Exotic traveling waves for a quasilinear Schrödinger equation with nonzero background - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Exotic traveling waves for a quasilinear Schrödinger equation with nonzero background

Résumé

We study a defocusing quasilinear Schrödinger equation with nonzero conditions at infinity in dimension one. This quasilinear model corresponds to a weakly nonlocal approximation of the nonlocal Gross-Pitaevskii equation, and can also be derived by considering the effects of surface tension in superfluids. When the quasilinear term is neglected, the resulting equation is the classical Gross-Pitaevskii equation, which possesses a well-known stable branch of subsonic traveling waves solution, given by dark solitons. Our goal is to investigate how the quasilinear term affects the traveling-waves solutions. We provide a complete classification of finite energy traveling waves of the equation, in terms of the two parameters: the speed and the strength of the quasilinear term. This classification leads to the existence of dark and antidark solitons, as well as more exotic localized solutions like dark cuspons, compactons, and composite waves, even for supersonic speeds. Depending on the parameters, these types of solutions can coexist, showing that finite energy solutions are not unique. Furthermore, we prove that some of these dark solitons can be obtained as minimizers of the energy, at fixed momentum, and that they are orbitally stable.
Fichier principal
Vignette du fichier
Exotic quasilinear schrodinger solitons.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04287188 , version 1 (15-11-2023)
hal-04287188 , version 2 (18-07-2024)

Licence

Identifiants

Citer

André de Laire, Erwan Le Quiniou. Exotic traveling waves for a quasilinear Schrödinger equation with nonzero background. 2024. ⟨hal-04287188v2⟩
88 Consultations
41 Téléchargements

Altmetric

Partager

More