On Substitutions Preserving their Return Sets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

On Substitutions Preserving their Return Sets

Herman Goulet-Ouellet
  • Fonction : Auteur

Résumé

We consider the question of whether or not a given primitive substitution preserves its sets of return words-or return sets for short. More precisely, we study the property asking that the image of the return set to a word equals the return set to the image of that word. We show that, for bifix encodings (where images of letters form a bifix code), this property holds for all but finitely many words. On the other hand, we also show that every conjugacy class of Sturmian substitutions contains a member for which the property fails infinitely often. Various applications and examples of these results are presented, including a description of the subgroups generated by the return sets in the shift of the Thue-Morse substitution. Up to conjugacy, these subgroups can be sorted into strictly decreasing chains of isomorphic subgroups weaving together a simple pattern. This is in stark contrast with the Sturmian case, and more generally with the dendric case (including in particular the Arnoux-Rauzy case), where it is known that all return sets generate the free group over the underlying alphabet.
Fichier principal
Vignette du fichier
return_preservation.pdf (481.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04311379 , version 1 (28-11-2023)

Identifiants

Citer

Valérie Berthé, Herman Goulet-Ouellet. On Substitutions Preserving their Return Sets. WORDS 2023, Jun 2023, Umea, France. pp.77-90, ⟨10.1007/978-3-031-33180-0_6⟩. ⟨hal-04311379⟩
21 Consultations
35 Téléchargements

Altmetric

Partager

More