Projective manifolds whose tangent bundle is Ulrich
Résumé
In this article, we give numerical restrictions on the Chern classes of Ulrich bundles on higher-dimensional manifolds, which are inspired by the results of Casnati in the case of surfaces. As a by-product, we prove that the only projective manifolds whose tangent bundle is Ulrich are the twisted cubic and the Veronese surface. Moreover, we prove that the cotangent bundle is never Ulrich.