A Recommender System Based on Multi-Criteria Aggregation - Archive ouverte HAL
Article Dans Une Revue International Journal of Decision Support System Technology Année : 2017

A Recommender System Based on Multi-Criteria Aggregation

Résumé

Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis MCDA, including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa SysTem of RecOmmendation Multi-criteria, to support decisions by aggregating measures of performance contained in a performance matrix. The system makes inferences about preferences using a partial order on criteria input by the decision-maker. To determine a total ordering of the alternatives, STROMa uses a multi-criteria aggregation operator, the Choquet integral of a fuzzy measure. Thus, recommendations are calculated using partial preferences provided by the decision maker and updated by the system. An integrated web platform is under development.
Fichier principal
Vignette du fichier
fomba_19140.pdf (781.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04305859 , version 1 (24-11-2023)

Identifiants

Citer

Soumana Fomba, Pascale Zaraté, Marc Kilgour, Guy Camilleri, Jacqueline Konate, et al.. A Recommender System Based on Multi-Criteria Aggregation. International Journal of Decision Support System Technology, 2017, 9 (4), pp.1-15. ⟨10.4018/IJDSST.2017100101⟩. ⟨hal-04305859⟩
84 Consultations
37 Téléchargements

Altmetric

Partager

More