Characterizing Boundedness of Metaplectic Toeplitz Operators - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2024

Characterizing Boundedness of Metaplectic Toeplitz Operators

Résumé

We study Toeplitz operators on the Bargmann space, with Toeplitz symbols given by exponentials of complex quadratic forms. We show that the boundedness of the corresponding Weyl symbols is necessary for the boundedness of the operators, thereby completing the proof of the Berger–Coburn conjecture in this case. We also show that the compactness of such Toeplitz operators is equivalent to the vanishing of their Weyl symbols at infinity.

Dates et versions

hal-04315510 , version 1 (30-11-2023)

Identifiants

Citer

Lewis Coburn, Michael Hitrik, Johannes Sjöstrand. Characterizing Boundedness of Metaplectic Toeplitz Operators. International Mathematics Research Notices, 2024, 2024 (10), pp.8264-8281. ⟨10.1093/imrn/rnad161⟩. ⟨hal-04315510⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

More