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Can generalised divergences help for invariant
neural networks?

Santiago Velasco-Forero

MINES Paris - PSL-Research University - Centre de Morphologie Mathématique

Abstract. We consider a framework including multiple augmentation
regularisation by generalised divergences to induce invariance for non-
group transformations during training of convolutional neural networks.
Experiments on supervised classification of images at different scales not
considered during training illustrate that our proposed method performs
better than classical data augmentation.

1 Introduction

Deep neural networks are the primary model for learning functions from data,
in different tasks ranging from classification to generation. Convolutional neural
networks (CNNs) have become a widely used method across multiple domains.
The translation equivariance of convolutions is one of the key aspects to their
success [?]. This equivariance is induced by applying the same convolutional fil-
ter to each area of an image producing learned weights that are independent
of the location. Ideally, CNNs should perform equally well regardless of input
scale, rotation or reflections. Numerous attempts have been made to address us-
ing the formalism of group-convolutions[?], steerable filters[?], moving frames[?],
wavelet [?], partial differential equations [?], Gaussian filters[?], Elementary Sym-
metric Polynomials[?] among others. Despite all these recent advances, it is still
unclear what is the most adequate way to adapt these methods for the case of
more general transformations that cannot be considered as a group [?,?]. The
most commonly used solution is to take advantage of data augmentation, where
the inputs are randomly transformed during training to induce an output (which
is) insensible to some given transformations [?]. However, data augmentation im-
plies neither equivariance nor invariance.

In this paper, we study the use of contrastive based regularisation on a set of
transformations during training. Surprisingly, our proposition presents the best
performance considering the power of generalisation outside the interval of values
where the transformation has been sampled during training. This phenomenon
is illustrated in the case of supervised classification on aerial images and traffic
signs at different scales.



2 Proposition

2.1 Motivation

Data augmentation is nowadays one of the main components of the design of
efficient training for deep learning models. Initially proposed to improve over-
sampling on class-imbalanced datasets [?] or to prevent overfitting when the
model contains more parameters than training points [?]. Recent research has
shown its interest in increasing generalization ability especially when augmenta-
tions yield samples that are diverse [?]. We restrict our study to augmentations
which act on a single sample and do not modify labels, this means that we do
not consider mixup augmentations [?]. Namely, we study augmentations which
can be written as (t(x), y), where (x, y) denotes an input-label pair, and t ∈ T is
a random transformation sampled from a set of possible transformations T . Let
f denotes a projection from the input space to a latent space. The latent space
is said to be invariant to T if for any input x and any t ∈ T , f(t(x)) = f(x).
Practitioners recommend to use data augmentation to induce invariance by train-
ing [?]. Usually, data augmentation consists of randomly applying an element of
the set of T during training. An alternative to data augmentation is possible
when T is a group. One can construct an invariant function fθ(x; η) from a non-
invariant function gθ(x) by integrating over all the group actions. This concept
is referred to as insensitivity [?], soft-invariance [?], or deformation stability [?].
The special case in which there exist a subgroup H where the computation can
be reduced to summing over H is called Reynolds design [?]. For topological
groups, there is a non-zero, translation invariant measure called Haar measure
that can be used to define invariant convolution on a group [?,?] or invariance
by integration of kernels [?,?]. An alternative to define an invariant function,
is to use composition of equivariant functions followed by an invariant pooling
in the Geometric Deep Learning Blueprint [?]. In both cases, the invariance is
defined by structure[?] which can be seen as a constraint in the model that one
is learning.

However, in many applications, the transformations under study is not a
group, so that the above arguments are not easily generalizable. In this pa-
per we are interested in using data augmentation to induce invariance during
training in deep learning models for the case where the set T is not a group.
The idea is to include a regularisation term that takes into account K reali-
sations of the transformation family, i.e, in the loss function, we will include
LossT (x, t1(x), t2(x)), . . . , tK(x))) where the ti denotes a random value of trans-
formations T . To apply this method we do not need any requirements on the
transformations T .

2.2 Related work

The idea of using multiple random augmentations (K is our case) during training
is also found in the following methods:



Semi-supervised learning In a semisupervised case, [?] proposed to learn a
classifier penalised for quick changes in its predictions.

Self-training Self-training also known as decision-directed or self-taught learn-
ing machine, is one of the earliest approach in semi-supervised learning [?,?].
The idea of these approaches is to start by learning a supervised classifier on
the labelled training set, and then, at each iteration, the classifier selects a part
of the unlabelled data and assigns pseudo-labels to them using the classifier’s
predictions. These pseudo-labeled examples are considered as additional labeled
examples in the following iterations. The function loss includes a trade-off term
to balance the influence of pseudo labels.

Self-supervised learning Most of these works are placed in a joint-embedding
framework [?,?], where augmented views (usually two) are generated from a
source image. These two views are then projected to an encoder, giving repre-
sentations, and then through a projection back to an embedding space. Finally,
a loss minimises the distance between the embeddings, i.e. makes them invari-
ant to the augmentations, and is combined with a regularisation loss to spread
embeddings in space.

Data augmentation regularisations A negative aspect of data augmentation
has been illustrated in [?] which is the slow down of training speed and a minimal
effect on the variance of the model. The idea of using multiple augmentation per
image in the same minibatch has been used to solve that problem, and it has
been used to improve at the same time the classifier’s generalisation performance
[?]. This simple modification computes an average of the minibatch on different
augmentations that asymptotically approaches a Reynolds operator (??) when
the number of considered augmentations gets as large as possible. Recently, [?,?]
proposed the use of a regularisation term for multiple augmentations, which is
the mechanism that we will evaluate in this paper.

2.3 Supervised regularisation by generalised divergences

Fig. 1. Scheme of our proposition. We propose to use a regularisation that considers
multiple realisations of the transformation family, this regularisation uses generalised
divergences. Since you want to evaluate the invariance of a classification problem, the
model uses only the classification of the original image (not of the transformations).
The probability distributions are obtained in the output of a softmax layer.

We propose to use multiple data augmentations in the target transformation,
and use a generalised divergence as a regularisation term. The idea follows those



presented in [?], and is contrary to the usual mechanism of data augmentation,
where the network is trained to classify in the same class each of the augmen-
tations, but never considers a term related to the divergence produced by the
transformation. Since we use K augmentations, we must consider a divergence
from multiple probability distributions, which is called generalised divergences.
We consider the classical framework of training deep learning models from N
samples {x1,x2, . . . ,xN} and as objective minimising the following loss function:

Loss(x, y) =

N∑
i

Lossclass(yi, ŷi) + α

N∑
i

LossT (xi, t0(xi), t1(xi), . . . , tK(xi)),

(1)
where ŷi denotes the prediction of the model, and yi the ground-truth class of
the i-th sample xi.

The first term is a supervised classification term, and the second term LossT
is the main interest of our proposition. We propose to use statistical divergences
to compare the outputs produced by model f applied to the original data x
and K+ 1 random augmentations of x, i.e {xi, t0(xi), t1(xi), . . . , tK(xi)}. In our
supervised case, we use the last layer of the model f , which is usually a sum-one
layer (softmax) indicating the probability of belonging to a given class. For two
probability distributions P,Q, the most renowned statistical divergence rooted
in information theory [?] is the Kullback–Leibler divergence,

DKL(P ||Q) =
∑

P (x) log

(
P (x)

Q(x)

)
.

Defining divergence between more than two distributions has been studied
for many authors called often generalised divergences or dissimilarity coefficient
in [?]. Let K ≥ 1 be a fixed natural number. Each generalised divergence R that
we consider here, satisfies the following properties:

1. R(P0, P1, P2, . . . , PK) ≤ 0
2. R(P0, P1, P2, . . . , PK) = 0 whenever P0 = P1 = . . . = PK
3. R is invariant to permutation of input components.

These three properties are important for the minimisation of this divergence to
induce the invariance during training in the case we are studying. Accordingly,
we consider the following two generalised divergences, the Average Divergence
[?]

R1(P0, P1, P2, . . . , PK) =
1

K(K + 1)

K∑
i,j=0,i6=j

DKL(Pi||Pj) (2)

the Information radius [?] which is the generalised mean of the Rényi’s diver-
gences between each of the Pi’s and the generalised mean of all the Pi’s,

R2(P0, P1, P2, . . . , PK) =
1

K + 1

K∑
i

DKL((K + 1)−1
K∑
j

Pj ||Pi) (3)

In the following section, we compare the use of (??), considering as LossT
the average divergence in (??) or the information radius (??).



3 Experiments

In this experimental section, we have followed the training protocol presented
in [?] on two datasets, Aerial and Traffic Signs, which contains images 64× 64
RGB-color images on 48 different scales. The objective is to obtain a scale and
translation invariant model for supervised classification on nine (resp. 16) classes
on Aerial (resp. Traffic Signs) dataset. Keen readers are referred to [?,?,?,?,?] for
a deeper understanding of different propositions for scale invariant convolutional
networks. Following [?] the model is a CNN with two layers using categorical
cross-entropy as a supervised term in (??). An example per dataset at differ-
ent scales is shown in Figure ??. The models are trained on the middle interval
of the transformation parameterisation and the performance of the models are
evaluated outside this interval. This is called Mid2Rest scenario in [?]. The value
of K in (??) and (??) has been set equal to three in our experiments. Quanti-
tative comparison of results are found in Table ?? for both considered datasets.
The reported result is the average and standard deviation of performance on the
scales and images that were not considered during training. On the considered
datasets, the information radius (??) presents better results in terms of perfor-
mance over the unseen scales, with respect to both the average divergence (??),
and the classical data augmentation method. Finally, for a better illustration of
the difficulty of the task, the best value of the lambda and regularisation func-
tion is compared with the data augmentation in five random training runs, and
compared across the different scales for the two databases in Figure ??.

Fig. 2. Examples of images at different parameter transformation in the two considered
datasets. From left to right: Scale 1, 3, 23, 25, 45 and 47. Training is done considering
only images of intermediate scales (17 to 32) in both training and validation. Evaluation
is performed on both small (0 to 16) and large (33-48) scales. In first row: An example
of Traffic Sign dataset. In second row: An example of Aerial dataset.

Fig. 3. Detailed plots of scale generalisation on Mid2Rest scenario in Aerial datasets
(Left) and Traffic Sign dataset (Right). Five repetitions of the training is illustrated
per method. Our proposition performs clearly better than classical data augmentation.

4 Conclusions

In this paper we present a proposal for the use of regularisation from multi-
ple data augmentation with generalised divergences. Quantitative results show



Table 1. Results of the Generalised Divergence in Aerial and Traffic Sign dataset
on scales non-considered during training. A visual comparison of results are shown in
Fig.??

Aerial Small Scales Large Scales
Method λ test acc. ±std test acc. ±std

Data Aug. 0.0 0.776 ±0.014 0.845 ±0.008

Av. Div.(??) 0.5 0.854 ±0.013 0.889 ±0.011
1.0 0.852 ±0.016 0.888 ±0.009
1.5 0.858 ± 0.013 0.889 ±0.011
2.0 0.841 ±0.028 0.880 ±0.020
2.5 0.846 ±0.015 0.881 ±0.009
3.0 0.834 ±0.023 0.877 ±0.018
3.5 0.833 ±0.008 0.873 ±0.017
4.0 0.822 ±0.021 0.864 ±0.016
5.0 0.828 ±0.016 0.872 ±0.022
10.0 0.824 ±0.019 0.865 ±0.012

Inf. Rad.(??) 0.5 0.845 ±0.016 0.878 ±0.017
1.0 0.847 ±0.012 0.885 ±0.011
1.5 0.853 ±0.010 0.881 ±0.009
2.0 0.853 ±0.009 0.884 ±0.011
2.5 0.850 ±0.014 0.887 ±0.005
3.0 0.859 ±0.013 0.885 ±0.010
3.5 0.841 ±0.008 0.886 ±0.009
4.0 0.839 ±0.018 0.877 ±0.016
5.0 0.845 ±0.017 0.883 ±0.010
10.0 0.829 ±0.014 0.870 ±0.011

Traffic Sign Small Scales Large Scales
Method λ test acc. ±std test acc. ±std

Data Aug. 0.0 0.721 ± 0.021 0.824 ±0.024

Av. Div. (??) 0.5 0.821 ±0.014 0.898 ±0.020
1.0 0.829 ±0.012 0.921 ±0.018
1.5 0.820 ±0.015 0.902 ±0.012
2.0 0.806 ±0.027 0.886 ±0.025
2.5 0.797 ±0.044 0.883 ±0.034
3.0 0.789 ±0.025 0.882 ±0.018
3.5 0.754 ±0.026 0.842 ±0.028
4.0 0.743 ±0.026 0.832 ±0.042

Inf. Rad.(??) 0.5 0.806 ±0.012 0.908 ±0.017
1.0 0.825 ±0.022 0.921 ±0.016
1.5 0.829 ±0.014 0.918 ±0.015
2.0 0.830 ±0.016 0.918 ±0.007
2.5 0.815 ±0.020 0.906 ±0.016
3.0 0.828 ±0.013 0.909 ±0.018
3.5 0.818 ±0.019 0.898 ±0.014
4.0 0.823 ±0.020 0.917 ±0.016

the interest of our method in the case of generalisation to scales that have not
been considered during training. Future studies may include the study of multi-
parametric transformations, as these are used to avoid overfitting in large neural
networks. Additionally, generalised divergence considering barycenters for prob-
ability distributions in [?] seems a promising direction to generalise the results
of this article.
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