Can Generalised Divergences Help for Invariant Neural Networks? - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

Can Generalised Divergences Help for Invariant Neural Networks?

Résumé

We consider a framework including multiple augmentation regularisation by generalised divergences to induce invariance for nongroup transformations during training of convolutional neural networks. Experiments on supervised classification of images at different scales not considered during training illustrate that our proposed method performs better than classical data augmentation.
Fichier principal
Vignette du fichier
OrbitRegularization.pdf (202.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04303522 , version 1 (23-11-2023)
hal-04303522 , version 2 (08-07-2024)

Identifiants

Citer

Santiago Velasco-Forero. Can Generalised Divergences Help for Invariant Neural Networks?. Geometric Science of Information, 14071, Springer Nature Switzerland, pp.82-90, 2023, Lecture Notes in Computer Science, ⟨10.1007/978-3-031-38271-0_9⟩. ⟨hal-04303522v1⟩

Collections

PARISTECH
27 Consultations
71 Téléchargements

Altmetric

Partager

More