Phenotypic deconvolution in heterogeneous cancer cell populations using drug-screening data - Archive ouverte HAL
Article Dans Une Revue Cell Reports Methods Année : 2023

Phenotypic deconvolution in heterogeneous cancer cell populations using drug-screening data

Alvaro Köhn-Luque

Résumé

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug -tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug -response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteris-tics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it can provide individualized predictions of tumor growth under candidate therapies. This methodology can also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.
Fichier principal
Vignette du fichier
PIIS2667237523000280.pdf (2.59 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04309113 , version 1 (23-09-2024)

Licence

Identifiants

Citer

Alvaro Köhn-Luque, Even Moa Myklebust, Dagim Shiferaw Tadele, Mariaserena Giliberto, Leonard Schmiester, et al.. Phenotypic deconvolution in heterogeneous cancer cell populations using drug-screening data. Cell Reports Methods, 2023, 3 (3), pp.100417. ⟨10.1016/j.crmeth.2023.100417⟩. ⟨hal-04309113⟩
31 Consultations
1 Téléchargements

Altmetric

Partager

More