Estimation of multivariate generalized gamma convolutions, application to dependence structure modelling in insurance. - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Estimation of multivariate generalized gamma convolutions, application to dependence structure modelling in insurance.

Estimation de convolutions de lois Gamma généralisées multivariées; application à la modélisation des structures de dépendance en assurance.

Résumé

While modeling the dependence structure between several (re)insurance losses by an additive risk factor model, the infinite divisibility is a very desirable property. Unfortunately, if many useful distributions are infinitely divisible, computing the distributions of their pieces is usually a challenging task that requires heavy numerical computations. We propose an estimation algorithm for multivariate generalized gamma convolutions through Laguerre expansions. These distributions are divisible and usefull in dependence structure modeling.
Fichier principal
Vignette du fichier
Maume-Deschamps_ECMI_2023.pdf (1.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04294063 , version 1 (19-11-2023)

Identifiants

  • HAL Id : hal-04294063 , version 1

Citer

Véronique Maume-Deschamps. Estimation of multivariate generalized gamma convolutions, application to dependence structure modelling in insurance.. Conference on Industrial and Applied Mathematics - ECMI 2023, Jun 2023, Wrocław, Poland. ⟨hal-04294063⟩
31 Consultations
35 Téléchargements

Partager

More