Spatio-temporal analysis of mobile service consumption for social signature clustering - Archive ouverte HAL
Poster De Conférence Année : 2023

Spatio-temporal analysis of mobile service consumption for social signature clustering

Résumé

Mobile phone metadata is now widely used to extract socio-economic activity metrics for cities or regions at scale. Properly used, this data can provide unique insights into downstream tasks and business value. We propose a novel scalable method for clustering urban areas based on the spatio-temporal characteristics of mobile traffic data. The development of deep learning techniques makes deep time series clustering feasible. Our approach utilizes deep learning and contrastive learning methods, including contrastive clustering and spatio-temporal model, where the former provides discriminative clusters and the latter provides spatio-temporal correlation between neighboring regions, respectively. Moreover, a novel data augmentation method has been proposed to improve the generalization of the model, the model can be easily transferred to other cities.
Fichier principal
Vignette du fichier
netmob2023.pdf (2.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04289452 , version 1 (16-11-2023)

Licence

Identifiants

  • HAL Id : hal-04289452 , version 1

Citer

Zhaobo Hu, Chuan Li, Vincent Gauthier, Hassine Moungla, Miguel Nunez del Prado Cortez. Spatio-temporal analysis of mobile service consumption for social signature clustering. Network Mobility (netmob), Oct 2023, Madrid, Spain. . ⟨hal-04289452⟩
130 Consultations
60 Téléchargements

Partager

More