Risk-Averse Trajectory Optimization via Sample Average Approximation - Archive ouverte HAL
Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2023

Risk-Averse Trajectory Optimization via Sample Average Approximation

Résumé

Trajectory optimization under uncertainty underpins a wide range of applications in robotics. However, existing methods are limited in terms of reasoning about sources of epistemic and aleatoric uncertainty, space and time correlations, nonlinear dynamics, and non-convex constraints. In this work, we first introduce a continuous-time planning formulation with an average-value-at-risk constraint over the entire planning horizon. Then, we propose a sample-based approximation that unlocks an efficient and general-purpose algorithm for risk-averse trajectory optimization. We prove that the method is asymptotically optimal and derive finite-sample error bounds. Simulations demonstrate the high speed and reliability of the approach on problems with stochasticity in nonlinear dynamics, obstacle fields, interactions, and terrain parameters.
Fichier principal
Vignette du fichier
2307.03167.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04305407 , version 1 (24-11-2023)

Identifiants

Citer

Thomas Lew, Riccardo Bonalli, Marco Pavone. Risk-Averse Trajectory Optimization via Sample Average Approximation. IEEE Robotics and Automation Letters, 2023, ⟨10.1109/LRA.2023.3331889⟩. ⟨hal-04305407⟩
25 Consultations
81 Téléchargements

Altmetric

Partager

More