EvE: Exploiting Generative Priors for Radiance Field Enrichment - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

EvE: Exploiting Generative Priors for Radiance Field Enrichment

Résumé

Modeling large-scale scenes from unconstrained image collections in-the-wild has proven to be a major challenge in computer vision. Existing methods tackling in-the-wild neural rendering operate in a closed-world setting, where knowledge is limited to a scene's captured images within a training set. We propose EvE, which is, to the best of our knowledge, the first method leveraging generative priors to improve in-the-wild scene modeling. We employ pre-trained generative networks to enrich K-Planes representations with extrinsic knowledge. To this end, we define an alternating training procedure to conduct optimization guidance of K-Planes trained on the training set. We carry out extensive experiments and verify the merit of our method on synthetic data as well as real tourism photo collections. EvE enhances rendered scenes with richer details and outperforms the state of the art on the task of novel view synthesis in-the-wild. Our project page can be found at https://eve-nvs.github.io.
Fichier principal
Vignette du fichier
eve.pdf (18.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04318414 , version 1 (01-12-2023)
hal-04318414 , version 2 (07-02-2024)
hal-04318414 , version 3 (19-04-2024)

Licence

Identifiants

Citer

Karim Kassab, Antoine Schnepf, Jean-Yves Franceschi, Laurent Caraffa, Jeremie Mary, et al.. EvE: Exploiting Generative Priors for Radiance Field Enrichment. 2023. ⟨hal-04318414v1⟩
176 Consultations
48 Téléchargements

Altmetric

Partager

More