Learning UAV-Based Above-Ground Biomass Regression Models in Sparse Training Data Environments - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Learning UAV-Based Above-Ground Biomass Regression Models in Sparse Training Data Environments

Résumé

This study aims at recovering above-ground biomass information from ultra-high resolution UAV RGB-NIR orthophotos. We focus on a realistic scenario where a limited number of training samples for a landscape with heterogeneous herbaceous vegetation is given. Consequently, we explore different machine learning methods explicitly addressing the limitations of small training samples and compare their predictions quantitatively and qualitatively. Our results show that random forest models perform similarly well to deep learning models. While simpler machine learning models may, therefore, still be preferable, our study also points the way to promising architectures and regularisation techniques for deep learning approaches. Beyond vegetation cover, accurate regression of other variables, including vegetation height, volume and biomass remains a difficult task regardless of the model choice.
Fichier principal
Vignette du fichier
IGARSS_Felix-1.pdf (4.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04310706 , version 1 (27-11-2023)

Identifiants

Citer

F. Kröber, G. Fernandez Garcia, F. Guiotte, F. Delerue, T. Corpetti, et al.. Learning UAV-Based Above-Ground Biomass Regression Models in Sparse Training Data Environments. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Jul 2023, Pasadena, United States. pp.3322-3325, ⟨10.1109/IGARSS52108.2023.10281513⟩. ⟨hal-04310706⟩
57 Consultations
86 Téléchargements

Altmetric

Partager

More