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On Substitutions Preserving their Return Sets⋆

Valérie Berthé and Herman Goulet-Ouellet⋆⋆

IRIF, Université Paris Cité, 75013 Paris, France
{berthe,hgoulet}@irif.fr

Abstract. We consider the question of whether or not a given primitive
substitution preserves its sets of return words—or return sets for short.
More precisely, we study the property asking that the image of the
return set to a word equals the return set to the image of that word.
We show that, for bifix encodings (where images of letters form a bifix
code), this property holds for all but finitely many words. On the other
hand, we also show that every conjugacy class of Sturmian substitutions
contains a member for which the property fails infinitely often. Various
applications and examples of these results are presented, including a
description of the subgroups generated by the return sets in the shift of
the Thue–Morse substitution. Up to conjugacy, these subgroups can be
sorted into strictly decreasing chains of isomorphic subgroups weaving
together a simple pattern. This is in stark contrast with the Sturmian
case, and more generally with the dendric case (including in particular
the Arnoux–Rauzy case), where it is known that all return sets generate
the free group over the underlying alphabet.

Keywords: Substitutions · Return words · Sturmian substitutions.

Since the seminal work of Durand at the end of the 90s—including a gener-
alization of Cobham’s theorem [13], a characterization of sequences defined by
primitive substitutions [14], and with Host and Skau, a description of the dimen-
sion groups of substitution dynamical systems via sequences of Kakutani–Rohlin
partitions [15]—return words have proved to be a useful tool in combinatorics
on words and symbolic dynamics. They have been used, among other things,
to characterize Sturmian words [31], study maximal bifix codes [6,11], or else
study the Schützenberger group, a topological/algebraic invariant of minimal shift
spaces which takes the form of a projective profinite group [1,2,3].

A return set is a set of (first) return words to a given word in a given set of
words, for instance the language of a substitution. The Return Theorem, a striking
result by a group of authors which includes the first author of this paper, states
that in a dendric shift space (a common generalization of episturmian shifts and
codings of interval exchanges), every return set is a basis for the free group over the
alphabet of the shift [10]. This kind of stable behavior for subgroups generated by
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return sets was observed in the more general class of suffix-connected shift spaces,
introduced by the second author [19]. The behavior of return sets in a given
shift space has also been linked, by Almeida and Costa, to the Schützenberger
group; in particular, global stability of the subgroups generated by the return
sets entails freeness of the Schützenberger group [3]. Together with results from
[12,18], this can be used to show that dendric shift spaces are not topologically
conjugate to shift spaces of primitive uniform substitutions—though the same
conclusion can also be reached using other means [9].

In addition to the algebraic regularity from the Return Theorem, let us
recall that Durand proved in [14] a combinatorial regularity property for return
sets of substitutive shift spaces. His result uses derived sequences, which are
obtained by recoding an infinite word with respect to some return set. Durand
showed that having a finite number of derived sequences precisely characterizes
substitutive sequences. Coming from a dynamical point of view, this might set
some expectation that return sets in substitutive shift spaces should also show
some algebraic regularity. However, looking at concrete examples quickly reveals
that, outside of the well-charted dendric case, the subgroups generated by return
sets can exhibit a more complicated behavior—and in fact, little is known about
how these subgroups behave in general.

In a roundabout way, this was the initial motivation for the work presented
in this paper, which started as a study of the subgroups generated by the return
sets in the Thue–Morse shift. In this case the subgroups, far from all being equal,
form instead several decreasing chains of subgroups, crossing and weaving into
each other. Moreover, these chains can be completely described—details are given
in Proposition 1 and in § 5—thanks to a simple preservation property which
sparked our curiosity: with finite exceptions, the Thue–Morse substitution maps
its return sets to other return sets. Our first main result (Theorem 1) states
that this property holds for every primitive aperiodic bifix substitution (and
by bifix, we mean that the letter images form a bifix code). Our second main
result (Theorem 2) states that, on the other hand, it fails for primitive Sturmian
substitutions, at least up to conjugacy.

1 Preliminaries

Throughout this paper, A is a finite alphabet, A∗ is the set of words over A
equipped with concatenation, and ε is the empty word. For a subset B ⊆ A∗, let
B∗ denote the submonoid of A∗ generated by B. We use u · v as a shorthand for
the pair (u, v), in particular when u and v are in A∗. We say that s · t refines u · v
if u is a suffix of s and v is a prefix of t, i.e. s · t = s′u · vt′ for some s′, t′ ∈ A∗;
we then write u · v ⪯ s · t.

Let AZ be the set of two-sided infinite word over A. Recall that a shift space
is a subset X ⊆ AZ invariant under the shift map (xn)n∈Z 7→ (xn+1)n∈Z and
its inverse, and closed for the product topology of AZ (A being equipped with
the discrete topology). The language of X, denoted L(X), is the set of all finite
words occurring as factors (i.e. consecutive blocks) in the elements x ∈ X. A left
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extension of u ∈ L(X) is a word x ∈ A∗ such that xu ∈ L(X). Likewise, y is a
right extension of u if uy ∈ L(X). We say that u is left special if it admits at
least two left extensions of length 1, and right special if those are instead right
extensions. We say that u is bispecial if it is both left and right special.

Given a pair u ·v with uv ∈ L(X), a word r ∈ A∗ is a return word (sometimes
called first return word) to u · v in X if urv ∈ L(X)∩ uvA∗ ∩A∗uv and contains
exactly two occurrences of uv. We denote by Ru·v the set of return words to
u · v in X (the shift space is easily inferred from context). Those are called the
return sets of X. Note that this definition differs from the one—perhaps more
common in the literature—where return words are one-sided ; in our notation,
this would correspond to return sets of the form Rε·v or Ru·ε. Concrete instances
of return sets are given, for instance, in Example 3. The lemma below collects
some standard properties of return sets that will be useful later.

Lemma 1 ([2,14,15]). Let X be a shift space and u ·v be a pair with uv ∈ L(X).

(i) The set Ru·v generates freely the submonoid R∗
u·v of A∗, i.e. it is a code.

(ii) The submonoid R∗
u·v contains {w ∈ L(X) : uwv ∈ L(X) ∩ uvA∗ ∩A∗uv}.

(iii) Ru·v = u−1Rε·uvu = vRuv·εv
−1.

The item (iii) above says that we can pass from two-sided to one-sided return
sets and back simply by conjugating. This however should not be construed as
saying that two-sided return sets are useless: there are circumstances in which the
two-sided version plays an important role, as in [2,3,15]. In the present paper, it is
helpful in handling some aspects of the proof of our first main result (Theorem 1).

Let σ : A∗ → A∗ be a primitive substitution. We denote by Xσ the two-sided
shift space associated with σ (as per the standard definition; see e.g. [28, § 5]
or [17, § 1.4]) and by L(σ) the language of Xσ. By primitivity, all the return
sets in Xσ are finite. We say that σ is aperiodic if the shift space Xσ does not
consist of a single finite orbit of the shift map. We say that σ is an encoding if σ
is injective on A∗. In particular, encodings preserve codes [7, Corollary 2.1.6]. We
say that σ is a bifix encoding, or simply bifix, if for all distinct letters a ̸= b ∈ A,
σ(a) is neither prefix nor suffix of σ(b). Every bifix substitution is an encoding [7,
Proposition 2.1.9]. Finally, we say that σ is left proper (or right proper) if there
is a letter a0 ∈ A such that σ(a) ∈ a0A

∗ (or σ(a) ∈ A∗a0) for all a ∈ A.
A Sturmian substitution is a binary substitution, here defined on the alphabet

{0, 1}, which preserves Sturmian sequences—aperiodic sequences in {0, 1}N of
minimal factor complexity (see [23]). By [8, Theorem 5], this is the same as being
weakly Sturmian (the image of some Sturmian sequence is Sturmian); in the
primitive case, this is also the same as generating a Sturmian shift space. In
particular, primitive Sturmian substitutions are aperiodic.

In the next example, we recall two important substitutions which will reappear
several times in this paper.

Example 1. Consider the following primitive binary substitutions:

τ : 0 7→ 01, 1 7→ 10 and ϕ : 0 7→ 01, 1 7→ 0.
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The former is known as the Thue–Morse substitution, and it is bifix and aperiodic;
it is neither left nor right proper. The latter, the Fibonacci substitution, is
Sturmian, hence aperiodic, and left proper; it is neither bifix nor right proper.

Let F (A) be the free group over A. It consists, we recall, of the words over
the alphabet A ∪ A−1 (where A−1 = {a−1 : a ∈ A} is a disjoint copy of A)
which are irreducible under the rewriting rules aa−1 → ε for all a ∈ A. There
is a natural embedding A∗ ↪→ F (A) which allows us to view words as elements
of F (A) and substitutions as endomorphisms of F (A)—and we do so whenever
convenient. The endomorphisms of F (A) that are also substitutions are called
positive; the positive automorphisms of F ({0, 1}) are precisely the Sturmian
substitutions [26,32].

For a given subset B ⊆ F (A), we let ⟨B⟩ denote the subgroup of F (A)
generated by B. Similar to codes in A∗, we call B free if the inclusion B ↪→ F (A)
extends to an isomorphism F (B) ∼= ⟨B⟩. We also say that B is a basis of
the subgroup ⟨B⟩. In contrast with free monoids, every subgroup of the free
group admits a basis (this is the celebrated Nielsen–Schreier theorem; see [25,
Proposition 2.11]), and in fact infinitely many bases whenever it is not cyclic. We
will be interested in the subgroups generated by the return sets of a shift space,
dubbed the return groups of the shift space.

Example 2. If X ⊆ AZ is a minimal dendric shift space, then all return groups
are equal to F (A), and moreover every return set viewed as a subset of F (A) is
free; this is the aforementioned Return Theorem [10, Theorem 4.5]. This applies
in particular to Sturmian shift spaces, as these are all dendric. More generally,
if X is suffix-connected, then it has only finitely many return groups which all
belong to the same conjugacy class [19, Theorem 1.1].

2 Preservation of Return Words

Let σ be a primitive substitution over A. Given a pair u · v with uv ∈ L(σ), we
consider the following preservation property:

σ(Ru·v) = Rσ(u)·σ(v). (P)

Let us state our two main results.

Theorem 1. Let σ be a primitive aperiodic bifix substitution. There exists a
constant K > 0 such that the property (P) holds for every pair u·v with uv ∈ L(X)
and |uv| ≥ K.

Theorem 2. Let σ be a primitive Sturmian substitution. There is a substitution
in the conjugacy class of σ for which the property (P) fails for infinitely many
pairs u · v with uv ∈ L(σ).

The proofs are given later, in § 3 and § 4 respectively. The first main result
will be used to describe the return groups in the Thue–Morse shift.
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Proposition 1. Up to conjugacy, all return groups in the shift space of the
Thue–Morse substitution are equal to one of the following subgroups of F ({0, 1}):

⟨τn(0), τn(1)⟩, ⟨τn(1), τn(00), τn(0110)⟩, ⟨τn(0), τn(11), τn(1001)⟩,

with n ≥ 0. Moreover, the given generating sets are bases of these subgroups.

The proof of Proposition 1 will be given in § 5. The remainder of this section
explores various aspects of the property (P), starting with an example.

Example 3. For the Thue–Morse substitution τ : 0 7→ 01, 1 7→ 10, the pair 0 · ε
fails the property (P) since

R0·ε = {0, 10, 110} and R01·ε = {01, 001, 101, 1001}.

On the other hand, R0·1 = {10, 100, 110, 1100} and

τ(R0·1) = {1001, 100101, 101001, 10100101} = R01·10.

In fact, every pair u · v with uv ∈ L(τ) and |uv| ≥ 2 satisfies the property
(P). This is a consequence of the proof of Theorem 1 detailed in Proposition 4.

Next is a simple lemma that will be useful for the proof of Theorem 1.

Lemma 2. Let σ be a primitive substitution which is also an encoding. A pair
u · v with uv ∈ L(σ) satisfies the property (P) if and only if Rσ(u)·σ(v) ⊆ σ(R∗

u·v).

Proof. The inclusion σ(Ru·v) ⊆ R∗
σ(u)·σ(v) always holds by Lemma 1 (ii). Since

σ(Ru·v) and Rσ(u)·σ(v) are both codes (by Lemma 1 (i)), they are equal if and
only if they generate the same submonoid (by [7, Corollary 2.2.4]). ⊓⊔

Remark 1. In the previous lemma, we can replace the assumption that σ is an
encoding by the local condition Cardσ(Ru·v) = CardRσ(u)·σ(v).

The lemma below shows that the property (P) depends only on the word uv,
rather than on the pair u · v.

Lemma 3. Let σ be a primitive substitution. A pair u ·v with uv ∈ L(σ) satisfies
the property (P) if and only if the pair uv · ε does.

Proof. This is straightforward by Lemma 1 (iii); for instance, assuming that u · v
satisfies the property (P), we get

σ(Ruv·ε) = σ(v)−1σ(Ru·v)σ(v) = σ(v)−1Rσ(u)·σ(v)σ(v) = Rσ(uv)·ε. ⊓⊔

The next proposition gives a sufficient condition for a pair of words to fail
the property (P). It is used to prove Theorem 2.

Proposition 2. Let σ be a primitive substitution which is also left proper. Let
u · v be a pair with uv ∈ L(σ). If σ(uv) is right special, then u · v fails the
property (P).
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Proof. Thanks to the previous lemma, we may assume that v = ε. Since σ is
left proper, there is a letter a0 ∈ A such that σ(Ru·ε) ⊆ a0A

∗. As σ(u) is right
special, it has a right extension b ∈ A with b ̸= a0. Then, there is a return word
r ∈ Rσ(u)·ε such that r ∈ bA∗, and clearly r /∈ σ(Ru·v). ⊓⊔

Remark 2. In Proposition 2, the assumption that σ is left proper can be replaced
by the local condition that uv is not right special.

Of course, similar statements hold with the left special property for right
proper substitutions or under the local assumption that uv is not left special. We
thus deduce the following result as a straightforward consequence of Theorem 1;
to the best of our knowledge, this is new.

Corollary 1. Let σ be a primitive aperiodic bifix substitution. There is a constant
K > 0 such that, for every u ∈ L(σ) with |u| ≥ K, u is left special, right special or
bispecial whenever σ(u) is. If σ is left proper (or right proper), then Im(σ)∩L(σ)
contains only finitely many right special words (or left special words).

Finally, we give an example illustrating failure of the property (P); it is a
special case of Theorem 2.

Example 4. Consider the Fibonacci substitution ϕ : 0 7→ 01, 1 7→ 0. Let u ∈ L(ϕ)
be right special and consider the word v = u1. We claim that ϕ(v) is right special.
Indeed, we have u0 and v0 ∈ L(ϕ), hence ϕ(u0) = ϕ(v)1 and ϕ(v1) = ϕ(v)0 both
belong to L(ϕ) as well. Since ϕ is left proper, it follows from Proposition 2 that
ϕ fails the property (P) for all such words v. Take for instance u = 0010. Then,
v = 00101 and σ(v) = 01010010 have for return sets

Rv·ε = {00100101, 00101} and Rσ(v)·ε = {01010010, 10010},

confirming that v · ε fails the property (P).

Remark 3. Example 3 shows that the property (P) may fail for reasons other
than Proposition 2 and Remark 2, as τ is neither left nor right proper and 0 is
bispecial in Xτ .

3 The Bifix Case

This section presents the proof of Theorem 1, which relies on the following notions
and subsequent lemma. Let σ : A∗ → A∗ be a primitive substitution. A parse
of u · v (under σ) is a pair x · y such that xy ∈ L(σ) and σ(x) · σ(y) ⪰ u · v; we
call parsable a pair that admits a parse. On the other hand, an interpretation of
u ∈ L(σ) is a triple (s, w, t) such that w ∈ L(σ) and σ(w) = sut. A pair u · v is
called synchronizing if, for every interpretation (s, w, t) of uv, there exists a pair
x′ · y′ such that w = x′y′ and σ(x′) · σ(y′) = su · vt.

The next lemma is a reformulation of Mossé’s celebrated recognizability
theorem [27] which is due to Kyriakoglou [22, Proposition 3.3.20] (see also [17,
Proposition 1.4.38]).
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u′ q

w

v′

rσ(u) σ(v)s t

σ σ

Fig. 1. An illustration of the proof of Theorem 1.

Lemma 4 ([22]). Let σ be a primitive aperiodic substitution. There exists a
constant L > 0 such that every parsable pair u · v with |u| and |v| ≥ L is
synchronizing.

Proof (Theorem 1). Let L > 0 be the constant given by the previous lemma. Let
us write

|σ| = max{|σ(a)| : a ∈ A} and ⟨σ⟩ = min{|σ(a)| : a ∈ A}.

Let M > 0 be such that min{|r| : r ∈ Ru·v} ≥ |σ|⌈L/⟨σ⟩⌉ for all pairs u · v
with uv ∈ L(σ) and |uv| ≥ M . Such a constant M exists by primitivity [14,
Lemma 3.2]. Finally, let K = max

(
M, 2⌈L/⟨σ⟩⌉).

Fix a pair u · v with uv ∈ L(σ) and |uv| ≥ K. By Lemma 2, it suffices to show
that the inclusion Rσ(u)·σ(v) ⊆ σ(R∗

u·v) holds. Fix a return word r ∈ Rσ(u)·σ(v);
we wish to show that r ∈ σ(R∗

u·v). Thanks to Lemma 3, we may assume that |u|
and |v| are both ≥ ⌊K/2⌋.

We start by showing that r admits a preimage under σ. Let (s, w, t) be an
interpretation of σ(u)rσ(v). Note that σ(u) · σ(v) is parsable with |σ(u)| and
|σ(v)| ≥ L, therefore it is synchronizing. Since moreover σ(u)r ·σ(v) ⪰ σ(u) ·σ(v),
there is a factorization w = w′v′ such that σ(w′) · σ(v′) = sσ(u)r · σ(v)t. Let p
be the prefix of v of length ⌈L/⟨σ⟩⌉. Then |σ(p)| ≥ L, and since |r| ≥ |σ|⌈L/⟨σ⟩⌉,
σ(p) is a prefix of r. The pair σ(u) · σ(p) is synchronizing, being parsable with
|σ(u)| and |σ(p)| ≥ L. Since σ(u) · r ⪰ σ(u) · σ(p), there exists a factorization
w′ = u′q such that σ(u′) = sσ(u) and σ(q) = r (see Fig. 1).

We finish by showing that q ∈ R∗
u·v. For this purpose, recall that bifix codes

generate submonoids that are biunitary [7, Proposition 2.2.7]. In the case at
hand, it means that the two following properties hold:

x, xy ∈ Im(σ) =⇒ y ∈ Im(σ) and x, yx ∈ Im(σ) =⇒ y ∈ Im(σ).

Applying these properties to σ(u′) = sσ(u) and σ(v′) = σ(v)t respectively yields
words s′, t′ such that u′ = s′u and v′ = vt′. In particular, uqv ∈ L(σ). Since
r ∈ Rσ(u)·σ(v), there are words x, y that σ(u)rσ(v) = σ(uv)x = yσ(uv). Applying
the above properties once again, this time to σ(uqv) = σ(uv)x = yσ(uv), produces
words x′, y′ such that uqv = uvx′ = y′uv. By Lemma 1 (ii), q ∈ R∗

u·v. ⊓⊔

For instance, in the case of the Thue–Morse substitution, the constant K
from the proof above equals 2 (see Proposition 4). Using a computability result
of Durand and Leroy, we also deduce the following.
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Proposition 3. The constant K of Theorem 1 is computable.

Proof. The constant L of Lemma 4 is related in a straightforward way to the
recognizability constant (see the proof of [22, Proposition 3.3.20]), which is
computable by a result of Durand and Leroy [16]. As for the constant M , note
that it can be set equal to any m ∈ N such that min{|r| : r ∈ Rw·ε} ≥ |σ|⌈L/⟨σ⟩⌉
for all w in the finite set L(σ)∩Am. Since the language of a primitive substitution
and its return sets are computable, this property is decidable for each natural
number, and therefore the constant M is computable. ⊓⊔

4 The Sturmian Case

In preparation for the proof of Theorem 2, let us set up some notation and recall
a handful of facts about Sturmian substitutions. Given a pair u · v of words
in {0, 1}∗, we let [u · v] be the substitution 0 7→ u, 1 7→ v. We say that two
substitutions σ and ρ defined on the same alphabet A are rotationally conjugate,
or simply conjugate, if there is a word w ∈ A∗ such that either σ(a)w = wρ(a)
for all a ∈ A, or wσ(a) = ρ(a)w for all a ∈ A. Then, we write respectively
σ = w−1ρw or σ = wρw−1.

Consider the set of standard pairs : it is the smallest subset of {0, 1}∗×{0, 1}∗
which contains {0·1, 1·0} and which is closed under u·v 7→ u·uv and u·v 7→ vu·v.
Substitutions of the form [u·v] with u·v standard are called standard substitutions.
Every standard (binary) substitution is Sturmian [5, Proposition 2.6]. If σ is a
Sturmian substitution, then its conjugacy class contains |σ(01)| − 1 substitutions,
all of which are Sturmian and one of which is standard [29, Propositions 9 and 10].
Moreover, all the primitive Sturmian substitutions in the same conjugacy class
share the same shift space [29, Lemma 8].

Proof (Theorem 2). Let σ = [x · y] be a primitive standard substitution whose
conjugacy class is given by

σ0 = σ, σ1 = a−1
0 σ0a0, σ2 = a−1

1 σ1a1, · · · σn = a−1
n−1σn−1an−1,

with n = |x|+ |y| − 1, and where σi(0) and σi(1) both start with the letter ai for
0 ≤ i < n. Let σi = [xi · yi]. Let E be the automorphism of {0, 1}∗ exchanging 0

and 1 and consider the substitutions σE
i = E ◦σi ◦E. They also form a Sturmian

conjugacy class where L(σE
i ) = E(L(σi)). Thus, up to replacing σ by σE if

needed, we may assume that x = ys for some word s, which is non-empty since
σ is not periodic. Next, note that xn and yn start with distinct letters by [29,
Lemma 5]; in particular, yn is not a prefix of xn. Since y0 is a prefix of x0, we
may let j be the largest index satisfying 0 ≤ j < n such that yj is a prefix of xj

but yj+1 is not a prefix of xj+1. Write xj = yjsj and let bj be the first letter of
sj ; the choice of j implies that aj ̸= bj .

Next, observe that there exists ℓ ≥ 0 such that 01ℓ0 and 01ℓ+10 ∈ L(σ) with
these being the only two factors of the form 01k0 in L(σ). (Note that ℓ may
be equal to 0, i.e. the letter 1 does not need to be the most frequent letter.) In
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particular, 1ℓ is right special and admits 0 and 10 as right extensions. Let u be a
right special factor in Xσ. Since the right special factors in Xσ are all suffixes of
one another, either u = 1k with k < ℓ or 1ℓ is a suffix of u. Either way, it follows
that u10 = v0 ∈ L(σ). Since σj is left proper, by Proposition 2, we are done if
we can show that σj(v) is right special. But note that

σj(u0) = σj(u)yjsj = σj(v)sj ∈ L(σ) and σj(v0) = σj(v)xj ∈ L(σ).

Hence, σj(v)aj and σj(v)bj ∈ L(σ). Since aj ̸= bj , this shows that σj(v) is indeed
right special. ⊓⊔

The next example illustrates the construction in the above proof.

Example 5. Let σ = [1101 · 110]. It is a primitive standard substitution with
conjugacy class

σ0 = [1101 · 110], σ1 = [1011 · 101], σ2 = [0111 · 011],
σ3 = [1110 · 110], σ4 = [1101 · 101], σ5 = [1011 · 011].

Here, σ3 is the first member of the conjugacy class whose second component is
not a prefix of the first, so j = 2. Moreover, 0110 and 01110 ∈ L(σ), so ℓ = 2.

According to the argument above, if u is right special, then v = u1 is such
that σ2(v) is also right special. And indeed, σ2(v0) = σ2(v)011 and σ2(u01) =
σ2(v)1011 both belong to L(σ). Since σ2 is left proper, we can apply Proposition 2
to conclude that v fails the property (P) with respect to σ2.

For a concrete example, take u = 11. In this case, v = 111, σ2(v) = 011011011,
and the fact that v fails the property (P) is apparent from the equalities

Rv·ε = {0110110111, 0110110110111}, Rσ2(v)·ε = {011, 1011011011}.

5 Return Words of Thue–Morse Substitution

In this section, we give precise formulas for the return sets in the shift of the
Thue–Morse substitution τ : 0 7→ 01, 1 7→ 10 and proceed to give the proof of
Proposition 1. Our starting point is the following simple proposition, which is a
consequence of the proof of Theorem 2.

Proposition 4. Every pair u · v with uv ∈ L(τ) and |uv| ≥ 2 satisfies the
property (P) with respect to τ .

Proof. First, we claim that the constant L from Lemma 4 can be set to L = 2. To
establish this, it suffices to show that every parsable pair u · v with |u| = |v| = 2
is synchronizing for τ . There are four such pairs, namely, 01 · 10, 10 · 01, 01 · 01
and 10 · 10. That the first two pairs are synchronizing is obvious: otherwise, 11
and 00 would be images of letters, and this is not the case. If, say, 01 · 01 was
not synchronizing, then there would be a pair x · y such that 010 · 1 ⪯ x · y,
xy ∈ L(τ) and x, y ∈ Im(τ). This would then imply 1010 ·10 ⪯ x ·y, and therefore
101010 ∈ L(τ), a contradiction. The fact that 10 · 10 is synchronizing is proved
similarly. This proves the claim. Finally, since L = |τ | = ⟨τ⟩ = 2, we find that
R(|τ |⌈L/⟨τ⟩⌉) = R(2) = 2, so K = max(2, 2) = 2. ⊓⊔



10 V. Berthé and H. Goulet-Ouellet

uv u · v Ru·v

wn wn−1 · wn−1 {τn(10), τn(110), τn(100), τn(1100)}
wn wn−1 · wn−1 {τn(01), τn(001), τn(011), τn(0011)}
zn wn · wn−1 {τn(001), τn(01101), τn(0011001), τn(011001101)}
zn wn · wn−1 {τn(110), τn(10010), τn(1100110), τn(100110010)}

Table 1. Return sets in Xτ .

As noted in Balková et al. [4, § 3.1], every return set is in fact determined by
a bispecial pair—a pair u · v such that uv is bispecial. To see why, fix a minimal
aperiodic shift space X ⊆ AZ and consider a pair u · v with uv ∈ L(X). If u · v is
not left special, then we may replace it by au · v where a ∈ A is the unique left
extension of uv of length 1 in L(X), and this does not change the return set. A
similar phenomenon occurs with the unique right extension b ∈ A of uv of length
1 when uv is not right special. We can therefore consider the minimal refinement
s · t ⪰ u · v which is bispecial; let us call this the bispecial closure of u · v. What
Balková et al. observed is stated (with an extra maximality property) in the next
lemma.

Lemma 5. Let X ⊆ AZ be a minimal aperiodic shift space and u · v be a pair
with uv ∈ L(X). The bispecial closure of u ·v is the greatest refinement s · t ⪰ u ·v
with st ∈ L(X) such that Rs·t = Ru·v.

Next, we recall the classification of the bispecial factors in the Thue–Morse
shift given by de Luca and Mione in 1994 [24]. Let us mention in passing that
the idea behind de Luca and Mione’s result has been significantly generalized
by Klouda, who gave an algorithm for computing similar classifications for any
primitive aperiodic substitution [21].

Proposition 5 ([24]). Every bispecial factor of length ≥ 2 in Xτ is equal to one
of the following words, for some n ≥ 0:

wn = τn(01), wn = τn(10), zn = τn(010), zn = τn(101).

Let also w−1 = 0 and w−1 = 1. Note that wn = τ(wn−1), zn = τ(zn−1), and
so on. Note moreover the following factorizations for n ≥ 0:

wn = wn−1wn−1, zn = wnwn−1, wn = wn−1wn−1, zn = wnwn−1.

Thanks to Proposition 4, computing the return sets to the bispecial factors is
as simple as computing them for w0, z0, w0 and z0, and taking direct images by
τn. Table 1 gives the return sets to each of the pairs given by the factorizations
above.

Next, we proceed to describe the return groups as stated in Proposition 1,
again noting that we only need to consider those that are determined by bispecial
pairs. For this purpose, it is useful to have in mind the following lemma.
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0

1 1

0
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1
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1

1
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0

0
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W0 = W 0 Z0 Z0 Z0 ∩ Z0

Fig. 2. Stallings automata of the subgroups W0, W 0, Z0, Z0 and Z0 ∩ Z0.

Lemma 6. The Thue–Morse substitution τ : 0 7→ 01, 1 7→ 10 viewed as an
endomorphism of F ({0, 1}) is injective.

A quick and easy way to establish this is to show that {01, 10} is a free
subset of F ({0, 1}), which is indeed equivalent to τ being injective. This can be
done using Stallings’ algorithm, a powerful algorithm that we also use in the
proof of Proposition 1 below. This algorithm, given a finitely generated subgroup
of a free group, produces an automaton, known as the Stallings automaton of
the subgroup, which allows to easily test for membership. It can also be used
to test whether a subset is a basis of the subgroup, and has numerous other
applications beyond (calculate subgroup indexes, test for conjugacy, compute
intersections, etc.). See the paper by Kapovich and Myasnikov [20] for a detailed
description of Stallings’ algorithm and many of its applications; see also the paper
by Touikan [30] for an efficient implementation of the algorithm.

Proof (Proposition 1). Consider the following return groups in Xτ :

Wn = ⟨Rwn−1·wn−1
⟩, Zn = ⟨Rwn·wn−1

⟩,
Wn = ⟨Rwn−1·wn−1⟩, Zn = ⟨Rwn·wn−1⟩.

By Lemma 5 and Proposition 5, every return set Ru·v with uv ∈ L(τ) and
|uv| ≥ 2 is conjugate to one of these. It remains to show that these subgroups
have the bases stated in the proposition. First, we claim that, for all n ≥ 0,
{τn(0), τn(1)} forms a basis of Wn and {τn(1), τn(00), τn(0110)} forms a basis
of Zn. This can be checked directly in the case n = 0 using Stallings’ algorithm
(the relevant Stallings automata are found in Fig. 2) and it then holds for all
n ≥ 0 thanks to Proposition 5 and Lemma 6.

To finish, let E be the automorphism exchanging 0 and 1, viewed as an
automorphism of F ({0, 1}). On the one hand, it is clear that Wn = E(Wn) = Wn,
which shows that the return groups Wn are redundant. On the other hand,
E(Zn) = Zn and thus Zn have the required basis for all n ≥ 0. This concludes
the proof. ⊓⊔

Consider the following sequences of subgroups:

W = (Wi)i∈N = (W i)i∈N, Zeven = (Z2i)i∈N, Zodd = (Z2i+1)i∈N,

Zeven = (Z2i)i∈N, Zodd = (Z2i+1)i∈N.



12 V. Berthé and H. Goulet-Ouellet

W0

W1

W2

W3

Z0

Z1

Z2

Z0

Z1

Z2

Fig. 3. Hasse diagram of return groups of Xτ ordered by inclusion.

Up to conjugacy, every return group in the Thue–Morse shift occurs in one
(and only one) of these sequences. It is not hard to see that they are all strictly
decreasing with respect to inclusion. The next proposition clarifies how these
sequences are related to one another. The proof is a straightforward application
of Stallings algorithm; all relevant Stallings automata are found in Fig. 2.

Proposition 6. For all n ≥ 0, Wn = ⟨Zn ∪ Zn⟩ > Zn ∩ Zn > Wn+2.

The Hasse diagram of the poset formed by the return groups Wn = Wn, Zn

and Zn ordered by inclusion is depicted in Fig. 3.

6 Conclusion

The statement of Theorem 2 is somewhat unsatisfactory, in the sense that we
are left wondering what happens with the other Sturmian substitutions within
the conjugacy class. Based on examples, we expect all Sturmian substitutions
to satisfy the conclusion of Theorem 2. It is not clear at the moment how
generalizations, like dendric substitutions, might behave.

On the other hand, Theorem 1 shows that being bifix is a sufficient condition
for having the property (P) for all but finitely many pairs, but we are not sure
whether or not it is necessary. We would like to know if other natural classes of
primitive substitutions satisfy the property (P) for all but finitely many pairs
(clearly, by Theorem 2, such classes cannot contain the class of primitive Sturmian
substitutions). It might also be interesting to investigate the property (P) for
non-primitive substitutions.

Finally, we wonder whether or not the sophisticated pattern formed by the
return groups of the Thue–Morse shift is common among primitive aperiodic bifix
substitutions. While classifications of bispecial factors can always be obtained
in the primitive case thanks to the aforementioned algorithm of Klouda, the
return preservation property might not suffice to determine all return groups,
since the general form of Klouda’s algorithm involves taking more than direct
images—it uses what Klouda calls fB-images, which in the case of the Thue–
Morse substitution reduces to the direct image. In this regard, the Thue–Morse
substitution seems to be quite special.
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