Estimation of multivariate generalized gamma convolutions, application to dependence structure modelling in insurance.
Estimation de convolutions de lois Gamma généralisées multivariées; application à la modélisation des structures de dépendance en assurance.
Résumé
While modeling the dependence structure between several (re)insurance losses by an additive risk factor model, the infinite divisibility is a very desirable property. Unfortunately, if many useful distributions are infinitely divisible, computing the distributions of their pieces is usually a challenging task that requires heavy numerical computations. We propose an estimation algorithm for multivariate generalized gamma convolutions through Laguerre expansions. These distributions are divisible and usefull in dependence structure modeling.
Origine | Fichiers produits par l'(les) auteur(s) |
---|