 hours
and 30 minutes. In Figure 5 and Table 5, we observe that our
method exhibits top ECE score on CIFAR-10-C, as well as for the
stronger corruptions.

6.4 Semantic segmentation
Next, we evaluate semantic segmentation, a task of interest for
autonomous driving, where high capacity DNNs are used for
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Datasets RMSE NLL
LP-BNN BBB FBNN GPI-G prior SGHMC Deep Ensembles LP-BNN BBB FBNN GPI-G prior SGHMC Deep Ensembles

Boston housing 2.995 ± 0.545 3.171±0.149 2.378±0.104 2.850 ± 1.007 4.496 ± 2.272 2.219 ± 0.098 2.611 ± 0.175 2.602±0.031 2.301±0.038 2.469 ± 0.160 3.097 ± 0.465 2.047 ± 0.028
Concrete 5.900 ± 0.653 5.678±0.087 4.935±0.180 4.781 ± 0.443 7.995 ± 2.414 5.167 ± 0.234 3.250 ± 0.133 3.149±0.018 3.096±0.016 3.007 ± 0.057 3.461 ± 0.226 2.885 ± 0.032
Energy 2.537 ± 0.760 0.565±0.018 0.412±0.017 0.370 ± 0.076 8.222 ± 23.197 1.712 ± 0.067 2.553 ± 0.227 1.500±0.006 0.684±0.020 0.425 ± 0.210 2.738 ± 1.077 1.553 ± 0.060
Kin8nm 0.07 ± 0.004 - - 0.065 ± 0.002 0.083 ± 0.019 0.058 ± 0.003 -1.241 ± 0.010 - - -1.241 ± 0.015 -1.156 ± 0.149 -1.452 ± 0.010
Naval Propulsion Plant 0.002 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.002 ± 0.000 -4.938 ± 0.041 -6.950±0.052 -7.130±0.024 -6.923 ± 0.062 -3.337 ± 0.185 -4.833 ± 0.097
Power Plant 3.303 ± 0.02 - - 3.936 ± 0.170 - 3.097 ± 0.020 2.660 ± 0.007 - 2.790 ± 0.043 - 2.600 ± 0.007
Protein 3.624 ± 0.0718 4.331±0.033 4.326±0.019 3.926 ± 0.019 3.822 ± 0.069 3.412 ± 0.017 2.533 ± 0.043 2.892±0.007 2.892±0.004 2.799 ± 0.004 2.650 ± 0.049 2.442 ± 0.015

TABLE 6: Comparison between the results obtained with LP-BNN on regression tasks

Input image MCP BE LP-BNN

Figure 7: Visual assessment on two BDD-Anomaly test images containing a motorcycle (OOD class). For each image: on the first row,
input image and confidence maps from MCP [74], BE [30], and LP-BNN; on the second row, ground-truth segmentation and segmentation maps
from MCP, BE, and LP-BNN. LP-BNN is less confident on the OOD objects.

Vanilla BatchEnsemble Deep Ensembles TRADI LP-BNN

Training

Time (s) 1,506 1,983 6,026 1,782 1,999
for 1 epochs 1 ×1.31 ×4.0 ×1.18 ×1.33
Memory (MiB) 8,848 9,884 35,392 9,040 9,888

1 ×1.11 ×4.0 ×1.02 ×1.11

Testing

Time (s) 0.21 0.56 0.84 0.84 0.57
on 1 image 1 ×2.67 ×4.0 ×4.0 ×2.71
Memory (MiB) 1,884 4,114 7,536 7,536 4,114

1 ×2.18 ×4.0 ×4.0 ×2.18

Mult-Adds 5.95 23.82 23.82 21.24 23.81
1 ×4.0 ×4.0 ×3.56 ×4.0

TABLE 7: Runtime and memory analysis. Numbers correspond to
StreetHazards images processed with DeepLabv3+ ResNet-50 with
PyTorch on a PC: Intel Core i9-9820X and 1× GeForce RTX 2080Ti.
Colored numbers are relative to vanilla approach. Mini-batch size for
training is 4 and for testing 1. Mult-Adds corresponds to the inference
cost, i.e., the number of giga multiply-add operations for a forward
pass which is estimated with torchinfo (v1.7.1).

Dataset OOD method mIoU ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓

StreetHazards
DeepLabv3+

ResNet50

Baseline (MCP) [74] 53.90 0.8660 0.0691 0.3574 0.0652
TRADI [4] 52.46 0.8739 0.0693 0.3826 0.0633
Deep Ensembles [1] 55.59 0.8794 0.0832 0.3029 0.0533
MIMO [59] 55.44 0.8738 0.0690 0.3266 0.0557
BatchEnsemble [30] 56.16 0.8817 0.0759 0.3285 0.0609
LP-BNN (ours) 54.50 0.8833 0.0718 0.3261 0.0520
LP-BNN + GN (ours) 56.12 0.8908 0.0742 0.2999 0.0593

BDD-Anomaly
DeepLabv3+

ResNet50

Baseline (MCP) [74] 47.63 0.8515 0.0450 0.2878 0.1768
TRADI [4] 44.26 0.8480 0.0454 0.3687 0.1661
Deep Ensembles [1] 51.07 0.8480 0.0524 0.2855 0.1419
MIMO [59] 47.20 0.8438 0.0432 0.3524 0.1633
BatchEnsemble [30] 48.09 0.8427 0.0449 0.3017 0.1690
LP-BNN (ours) 49.01 0.8532 0.0452 0.2947 0.1716
LP-BNN + GN (ours) 47.15 0.8553 0.0577 0.2866 0.1623

TABLE 8: Comparative results on the OOD task for semantic
segmentation. We run all methods ourselves in similar settings using
publicly available code for related methods. Results are averaged over
three seeds.

processing high resolution images with complex urban scenery
with strong class imbalance.
StreetHazards [85]. StreetHazards is a large-scale dataset that
consists of different sets of synthetic images of street scenes.

More precisely, this dataset is composed of 5, 125 images for
training and 1, 500 test images. The training dataset contains pixel-
wise annotations for 13 classes. The test dataset comprises 13
training classes and 250 OOD classes, unseen in the training set,
making it possible to test the robustness of the algorithm when
facing a diversity of possible scenarios. For this experiment, we
used DeepLabv3+ [86] with a ResNet-50 encoder [34]. Following
the implementation in [85], most papers use PSPNet [87] that
aggregates predictions over multiple scales, an ensembling that can
obfuscate in the evaluation the uncertainty contribution of a method.
This can partially explain the excellent performance of MCP on
the original settings [85]. We propose using DeepLabv3+ instead,
as it enables a clearer evaluation of the predictive uncertainty.
We propose two DeepLabv3+ variants as follows. DeepLabv3+
is composed of an encoder network and a decoder network; in
the first version, we change the decoder by replacing all the
convolutions with our new version of LP-BNN convolutions and
leave the encoder unchanged. In the second variant we use weight
standardization [88] on the convolutional layers of the decoder,
replacing batch normalization [89] in the decoder with group
normalization [90], to better balance mini-batch size and ensemble
size. We denote the first version LP-BNN and the second one
LP-BNN + GN.
BDD-Anomaly [85]. BDD-Anomaly is a subset of the BDD100K
dataset [91], composed of 6, 688 street scenes for training and 361
for the test set. The training set contains pixel-level annotations
for 17 classes, and the test dataset is composed of the 17
training classes and 2 OOD classes: motor-cycle and train. For
this experiment, we use DeepLabv3+ [86] with the experimental
protocol from [85]. As previously we use a ResNet-50 encoder [34].
For this experiment, we use the LP-BNN and LP-BNN + GN
variants.
Discussion. We emphasize that the semantic segmentation is more
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challenging than the CIFAR classification since images are bigger
and their content is more complex. The larger input size constrains
to use smaller mini-batches. This is crucial since the fast weights
of the ensemble layers are trained just on one mini-batch slice. In
this experiment, we could use mini-batches of size 4 and train the
fast weights on slices of size 1. Yet, despite these computational
difficulties, with our technique, we achieve state-of-the-art results
for most metrics. We can see in Table 8 that our strategies achieve
state-of-the-art performance in detecting OOD data and are well
calibrated. We can also see in Figure 7, where the OOD class is
the motorcycle, that our DNN is less confident on this class. Hence
LP-BNN allows us to have a more reliable DNN which is essential
for real-world applications.

Table 7 and Figure 6 show the computational cost of LP-BNN
and related methods. For training, LP-BNN takes only ×1.33 more
time than a vanilla approach, in contrast to DE that take much
longer, while their performances are equivalent in most cases. Our
technique allows for a lighter training than DE, which is interesting
when using GPUs with low VRAM. At the same time, LP-BNN
enables implicit modeling of weight correlations at every layer with
limited overhead as it does not explicitly computes the covariances.
To the best of our knowledge, LP-BNN is the first approach
with the posterior distribution computed with variational inference
successfully trained and applied for semantic segmentation.

7 CONCLUSION

We propose a new BNN framework able to quantify uncertainty in
the context of deep learning. Owing to each layer of the network
being tied to and regularized by a VAE, LP-BNNs are stable,
efficient, and therefore easy to train compared to existing BNN
models. The extensive empirical comparisons on multiple tasks
show that LP-BNNs reach state-of-the-art levels with substantially
lower computational cost. We hope that our work will open new
research paths on effective training of BNNs. In the future we
intend to explore new strategies for plugging more sophisticated
VAEs in our models along with more in-depth theoretical studies.
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