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Exotic traveling waves for a quasilinear Schrödinger equation
with nonzero background

André de Laire∗ Erwan Le Quiniou∗

Abstract
We study a defocusing quasilinear Schrödinger equation with nonzero conditions at infinity in di-

mension one. This quasilinear model corresponds to a weakly nonlocal approximation of the nonlocal
Gross–Pitaevskii equation, and can also be derived by considering the effects of surface tension in
superfluids. When the quasilinear term is neglected, the resulting equation is the classical Gross–
Pitaevskii equation, which possesses a well-known stable branch of subsonic traveling waves solution,
given by dark solitons.

Our goal is to investigate how the quasilinear term affects the traveling-waves solutions. We
provide a complete classification of finite energy traveling waves of the equation, in terms of the
two parameters: the speed and the strength of the quasilinear term. This classification leads to the
existence of dark and antidark solitons, as well as more exotic localized solutions like dark cuspons,
compactons, and composite waves, even for supersonic speeds. Depending on the parameters, these
types of solutions can coexist, showing that finite energy solutions are not unique. Furthermore,
we prove that some of these dark solitons can be obtained as minimizers of the energy, at fixed
momentum, and that they are orbitally stable.

Keywords: Quasilinear Schrödinger equation, Gross–Pitaevskii equation, traveling waves, dark solitons,
dark cuspons, nonzero conditions at infinity, orbital stability.
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A Orbital stability of bright solitons 48

1 Introduction
1.1 The quasilinear equation and related models
We consider the following defocusing quasilinear Gross–Pitaevskii equation in dimension one

i∂tΨ = ∂xxΨ + Ψ(1 − |Ψ|2) + κΨ∂xx(1 − |Ψ|2), in R × R, (QGP)

where κ is a real parameter, and Ψ : R × R → C, satisfies the nonzero conditions at infinity

lim
|x|→∞

|Ψ(x, ·)| = 1, (1.1)

representing a (normalized) nonzero background.
Let us notice that the equation is recast as in (QGP) for practical purposes. Indeed, we can write a

more general Shrödinger equation as

i∂tΦ = ∂xxΦ + sΦ
(
|Φ|2 + κ∂xx|Φ|2)). (1.2)

When κ = 0, it corresponds to the cubic NLS equation, a classical model for Bose–Einstein condensates,
superfluidity, and nonlinear optical fibers, depending on the sign of s, and on the background condi-
tions [25, 32]. For instance, in Bose–Einstein condensates, the term in s models attractive interatomic
interactions if s > 0, and repulsive interactions if s < 0. In nonlinear optics, it corresponds to the Kerr
effect in a focusing fiber if s > 0, and to ionization effects in a defocusing one if s < 0. Equation (1.2)
enables the description of significant and experimentally pertinent nonlinear phenomena such as solitons.
Solitons are particular types of solutions that travel with constant speed and with a profile that remains
unchanged. They provide important information for the analysis of dispersive equations. Although the
most common solitons are bright and dark solitons, there are more exotic solitons for other PDE, that
are not smooth, such as the cupsons and compactons [1, 42], that we will discuss below.

Bright solitons are characterized by having a localized amplitude peak, decaying quickly to zero. The
existence and properties of these solutions are a classical subject for the focusing NLS equation, that has
received much attention [17,47,48] in the case κ = 0. In the case κ ≥ 0, Krówlikowski and Bang obtained
in [35] an explicit formula for the bright solitons to (1.2) with s = 1, taking the form of a standing wave

Φ(x, t) = vω,κ(x)e−iωt, (1.3)

for every ω > 0, with vω,κ a real-valued profile given by vω,κ(x) = F −1
ω,κ(|x|), for all x ∈ R, where

Fω,κ(y) = 1√
ω

atanh
( 1√

2ω

√
2ω − y2

1 + 2κy2

)
+ 2

√
κ atan

(√
2κ

√
2ω − y2

1 + 2κy2

)
. (1.4)

These bright solitons are unique for up to invariances (translation by a constant and multiplication by a
phase shift). Letting κ → 0 in (1.4), we recover the profile of the cubic NLS bright soliton

vω,0(x) =
√

2ω sech(
√

ωx).

On the one hand, Colin, Jeanjean, and Squassina [16] showed the existence of bright solitons for (1.2),
with s = 1 and κ > 0, in any dimension. Also, they obtained some conditional results for their orbital
stability. However, they do not have formula (1.4) in the one-dimensional case. To fill this gap, we check
in Appendix A that their conditions are fulfilled, so that these bright solitons are orbitally stable solutions
to (1.2). We also refer to Iliev and Kirchev [30] who showed existence of bright solitons and a stability
criterion for equations similar to (1.2) with s = 1 in one dimension with more general nonlinearities.

On the other hand, in the defocusing case, there are no bright solitons, but the existence of dark
solitons is expected [33]. Dark solitons have a localized amplitude dip or notch (of their absolute value)
on a nonzero background density. Although these solutions are physically relevant, they have been less
studied in the literature. They can be obtained explicitly for the cubic defocusing NLS equation (i.e.
(1.2) with s = −1 and κ = 0), and they are given, up to invariances, by

Φ(x, t) = uc(x − ct)eit,
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for c ∈ [0,
√

2), where

uc(x) =
√

2 − c2

2 tanh
(√

2 − c2

2 x
)

− i
c√
2

. (1.5)

Notice that this branch of dark solitons satisfies the nonzero background condition |Φ(x, ·)| → 1, as
|x| → ∞. We refer to [6, 9] for more details and stability results for these dark solitons, and to [12] for
some generalizations.

Since dark solitons can only exist in the defocusing case, from now on, we only consider the case
s = −1. To avoid the dependence on t of the solitary waves, it is usual to perform the change of variables

Ψ(x, t) = Φ(x, t)e−it,

which transforms equation (1.2) into (QGP), and so that the nontrivial condition at infinity appears more
explicitly in the equation.

We end this subsection by giving some physical motivations for the quasilinear model (QGP), with the
nonzero condition (1.1). The evolution of a one-dimensional optical beam of intensity |Ψ|2 in a defocusing
nonlocal Kerr-like medium is given by the nonlocal Gross–Pitaevskii equation

i∂tΨ = ∂xxΨ + Ψ(W ∗ (1 − |Ψ|2)), (1.6)

where W characterizes the nonlocal response of the medium [18,19,35,41]. As explained in [34,35], in a
weakly nonlocal medium we can replace W by Wε(·) = W(·/ε)/ε, for a small positive ε. Then, performing
a Taylor expansion of η(x − y) = (1 − |Ψ|2)(x − y, t) near x, for fixed t, we have

η(x − y) = η(x) − yη′(x) + y2

2 η′′(x) + O(y3),

hence, using that Wε is even, the convolution product in (1.6) can be formally computed as

(Wε ∗ η)(x) =
∫
R

Wε(y)η(x − y)dy = η(x) + κεη′′(x) + O(ε3), with κε = ε2

2

∫
R

y2W(y). (1.7)

Therefore, equation (QGP) follows from (1.6) and (1.7), in the regime ε small, neglecting the term O(ε3).
For this reason, (QGP) is known as the weakly nonlocal Gross–Pitaevskii equation in the nonlinear optics
literature.

Formally, we can also see a connection between (1.6) and (QGP) by considering the potential given
with its Fourier transform

Ŵκ(ξ) = 1 − κξ2, (1.8)

that can be seen as a limit case for the results of the existence of dark solitons for (1.6) (see Remark 1.13).
In addition, (QGP) was also obtained using the least action principle by Kurihara in [36], in order to

describe a superfluid 4He film, where κ ≤ 0 and |κ| measures the surface tension of the superfluid.

1.2 Classification of finite energy traveling waves
Equation (QGP) has a Hamiltonian structure, and its energy, given by

Eκ(Ψ(·, t)) = 1
2

∫
R

|∂xΨ(x, t)|2dx + 1
4

∫
R

(
1 − |Ψ(x, t)|2

)2
dx − κ

4

∫
R

(
∂x|Ψ(x, t)|2

)2
dx, (1.9)

is formally conserved, as well as the (renormalized) momentum

p(Ψ(·, t)) = 1
2

∫
R

⟨i∂xΨ(x, t), Ψ(x, t)⟩
(

1 − 1
|Ψ(x, t)|2

)
dx, (1.10)

whenever infx∈R |Ψ(x, t)| > 0, where we used the inner product ⟨z1, z2⟩ = Re(z1) Re(z2) + Im(z1) Im(z2),
for z1, z2 ∈ C.

We are interested in solutions to (QGP) of the form

Ψc(x, t) = u(x − ct),
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which represents a traveling wave with profile u : R → C propagating at speed c ∈ R. Hence, the profile
u satisfies

icu′ + u′′ + u(1 − |u|2) + κu
(
1 − |u|2

)′′ = 0. (TW(c, κ))

Notice that taking the complex conjugate of u in equation (TW(c, κ)), we are reduced to the case c ≥ 0.
To study physically relevant solutions to (TW(c, κ)) in function of κ, we define energy space

X (R) = {v ∈ H1
loc(R) : 1 − |v|2 ∈ L2(R), v′ ∈ L2(R)}.

Let us recall that X (R) ⊂ L∞(R) ∩ C(R), and that any function in X (R) satisfies the nontrivial condition
at infinity (1.1) (see Lemma 2.1). We will use extensively, as a new variable, the intensity profile of u,
given by

ηu = 1 − |u|2,

so that the condition at infinity (1.1) becomes ηu(x) → 0, as |x| → ∞. Omitting the subscript of ηu for
notational simplicity, we can recast the energy functional as

Eκ(u) = 1
2

∫
R

|u′|2 + 1
4

∫
R

η2 − κ

4 (η′)2, for all u ∈ X (R). (1.11)

Moreover, the momentum is well-defined in the nonvanishing energy space defined by

N X (R) = {v ∈ X (R) : inf
R

|v| > 0}, (1.12)

and writing the lifting u =
√

1 − ηeiθ ∈ N X (R) (see Lemma 2.2), we have

p(u) = −1
2

∫
⟨iu′, u⟩ η

1 − η
= 1

2

∫
R

ηθ′. (1.13)

Furthermore, the energy can be written in this case as

Eκ(u) = 1
8

∫
R

(η′)2(1 − 2κ + 2κη)
1 − η

+ 1
2

∫
R
(1 − η)(θ′)2 + 1

4

∫
R

η2. (1.14)

As seen in Proposition 6.9, the energy space X (R) is equal to the domain of Eκ if κ ≤ 0, and is strictly
included in the domain of Eκ if κ > 0.

In the sequel, we say that u is a finite energy solution to (TW(c, κ)), if u belongs to X (R) and satisfies
the weak formulation, for all ϕ ∈ C∞

0 (R;C),∫
R
⟨icu′ + u(1 − |u|2), ϕ⟩ − ⟨u′, ϕ′⟩ + 2κ⟨u, u′⟩⟨u, ϕ⟩′ = 0, (1.15)

where we used that (1 − |u|2)′ = −2⟨u, u′⟩.
To obtain analytical solutions, we will show that if u is a finite energy solution to (1.15), then its

intensity profile η = 1 − |u|2 satisfies the ODE

(1 − 2κ + 2κη)(η′)2 = η2(2 − c2 − 2η), (1.16)

as long as u is smooth enough. Thus, the rest of the analysis relies on the study of possible singularities,
combined with the computation of the primitives of

f(y) = −y

√
2 − c2 − 2y

1 − 2κ + 2κy
,

according to the parameters c and κ. As explained in Section 3, taking x large enough in (1.16), we
expect that

0 < (2 − c2)(1 − 2κ), (1.17)

is a necessary condition for the existence of nontrivial solutions. From (1.17), we see that c =
√

2 and
κ = 1/2 are critical values, as shown below in our results. In fact, the value c =

√
2 corresponds to

the speed of sound for (1.2) (see the explanations in [19, 21] applied to (1.8)), while the value κ = 1/2
corresponds to the critical case, for which the linear dispersion and the nonlinear dispersion (i.e. the
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quasilinear terms of order 2) cancel as the intensity |Ψ|2 approaches 1 [1, 37, 42]. Therefore, we split the
set of parameters according to the critical values, as represented in Figure 1, by defining the following
regions

D1 = {(c, κ) : 0 ≤ c <
√

2 and 0 < κ < 1/2}, D2 = {(c, κ) : 0 ≤ c <
√

2 and κ ≤ 0}, (1.18)
D3 = {(c, κ) : c >

√
2 and κ > 1/2}, and, D = D1 ∪ D2 ∪ D3; (1.19)

the boundary sets associated with the sonic speed

B− = {(c, κ) : c =
√

2 and 0 < κ < 1/2}, B+ = {(c, κ) : c =
√

2 and κ > 1/2}, (1.20)

and the boundary set associated with the critical value for κ

C = {(c, κ) : c ≥ 0 and κ = 1/2}. (1.21)

Our main classification result shows the existence of multiple branches of localized traveling waves

0

1/2

√
2 c

κ

D1

D2

D3

C
B+

B−

Figure 1: Sets of parameters to classify the solutions of (TW(c, κ)).

indexed by κ and c, that can coexist at fixed parameters, showing the nonuniqueness of finite energy
solutions. Before stating our results, we give some vague definitions used in the literature, to understand
the nature of these different types of solitons u for (TW(c, κ)). The adjective dark refers to the nonzero
constant background condition |u(x)| → 1, as |x| → ∞. Moreover, u is a:

(i) dark soliton if u is smooth and |u|2 has a localized dip.
(ii) antidark soliton if u is smooth and |u|2 has a localized bump.
(iii) black soliton if u is smooth and u vanishes at some point.
(iv) dark cuspon if u is continuous and has a localized cusped dip, u′ is unbounded at the cusp but is

smooth elsewhere.
(v) antidark cuspon if u is continuous and has a localized cusped bump, u′ is unbounded at the bump

but is smooth elsewhere.
(vi) compacton if u is continuous and 1 − |u|2 is compactly supported.
(vii) composite wave if u is continuous, built using pieces of the solitons mentioned above over different

intervals, and the gluing is not C2.
With these formal definitions at hand, we can schematically summarize our results on the existence and
uniqueness (up to invariances) of nontrivial finite energy solution to (TW(c, κ)), in the following table.

In D1 There exist a unique dark soliton, a unique antidark cuspon,
and composite waves.

In D2 There exists a unique dark soliton.
In D3 There exist a unique antidark soliton, a unique dark cuspon,

and composite waves.
In B− There exist a unique antidark cuspon, and composite waves.
In B+ There exist a unique dark cuspon, and composite waves.
In C There exist composite waves built from compactons.
Elsewhere There is no nontrivial finite energy traveling wave.
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To give the explicit formulas for the dark and antidark soliton solutions to (TW(c, κ)), which we will
denote by uc,κ, we introduce the following intervals

Ic = (0, 1 − c2/2], I◦
c = (0, 1 − c2/2) if c <

√
2,

Jc = [1 − c2/2, 0), J ◦
c = (1 − c2/2, 0) if c >

√
2.

Indeed, these intervals will correspond to the image set of ηc,κ := 1−|uc,κ|2. Then, we will check that the
following functions are well-defined depending on the set of parameters (1.18)–(1.19) (see Lemmas 3.5
and 3.6). (i) For (c, κ) ∈ D1, we set Fc,κ : Ic → R the function defined, for all y ∈ Ic, by

Fc,κ(y) = 2
√

κ atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+ 2
√

1 − 2κ

2 − c2 atanh
(√ (1 − 2κ)(2 − c2 − 2y)

(2 − c2)(1 − 2κ + 2κy)

)
. (1.22)

(ii) For (c, κ) ∈ D2, we set Gc,κ : Ic → R the function defined, for all y ∈ Ic, by

Gc,κ(y) = −2
√

−κ atanh
(√

−κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+2
√

1 − 2κ

2 − c2 atanh
(√ (1 − 2κ)(2 − c2 − 2y)

(2 − c2)(1 − 2κ + 2κy)

)
. (1.23)

(iii) For (c, κ) ∈ D3, we set Hc,κ : Jc → R the function defined, for all y ∈ Jc, by

Hc,κ(y) = Fc,κ(y). (1.24)

We will prove that the functions (1.22)–(1.24) are injective and take their values in (0, ∞). Thus, we can
define their inverse as follows

Fc,κ = F −1
c,κ , for (c, κ) ∈ D1; Gc,κ = G−1

c,κ, for (c, κ) ∈ D2; Hc,κ = H−1
c,κ , for (c, κ) ∈ D3. (1.25)

Also, we can extend Fc,κ, Gc,κ and Hc,κ to even C∞-functions on R, which we still denote by Fc,κ, Gc,κ

and Hc,κ.
We can now state our first classification result for smooth solutions. Using the sets defined in (1.18)–

(1.19), we first show that the only finite energy smooth solution to (TW(c, κ)) in Dc are the trivial ones,
i.e. the constants of modulus one. Then, for (c, κ) ∈ D, the description of dark solitons is explicitly
provided in terms of Fc,κ and Gc,κ, while antidark solitons are described by Hc,κ. Moreover, we establish
their uniqueness among smooth solutions, up to invariances, i.e. up to a translation and a phase shift.

Theorem 1.1. (i) If (c, κ) /∈ D and uc,κ ∈ X (R) ∩ C2(R) is a solution to (TW(c, κ)), then there exists
ϕ ∈ R such that uc,κ(x) = eiϕ, for all x ∈ R.

(ii) For (c, κ) ∈ D, we set

ηc,κ = Fc,κ, if (c, κ) ∈ D1; ηc,κ = Gc,κ, if (c, κ) ∈ D2; ηc,κ = Hc,κ, if (c, κ) ∈ D3. (1.26)

If c > 0, then ηc,κ < 1 on R, and uc,κ = ρc,κeiθc,κ is the unique nontrivial solution to (TW(c, κ)) in
C2(R) ∩ X (R), up to invariances, where

ρc,κ(x) =
√

1 − ηc,κ, and θc,κ(x) = c

2

∫ x

0

ηc,κ(y)
1 − ηc,κ(y)dy. (1.27)

If c = 0, then the real-valued odd function

u0,κ(x) = ±
√

1 − η0,κ(x), for all ± x ≥ 0, (1.28)

is the unique nontrivial solution to (TW(c, κ)) in C2(R) ∩ X (R), up to invariances.
In addition, for any (c, κ) ∈ D, uc,κ belongs to C∞(R), and ηc,κ is even, reaching a global extremum

at the origin with
ηc,κ(0) = 1 − c2/2. (1.29)

Moreover, we have ηc,κ > 0 and η′
c,κ < 0 on (0, ∞) if (c, κ) ∈ D1 ∪ D2, while ηc,κ < 0 and η′

c,κ > 0
on (0, ∞) if (c, κ) ∈ D3. Finally, there exist constants A, C > 0 such that for all k ∈ N, the following
exponential decay holds

|Dku′
c,κ(x)| + |Dkηc,κ(x)| ≤ Ae−C|x|, for all x ∈ R. (1.30)
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-κ = 1 � κ = 0.6

��*
κ = 5

Figure 2: Plot of intensity profiles ηc,k in Theorem 1.1 for several values of (c, κ). The left panel
displays profiles for (1, 0), (1, 0.2), (1, 0.4) ∈ D1 associated with dark solitons. In the center, pro-
files for (1, −50), (1, −5), (1, 0) ∈ D2 associated also with dark solitons. On the right, profiles for
(2, 0.6), (2, 1), (2, 5) ∈ D2, associated with antidark solitons.

Notice that (1.29) implies that the solutions uc,κ in Theorem 1.1 correspond to dark solitons that do
not vanish if c ̸= 0 (gray solitons) and to black solitons if c = 0.

In Figure 2, we depict the intensity profile ηc,k given by (1.26) in Theorem 1.1 for several values of
(c, κ) ∈ D. In the left and center panels, we plotted ηc,κ for parameters in D1 and D2, respectively,
associated with dark solitons; while plots for parameters in D3, associated with antidark solitons, are
shown in the right panel. The case κ = 0 corresponds to the dark soliton (1.5), so that the intensity
profile is given by

ηc,0(x) = 1 − |uc,κ|2 = (2 − c2)
2 sech2

(√
2 − c2

2 x
)

, for all x ∈ R.

From the left and center panel, we deduce that, at a fixed speed, the profile wavelength of the dark soliton
narrows when κ increases from −∞ to 1/2. We notice the same effect for the antidark solitons in the
right panel when κ decreases from ∞ to 1/2.

In addition, we show in Proposition 3.8 smooth dependence of the dark soliton uc,κ, with respect to
(c, κ) in D. Consequently, the dark solitons uc,κ in Theorem 1.1 converge to the dark soliton (1.5), as
κ → 0, in Hs(R), for all s ∈ N.

Notice that the uniqueness stated in Theorem 1.1 is in the set X (R) ∩ C2(R). This restriction is due
to the existence of finite energy weak solutions that are not of class C2(R) in the new set of parameters

D̃ = D1 ∪ D3 ∪ B− ∪ B+,

and also in C. We argue that these sets are well-suited for studying weak solutions. Indeed, the next
result shows that there are no solutions outside D̃ ∪ C.

Theorem 1.2. Let c ≥ 0 and κ ∈ R. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)). If
(c, κ) /∈ (D̃ ∪ C), then either (c, κ) ∈ D2 and uc,κ ∈ C2(R) so that it is explicitly given by Theorem 1.1, or
uc,κ is a constant function of modulus one.

We call a weak solution that is not C2(R), a singular solution. The rest of this subsection is devoted
to explaining our results for singular solutions. This first result simplifies the analysis. It guarantees
that the solutions are nonvanishing if c > 0, while if c = 0, the problem (TW(c, κ)) reduces to one real
differential equation.

Proposition 1.3. Let (c, κ) ∈ D̃ ∪ C and uc,κ ∈ X (R) be a solution to (TW(c, κ)). If c > 0, then
u ∈ N X (R). On the other hand, if c = 0, then there exists ϕ ∈ R such that eiϕuc,κ(x) ∈ R for all x ∈ R.

We show that if uc,κ ∈ X (R) is a singular solution, then the function |uc,κ|2 must reach the value
1/(2κ) at some point. Thus, we call the singular set of uc,κ the nonempty set given by

Γ(uc,κ) =
{

x ∈ R : |uc,κ(x)|2 = 1
2κ

}
. (1.31)
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This condition comes from the following observation: Given a solution uc,κ = u1 + iu2 ∈ X (R) to
(TW(c, κ)), with u1 = Re(uc,κ), u2 = Im(uc,κ), and recalling that uc,κ is continuous (see Lemma 2.1),
we can show that (1.15) can be recast as a system of two real equations, satisfied in the weak sense,

A(uc,κ)
(

u1
u2

)′′

= c

(
u1
u2

)′

+ (ηc,κ − 2κ|u′
c,κ|2)

(
u2

−u1

)
, with A(uc,κ) =

(
2κu2u1 −1 + 2κu2

2
1 − 2κu2

1 −2κu1u2

)
, (1.32)

so that
det(A(u)) = 1 − 2κ|uc,κ|2 = 1 − 2κ + 2κηc,κ. (1.33)

Thus, the set Γ(uc,κ) corresponds to the points where det(A(uc,κ)) vanishes, so that the dispersion part of
equation (1.32) is singular. In this manner, as proved in Lemma 4.2, uc,κ is smooth on the complement of
Γ(uc,κ), denoted by Ω(uc,κ) = Γ(uc,κ)c. Also, if we define the set of points where uc,κ is not differentiable
(in the classical sense)

N (uc,κ) = {x ∈ R : uc,κ is not differentiable in x},

then N (uc,κ) ⊆ Γ(uc,κ). We want to focus now on the case where Γ(uc,κ) is not empty and bounded so
that we can define the real numbers

ac,κ = inf Γ(uc,κ) and bc,κ = sup Γ(uc,κ). (1.34)

For instance, by condition (1.1), the set Γ(uc,κ) is bounded for any singular solution in the case κ ̸= 1/2.
To give explicit formulas for singular solutions, we use the same approach as in Theorem 1.1, introducing
the intervals

Tκ = [1 − 1/(2κ), 0), T◦
κ = (1 − 1/(2κ), 0), if κ ∈ (0, 1/2),

Jκ = (0, 1 − 1/(2κ)], J◦
κ = (0, 1 − 1/(2κ)), if κ ∈ (1/2, ∞),

and the following functions (see Lemma 4.5).
(i) For (c, κ) ∈ D1, we set fc,κ : Tκ → R the function defined, for all y ∈ Tκ, by

fc,κ(y) = 2
√

κ atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+ 2
√

1 − 2κ

2 − c2 atanh
(√ (2 − c2)(1 − 2κ + 2κy)

(1 − 2κ)(2 − c2 − 2y)

)
− π

√
κ.

(1.35)

(ii) For (c, κ) ∈ D3, we set hc,κ : Jκ → R the function defined, for all y ∈ Jκ, by

hc,κ(y) = fc,κ(y). (1.36)

(iii) For (
√

2, κ) ∈ B−, we set gκ : Tκ → R the function defined, for all y ∈ Tκ, by

gκ(y) = 2
√

κ atan(
√

−2κy

1 − 2κ + 2κy
) +

√
2
√

−1 − 2κ + 2κy

y
− π

√
κ, (1.37)

(iv) For (
√

2, κ) ∈ B+, we set g̃κ : Jκ → R the function defined, for all y ∈ Jκ, by

g̃κ(y) = gκ(y). (1.38)

By Lemma 4.5, the functions (1.35)–(1.38) are injective and positive-valued, and their inverse functions
f−1

c,κ , h−1
c,κ, g−1

κ , g̃−1
κ are well-defined on (0, ∞). Notice that the functions f−1

c,κ and g−1
κ will describe

antidark cuspons, while h−1
c,κ and g̃−1

κ will describe dark cuspons (see Figure 3). Let (c, κ) ∈ D̃ and
uc,κ ∈ X (R) be a singular solution, so that ac,κ and bc,κ given by (1.34) are reals. The next result
establishes that uc,κ is smooth outside the interval [ac,κ, bc,κ], that ac,κ and bc,κ belong to N (uc,κ), and
that uc,κ is explicitly given by one of the functions in (1.35)–(1.38), i.e. that it has a dark or antidark
cuspon profile on R \ [ac,κ, bc,κ].

Theorem 1.4. Let (c, κ) ∈ D̃, if uc,κ ∈ X (R) is a singular solution for (TW(c, κ)) so that uc,κ is
nontrivial and the critical set Γ(uc,κ) is not empty and bounded. Let a = ac,κ and b = bc,κ be defined as
in (1.34) and assume without loss of generality that b = 0. Then ηc,κ = 1 − |uc,κ|2 satisfies, for all x ≥ 0,

ηc,κ(x) = f−1
c,κ (x), if (c, κ) ∈ D1, ηc,κ(x) = h−1

c,κ(x), if (c, κ) ∈ D3,

ηc,κ(x) = g−1
κ (x), if (c, κ) ∈ B−, ηc,κ(x) = g̃−1

κ (x), if (c, κ) ∈ B+.
(1.39)
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For all x ≤ a, ηc,κ is obtained by reflection as ηc,κ(x) = ηc,κ(a − x). Additionally, for all x ∈ (−∞, a) ∪
(0, ∞), we have

1 − 1
2κ

< ηc,κ(x) < 0, if (c, κ) ∈ D1 ∪ B−, whereas 0 < ηc,κ(x) < 1 − 1
2κ

, if (c, κ) ∈ D3 ∪ B+,

and uc,κ is explicitly given by

uc,κ(x) =
√

1 − ηc,κ(x)eiθc,κ(x), with θ′
c,κ(x) = cηc,κ(x)/(2 − 2ηc,κ(x)). (1.40)

Also, uc,κ ∈ C∞((−∞, a) ∪ (0, ∞))) ∩ C(R). Moreover, η′
c,κ(a−) = −∞ and η′

c,κ(0+) = ∞, if (c, κ) ∈
D1 ∪ B−, while η′

c,κ(a−) = ∞ and η′
c,κ(0+) = −∞, if (c, κ) ∈ D3 ∪ B+.

Finally uc,κ satisfies the following decay estimates: for all j ∈ N, there exist C1, C2, C3 > 0 such that,
for all x ≥ 1, |Dju′

c,κ(x)| + |Djηc,κ(x)| ≤ C1e−C2x, if (c, κ) ∈ D1 ∪ D3, and |Dju′
c,κ(x)| + |Djηc,κ(x)| ≤

C3x−(2+j), if (c, κ) ∈ B+ ∪ B−.

In Figure 3, we place ourselves in the case ac,κ = bc,κ = 0 to illustrate the antidark cuspon intensity
profile given by the function f−1

c,κ , and the dark cuspon intensity profile given by h−1
c,κ. We show in

Lemma 4.6 that if κ = 1/2, then ac,κ = −∞ and bc,κ = ∞, so that there are infinitely many points in
Γ(uc,κ). Therefore, Theorem 1.4 allows us to complete the analysis if uc,κ has only one singular point, as
explained in the following result.

Corollary 1.5 (Cuspons). Let (c, κ) ∈ D̃. Assume that uc,κ ∈ X (R) is a nontrivial solution for
(TW(c, κ)) such that Γ(uc,κ) = {0}. Then, up to phase shift, the solution uc,κ is explicitly given by
uc,κ =

√
1 − ηc,κeiθc,κ , where ηc,κ is the function in (1.39), and θc,κ(x) = c

2
∫ x

0
ηc,κ(y)

1−ηc,κ(y) . In particular
N (uc,κ) = {0}.

Figure 3: Plots of the antidark cuspon intensity profile in Corollary 1.5. The left panel displays antidark
cuspons for the parameters (0, 0.4), (1, 0.4) and (1.3, 0.4) in D1. On the right, dark cuspons for the
parameters (1.5, 0.6), (2, 0.6) and (5, 0.6) in D3.

Classification of solutions with two or more singular points

We have provided the classification of solutions in the cases card(Γ(uc,κ)) = 0 and card(Γ(uc,κ)) = 1.
Now we will focus on the case

card(Γ(uc,κ)) ≥ 2,

i.e. when uc,κ has at least two singular points, and we do not require Γ(uc,κ) to be bounded anymore.
Between two singular points a, b ∈ Γ(uc,κ), the function |uc,κ|2 may exhibit one of the following behaviors:
(i) It remains constant so that |uc,κ(x)|2 = 1/(2κ), for all x ∈ (a, b).
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(ii) It reaches a non-singular local extremum at some x0 ∈ (a, b), so that |uc,κ(x0)|2 ̸= 1/(2κ).
The solution obtained in case (i) is sometimes referred to as a stumpon [37]. However, the following
proposition establishes that case (i) cannot occur unless κ = 1/2, in which case we have |u(x)|2 = 1 for
all x ∈ (a, b).

Proposition 1.6. Let (c, κ) ∈ D̃ ∪ C. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)). If there
exist real numbers a < b such that

|uc,κ(x)|2 = 1/(2κ), for all x ∈ (a, b), (1.41)

then κ = 1/2.

In view of Proposition 1.6, one would expect that case (i) implies that uc,κ is a constant function on R,
with |uc,κ| ≡ 1. However, the critical case κ = 1/2 is degenerate, and there are many more possibilities for
the solutions. The most remarkable singular solutions are dark compactons, i.e. such that the intensity
profile ηc,κ = 1 − |uc,κ|2 has compact support; some of them are explicitly given in Proposition 1.9.

Now assume that case (ii) holds, so that there exists x0 ∈ (a, b) belonging to the set

Z(uc,κ) = {x ∈ R\Γ(uc,κ) : x is a local extremum of 1 − |uc,κ|2}. (1.42)

When (c, κ) ∈ D̃, we know, by Theorem 1.4, that ηc,κ coincides with a cuspon-like solution outside
the bounded set (ac,κ, bc,κ), so that it is monotonous on R \ (ac,κ, bc,κ). Therefore, we deduce that
Z(uc,κ) ⊂ (ac,κ, bc,κ). In conclusion, for every (c, κ) ∈ D̃, we can define the closest singular points to any
x0 ∈ Z(uc,κ) as the real numbers

a0
c,κ = sup{x ∈ [ac,κ, x0) : x ∈ Γ(uc,κ)}, and b0

c,κ = inf{x ∈ (x0, bc,κ] : x ∈ Γ(uc,κ)}. (1.43)

In the case, κ = 1/2, by Lemma 4.6, we have ac,κ = −∞ and bc,κ = ∞, and we can still define a0
c,κ and

b0
c,κ as above, with the obvious modifications. In particular, for any (c, κ) ∈ D̃ ∩ C, by Lemma 4.2, uc,κ

is smooth on (a0
c,κ, b0

c,κ), and η′
c,κ(x0) = 0. Letting η0 = ηc,κ(x0), we establish in Lemma 4.7 that there

exist K0 ≥ 0 and K1 ∈ R such that η = ηc,κ satisfies the following ODEs in (a0
c,κ, b0

c,κ):

2(1 − 2κ + 2κη)η′′ + 2κ(η′)2 = P (η) + (η − η0)P ′(η), (1.44)
(1 − 2κ + 2κη)(η′)2 = (η − η0)P (η), (1.45)

where
P (y) = −2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1, for all y ∈ R. (1.46)

Using (1.44)–(1.45), we establish that for any x0 ∈ Z(uc,κ), ηc,κ must be symmetric on (a0
c,κ, b0

c,κ) with
respect to x0, and strictly monotone on (x0, b0

c,κ), as follows.

Theorem 1.7. Let (c, κ) ∈ D̃ ∪ C. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)) and let
ηc,κ = 1 − |uc,κ|2. Suppose that card(Γ(uc,κ)) ≥ 2 and that there exists x0 ∈ Z(uc,κ), and consider its
closest singular points a0

c,κ and b0
c,κ, as in (1.43). Then a0

c,κ = 2x0 − b0
c,κ and ηc,κ(x) = ηc,κ(2x0 − x),

for all x ∈ (a0
c,κ, x0). Moreover, if 0 < |uc,κ(x0)|2 < 1/(2κ), then η′

c,κ < 0 in (x0, b0
c,κ), while if

|uc,κ(x0)|2 > 1/(2κ), then η′
c,κ > 0 in (x0, b0

c,κ).

Since (η′
c,κ)2 ≥ 0, equation (1.45) yields algebraic constraints on P , for instance, we establish in the

proof of the Theorem 1.7 that P (ηc,κ) < 0, for all x ∈ [x0, b0
c,κ). Using the monotonicity of ηc,κ, we

conclude that

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1 < 0, for all y ∈ [η0, 1 − 1/(2κ)). (1.47)

Also, if uc,κ is a singular solution, then we infer that K0 = |u′
c,κ(x0)|2. When η0 < 1, we show in

Lemma 4.8 that K1 = 0 so that, (1.47) reduces to

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − c2η2
0/(1 − η0) < 0, for all y ∈ [η0, 1 − 1/(2κ)), (1.48)

whereas if η0 = 1 (and thus c = 0), then (1.47) becomes

y2 + 2K0 − 1 > 0, for all y ∈ (1 − 1/(2κ), 1]. (1.49)
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We show in Propositions 4.12–4.14 that conditions (1.48)–(1.49) are sufficient to construct local so-
lutions to (TW(c, κ)). More precisely, if η0 < 1 is such that (1.48) holds, then there exists a0

c,κ < b0
c,κ

and a unique η ∈ C2((a0
c,κ, b0

c,κ)) ∩ H1((a0
c,κ, b0

c,κ)) satisfying (1.44)–(1.45) with η(0) = η0 and K0 =
(cη0)2/(4 − 4η0) so that

u =
√

1 − ηeiθ, with θ′ = cη

2(1 − η) , (1.50)

is a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ)). Similarly, if η0 = 1 and K0 ≥ 0 is such that (1.49) holds, then
there exists a0

c,κ < b0
c,κ and a unique η ∈ C2((a0

c,κ, b0
c,κ)) ∩ H1((a0

c,κ, b0
c,κ)) satisfying (1.44)–(1.45) with

η(0) = 1 so that
u(x) = ±

√
1 − η(x), for all ± x ∈ [0, b0

0,κ), (1.51)

is a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ)) with c = 0. We also get in both cases that the intensity profile
of u satisfies the boundary conditions η(a0

c,κ) = η(b0
c,κ) = 1 − 1/(2κ).

These local solutions allow us to build every possible solution such that card(Z(uc,κ)) < ∞. Using
Lemma 4.9 to continuously glue together finitely many local solutions and extending them on R with a
cuspon-like solution (respectively with constants of modulus one if κ = 1/2), one obtains a composite
wave solution (respectively a compacton). This ends the classification in the case 2 ≤ card(Γ(uc,κ)) < ∞,
since in this case, as explained in Lemma 4.15, we have card(Z(uc,κ)) = card(Γ(uc,κ)) − 1.

We can explicitly compute the set of admissible η0 in terms of (c, κ) ∈ D̃ ∪ C using (1.48)–(1.49),
however, for the sake of simplicity, we only show that singular solutions u ∈ X (R) such that Z(u) = {0}
exists when η0 is negative enough.

Proposition 1.8 (Composite waves). For any (c, κ) ∈ D̃ ∪ C, there exists a negative constant A <
1 − 1/(2κ), such that if η0 ∈ (−∞, A), then there exists a unique solution uc,κ ∈ X (R), up to phase shift,
to (TW(c, κ)) satisfying

Z(uc,κ) = {0} and ηc,κ(0) = η0.

Also, u ∈ N X (R), η0 is the global minimum of ηc,κ, and card(N (uc,κ)) = 2. In addition, if (c, κ) ∈ D̃,
then Γ(uc,κ) = N (uc,κ), whereas if (c, κ) ∈ C, then uc,κ is a compacton (i.e. ηc,κ is compactly supported).

The left panel in Figure 4 displays a numerical approximation of the solution ηc,κ to (1.44)–(1.45),
with η0 = −10, c = 1, κ = 1/2 and K0 = cη0/(4 − 4η0) (and K1 = 0), given by Proposition 1.8.
On the other hand, in the critical case κ = 1/2, we can also give a family of explicit compactons by
solving (1.44)–(1.45), with η0 = 1 − c2/2, K0 = (2 − c2)2/8 (and K1 = 0). In fact, with this choice of
parameters, equation (1.45) becomes (1.16) with κ = 1/2, so we recover the explicit solution computed
in Proposition 3.2 with b0

c,κ = π/
√

2, as follows.

Proposition 1.9 (Compactons). Let (c, κ) ∈ C with c ̸=
√

2. For j ≥ 1 an odd integer, set the interval
Ij = (−jπ/

√
2, jπ/

√
2). If c = 0, we define

u
(j)
c,1/2(x) = sin(x/

√
2), for all Ij ,

whereas if c > 0 with c ̸=
√

2, we define, for all x ∈ Ij,

u
(j)
c,1/2(x) =

√
1 − (2 − c2)

2 cos2
( x√

2

)
eiθ(x), with θ(y) = π

2 + kπ − cy

2 − atan
( c√

2
cot
( y√

2

))
,

for y ∈ (k
√

2π, (k + 1)
√

2π) ∩ Ij, for all k ∈ Z. In both cases, we extend u
(j)
c,1/2 to R as a continuous

function, which is constant outside Ij. Then u
(j)
c,1/2 ∈ X (R) and is a weak solution to (TW(c, κ)).

Notice that the family of compactons (u(j))j∈N∗ given by Proposition 1.9, satisfies Z(u(j)
c,κ) = {k

√
2π | k ∈

Z, |k| < |j|} and N (uc,κ) = ∅, yet (u(j))j∈N∗ is not a family of C2(R)-solutions because the second or-
der derivative is discontinuous at x = ±jπ/

√
2. In Figure 4, we also plot the intensity profile of the

compacton u3
1,1/2 in the center panel, and its phase in the right panel.

To our knowledge, only few results deal with dark solitons for (QGP) when κ ̸= 0. A branch of explicit
dark solitons was found in [35] for κ ∈ [0, 1/2). Also, in the setting of Korteweg models, Benzoni-Gavage,
Danchin, Descombes and Jamin [4] obtained existence of smooth homoclinic and heteroclinic traveling
waves by classical ODE phase portrait analysis. Their result applies to (QGP) and provides the existence
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Figure 4: On the left, the intensity profile of the compacton given by Proposition 1.8 with η0 = −10,
c = 1 and κ = 1/2. The center and the right panel display, respectively, the intensity profile and the
phase of the compacton u

(3)
1,1/2 in Proposition 1.9.

of dark solitons for c ∈ (0,
√

2) and κ ≤ 0, which corresponds to homoclinic waves in their setting. In
view of the uniqueness stated in Theorem 1.1, these homoclinic waves are equal to our smooth dark
solitons.However, it is not clear how to extend the method in [4] to classify dark solitons when κ > 0,
because one needs to prevent the coefficient (1 − 2κ|u|2) in (1.16) from vanishing. Therefore, the analysis
presented above extends the results [4, 35] for all κ ∈ R, and provides a complete classification of finite
energy localized solutions, including exotic solitons.

Concerning the higher dimensional case, the only result the authors are aware of is the work by
Audiard [2], proving existence of small energy dark solitons, for κ < 0, in two dimensions by constrained
minimization, in the spirit of [7].

1.3 Energy and momentum of solitons and cuspons
A crucial application of the formulas for the solitons and the cuspons given by Theorem 1.1 and Corol-
lary 1.5, respectively, is that we can compute explicitly their energy and momentum. This information
is very useful to determine the stability of solutions, as shown by Lin in [38] in the case κ = 0. The
idea relies on the general Grillakis–Shatah–Strauss theory [27], which reduces the stability of solitons to
the study of the second derivative of the action d(c) = Eκ(uc,κ) − cp(uc,κ), in addition to some spectral
conditions. More precisely, in view of the Hamiltonian group property (see Lemma 5.5):

d

dc
Eκ(uc,κ) = c

d

dc
p(uc,κ), (1.52)

we have d′′(c) = − d
dc p(uc,κ), so that d′′(c) > 0 is equivalent to

d

dc
p(uc,κ) < 0. (1.53)

Condition (1.53) is also called the Vakhitov–Kolokolov stability criterion, which is simple to check when
one has good formulas for the momentum. Typically, if (1.53) holds, one expects the solution to be
orbitally stable, whereas it is unstable if d′′(c) < 0. When κ < 1/2, this can be rigorously proved for the
dark solitons in Theorem 1.1, using the results in [4] for the stability, and in [2] for the instability. We
also refer to [43], by one of the authors, for a survey on these results in the context of equation (QGP).

In the literature, the energy-momentum (E, p) diagram is sometimes preferred to depict the local
branch of solitons as a curve parametrized by c. In view of (1.52), each point of the branch represents a
traveling wave whose speed is given by the slope of the curve, and condition (1.53) is equivalent to the
strict concavity of the curve (see [13]).

To plot the energy-momentum diagrams and to check the condition (1.53), we compute explicitly in
Section 5 the energy and the momentum of solitons and cuspons. To simplify the notation, we set

Eκ(c) := Ek(uc,k) and pκ(c) := p(uc,k), if (c, κ) ∈ D, with uc,κ given by Theorem 1.1, (1.54)
Ẽκ(c) := Ek(uc,k) and p̃κ(c) := p(uc,k), if (c, κ) ∈ D̃, with uc,κ given by Corollary 1.5, (1.55)

where we exclude the value c = 0 for the definition of the momenta.
Note that (1.53) is a necessary condition for stability in the Grillakis–Shatah–Strauss theory, so that

it is not enough to conclude the stability of uc,κ in full generality.
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Figure 5 displays on the same plots Eκ and Ẽκ for different values of (c, κ). We observe that the
least energy solution does not remain on the same branch of solutions as c varies. In view of (1.52),
the energy and the momentum have the same monotony, as functions of c. To exemplify the behavior
of the solutions in D1, we take κ = 0.4 in the left panel, and we see that the energy of dark solitons is
decreasing, which leads to conjecturing their stability. Concerning the antidark cuspons, we see that their
energy is increasing, but since they have a singularity, it is not clear that they are unstable. In the right
panel, we illustrate the behavior of the solutions in D3 taking κ = 0.6. We see that the energy of antidark
solitons is increasing, so they are probably unstable, while the energy of dark cuspons is decreasing. In
this paper, we will not study the stability of traveling waves for parameters in D1 ∪ D3, but we plan to
continue their study in future works.

√
2
c

0.005

0.017

c

0.008

0.015

Figure 5: Plot of Eκ(c) in black and Ẽκ(c) in orange. On the left panel, we take parameters in D1, with
κ = 0.4 and 0 ≤ c <

√
2. On the right panel, the parameters belong to D3, with κ = 0.6 and

√
2 < c ≤ 2.

Finally, we consider the dark solitons with parameters in D2, so that κ < 0. The energy-momentum
diagram has two behaviors, depending on the critical value κ0 ≈ −3.636 given by Lemma 5.7. For
κ ∈ (κ0, 0), the shape of the energy-momentum diagram is a concave increasing curve, as the one depicted
in the left panel in Figure 6 for κ = −3. For κ < κ0, there is a cusp in the diagram, as seen in the right
panel in Figure 6 for κ = −50. In this plot, we also see that there is a dark soliton with a speed
c∗

κ ∈ (0,
√

2), having the same energy as the black soliton, with momentum q∗
κ. These values defined in

(1.59)–(1.61), will be key to rigorously establish the orbital stability of solitons with speeds in the interval
(0, c∗

κ), based on a variational approach, as explained in the next subsection,

1.347
��3

c → 0

��) c →
√

2 p(uc,κ)

Eκ(uc,κ)

π
2

��1c → 0

��) c →
√

2

PPi c∗
κ

q∗
κ

3.748

p(uc,κ)

Eκ(uc,κ)

π
2

Figure 6: Energy-momentum diagram of dark solitons with parameters in D2, with κ = −3 (left) and
κ = −50 (right).

1.4 Variational characterization and stability
We explain now the strategy to study the orbital stability of solitons associated with parameters in D2.
by using a variational characterization. Since equation (TW(c, κ)) can be recast in terms of the energy
Eκ and the momentum p as

dEκ(u) = c dp(u), (1.56)
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as shown in Lemma 6.1, it is natural to consider the following minimization problem

Eκ(q) = inf{Eκ(u) : u ∈ N X (R), p(u) = q}. (1.57)

Hence, if a minimizer is reached, it satisfies the Euler–Lagrange equation (1.56), and thus (TW(c, κ)),
where c appears as a Lagrange multiplier.

We will show in Proposition 6.2, that Eκ(q) = −∞, for all κ > 0, so that we restrict ourselves to the
case κ ≤ 0. This minimization problem was studied for κ = 0 in [6, 22], where the authors showed that
the curve q 7→ E0(q) is a well-defined function on R, that is even and continuous, so it suffices to consider
q ≥ 0. Moreover, for q ∈ (0, π/2), the minimizer is attained, and corresponds, up to invariances, to the
dark soliton uc,0 in (1.5), where the speed c ∈ (0,

√
2) is given by the equation

π/2 − atan(c/
√

2 − c2) − c
√

2 − c2/2 = q.

Also, the energy of the solution is E0(q) = E(uc,0) = (2 − c2)3/2/3. For q > π/2, the curve E0 is constant,
and the minimizers are not reached.

Therefore, we focus now on the case κ < 0. In view of Theorems 1.1 and 1.2, if a minimizer of Eκ is
attained, then it is given, for c ∈ (0,

√
2), by the dark soliton in (1.27), i.e.

uc,κ(x) =
√

1 − Gc,κ(x) eiθc,κ(x), with θc,κ(x) = c

2

∫ x

0

Gc,κ(y)
1 − Gc,κ(y)dy, for all x ∈ R, (1.58)

depicted in the center panel of Figure 2.
A complete study of the function Eκ is done in Section 6. In particular, we will prove that Eκ is even

and continuous on R, and also that it is nondecreasing, concave, and strictly subadditive on R+. These
characteristics will enable us to apply the concentration-compactness argument to study the minimizers
of Eκ. However, when considering the case κ < κ0, depicted for instance in the right panel of Figure 6,
we infer that not all solitons in (1.58) can be minimizers for Eκ.

On the other hand, the definition of Eκ is not well-adapted to study solitons that vanish at some
point, such as the black solitons. Indeed, their analysis is much more involved, as explained in [8, 26].
Hence, we only consider here nonvanishing solitons. Moreover, to prove the existence of minimizers, we
need to guarantee that the limit of the minimizing sequences can be lifted, so that the momentum of the
limit function is well-defined. For this purpose, we follow the method developed by de Laire and Mennuni
in [24], by introducing the following the critical value for the momentum

q∗
κ = sup{q > 0 : ∀v ∈ E(R), Eκ(v) ≤ Eκ(q) ⇒ inf

R
|v| > 0}. (1.59)

We show that q∗
κ is related to the energy of the black soliton u0,κ,

u0,κ(x) = ±
√

1 − G0,κ(x), for all ± x ≥ 0. (1.60)

Indeed, it will be key to introduce the critical value for the speed

c∗
κ = max{c ∈ [0,

√
2) : Eκ(uc,κ) = Eκ(u0,κ)}, (1.61)

that enables us to characterize q∗
κ in the following manner:

q∗
κ = p(uc∗

κ,κ), if c∗
κ > 0, and q∗

κ = π/2, if c∗
κ = 0. (1.62)

We establish in Corollary 5.9 that for κ0 ≈ −3.636 given by Lemma 5.7, we have c∗
κ = 0 if κ ∈ [κ0, 0),

and c∗
κ ∈ (0,

√
2) if κ < κ0. Corollary 5.9 also shows that the function pκ : [c∗

κ,
√

2] → [0, q∗
κ], given by

pκ(c) = p(uc,κ), is continuous, bijective, and strictly decreasing, so its inverse is well-defined, and we
denote it by cκ : [0, q∗

κ] → [c∗
κ,

√
2].

With these definitions, we can state now our main result concerning the variational characterization
of the dark solitons in the region D2.

Theorem 1.10. Let κ ≤ 0 and q ∈ (0, q∗
κ). Then the infimum for the minimization problem (1.57) is

attained at the dark soliton uc(q),κ in (1.58), i.e. Eκ(q) = Eκ(uc(q),κ), and is the only minimizer, up to
invariances. Moreover, Eκ(q) = Eκ(u0,κ) for all q > q∗

κ and this infimum is not attained.
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We will see in Section 7 that the Cauchy problem for (1.63), with k < 0, is locally well-posed in
uc,κ + Hs(R), for s ≥ 3 as stated in Corollary 7.2, including the conservation of energy and momentum
by the flow. Therefore, by using the Cazenave–Lions argument [11], and endowing X (R) with the distance:

d(u1, u2) = ∥u′
1 − u′

2∥L2(R) + ∥|u1| − |u2|∥L2(R) + |u1(0) − u2(0)|,

we will deduce that the variational characterization leads to the orbital stability of the dark solitons, as
follows.

Theorem 1.11. Let κ < 0 and c ∈ (c∗
κ,

√
2), then the dark soliton uc,κ in (1.58) is orbitally stable in

(X (R), d), in the following sense. For all ε > 0, there exists δ > 0 such that if Ψ0 ∈ uc,κ + Hs(R),
s > 5/2, satisfies infR |Ψ0| > 0 and

d(Ψ0, uc,κ) ≤ δ,

then, for all t ∈ [0, TΨ0),
inf

(y,ϕ)∈R2
d(Ψ(·, t), eiϕuc,κ(· − y)) ≤ ε,

where Ψ ∈ C([0, TΨ0); uc,κ + Hs(R) is the solution in Corollary 7.2, with initial condition Ψ0, described
in Section 7.

Remark 1.12. Equation (1.2) can be written in a more general form as

i∂tΦ = ∆Φ + V (x)Φ + sΦ(f(|Φ|2)Φ + κh′(|Φ|2)∆h(|Φ|2)), in Rd × R, (1.63)

with f(y) = h(y) = y for all y ∈ R and V ≡ 0. Considering vanishing conditions at infinity with focusing
nonlinearities s = 1 and κ ≤ 0, the existence and orbital stability of bright solitons for equation (1.63) has
been addressed in [15,16] for V ≡ 0 , and in [39,44] for wide classes of V ∈ C(R,R) bounded from below.
After a phase shift, these solutions are real-valued, which simplifies the problem. This fact is key to
using the duality method in [15,16], which enables the transformation of the elliptic quasilinear problem
into a semilinear one. As explained by Selvitella [45], the dual method does not work for complex-valued
functions, thus it is not well-suited for the study of (TW(c, κ)) for c ̸= 0.

Remark 1.13. The global well-posedness in the energy space and the properties of dark soliton for (1.6)
have been addressed by the first author in [18,24]. Assuming that Ŵ is bounded, with Ŵ(ξ) ≥ (1−κξ2)+,
for all ξ ∈ R, with κ ∈ [0, 1/2], and some additional conditions, it was shown that there exists a branch of
dark solitons to (1.6). Even though there is no analytical formula for these dark solitons, it was proven
in [24] that some of them can be obtained by minimization at fixed momentum, using the value q∗

κ in
(1.59). However, obtaining good estimates for q∗

κ in the nonlocal case remains an open problem.

The outline of this paper is the following. In Section 2, we deduce the ODEs for the intensity profile.
Section 3 is devoted to the classification and construction of smooth solutions for the ODEs, while the
analysis of weak solutions is done in Section 4. In Section 5, we provide some formulas for the energy and
momentum of traveling waves. We study the minimization of the energy at fixed momentum in Section 6.
in Section 7, we show the local well-posedness of (QGP) and the stability of dark solitons. Finally, we
briefly discuss the stability of bright solitons in Appendix A.

Notations. The usual Lebesgue and Sobolev spaces of real-valued functions will be denoted, respec-
tively, by Lp(R) and W k,p(R), for p ∈ [1, ∞] and k ∈ N. Moreover, W k,2(R) = Hk(R). If Ω ⊂ R is an
open interval, then H1

0 (Ω) denotes the closure of C∞
0 (Ω) in H1(Ω). The notation for the Lebesgue spaces

of complex-valued functions will be Lp(R;C), and analogously for the Sobolev spaces of complex-valued
functions, or simply Lp(R), if there is no ambiguity. For k ≥ 1, we introduce the homogeneous space
Ḣk(Ω) = {u ∈ L1

loc(R) : u′ ∈ Hk−1(Ω)} where L1
loc(R) is the Lebesgue space of functions integrable on

every compact subset of R. Given a function f , f(a+) and f(a−) denote the lateral limits of f(x), as
x → a+ and x → a−, respectively. We denote by ⟨ , ⟩ the real scalar product on C:

⟨z1, z2⟩ = Re(z1z̄2).

For a complex-valued function u (typically a function in X (R)), we define its intensity profile as the
real-valued function η = ηu = 1 − |u|2. In addition, we use the notation uc,κ for a solution to (TW(c, κ))
and ηc,κ for its intensity profile, but we will remove the subscripts c, κ in the proofs, when there is no
ambiguity.
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2 Equations for the intensity profile
We start by recalling properties satisfied by functions in X (R).
Lemma 2.1. Let u ∈ X (R). Then u belongs to C1/2(R) ∩ L∞(R), and its intensity profile ηu = 1 − |u|2
lies in H1(R), with,

lim
|x|→∞

ηu = 0. (2.1)

Proof. The fact that u is bounded and 1/2-Hölder continuous follows from the Morrey inequality. Then,
using that η′

u = −2⟨u′, u⟩, we conclude that η′
u ∈ L2(R), so that ηu ∈ H1(R) and therefore (2.1) holds.

For notational simplicity, we omit from now on the subscript u in the profile intensity ηu, if there is
no ambiguity.

For the sake of completeness, we also recall the following result concerning the lifting of smooth
functions.
Lemma 2.2. If u ∈ Ck(R;C), for some k ∈ N∗, satisfies that u(x) ̸= 0, for all x ∈ R, then there
exists a phase θ ∈ Ck(R,R), such that the lifting u = ρeiθ holds in R, where ρ ∈ Ck(R;R) is given by
ρ = |u|. Similarly, if u ∈ N X (R), then there is θ ∈ C(R;R) ∩ Ḣ1(R) such that u = ρeiθ in R, and also
ρ = |u| ∈ C(R;R) ∩ Ḣ1(R).
Proof. If u ∈ Ck(R;C) does not vanish, it is immediate that ρ =

√
uū is of class Ck. Now, let w(x) =

u(x)/|u(x)| and θ̃ =
∫ x

0 −iw′(s)w̄(s)ds =
∫ x

0 −⟨iu′(s), u(s)⟩/|u|2(s)ds, then we have (w(x)e−iθ̃(x))′ =
e−iθ̃(w′ − ww′w̄) = 0, since ww̄ ≡ 1. Hence, w(x) = w(0)eiθ̃(x), and we the conclusion follows by setting
θ(x) = θ̃(x) + arg(w(0)), where arg is any continuous determination of the argument defined near w(0).

The same argument holds for u ∈ N X (R), showing that θ is continuous. Also, since u ∈ X (R), we
have

u′ = ρ′eiθ + iρθ′eiθ ∈ L2(R), (2.2)
which implies that ρ′, ρθ′ ∈ L2(R). Since infR ρ > 0, we conclude that θ′ ∈ L2(R).

For a nonvanishing solution u to (TW(c, κ)), the lifting u = ρeiθ is commonly used to derive a system
of equations satisfied by ρ and η, which are related to the hydrodynamical formulation for the Gross–
Pitaevskii equation [10]. The equivalence between the hydrodynamical formulation and the traveling
wave equation has been obtained for nonlocal Gross–Pitaevskii equations in [23]. However, they use
that the solutions are smooth. We verify now that this hydrodynamical formulation also holds for weak
solutions to (TW(c, κ)).
Corollary 2.3. Let u = ρeiθ ∈ N X (R), with ρ, θ ∈ C(R) ∩ Ḣ1(R) be weak solution to (TW(c, κ)). Then
θ′ ∈ H1(R) and (ρ, θ) satisfies the following system:

θ′ = c(1 − ρ2)
2ρ2 . (2.3)(

ρ′(1 − 2κρ2)
)′

= −2κρ(ρ′)2 − ρ(1 − ρ2) + c2(1 − ρ2)2

4ρ3 + c2(1 − ρ2)
2ρ

. (2.4)

Conversely, if there exists a function ρ ∈ C(R) such that infR ρ > 0 and 1 − ρ2 ∈ H1(R), satisfying
(2.4), then there exists a unique (up to a constant) function θ ∈ C1(R)∩Ḣ2(R) satisfying (2.3). Moreover,
the function defined by u = ρeiθ belongs to N X (R) and is a solution to (TW(c, κ)).
Proof. Let u = ρeiθ ∈ N X (R). To show (2.3)–(2.4), we take φ ∈ H1(R) and write (1.15) with ϕ = eiθφ.
We have ϕ ∈ H1(R) and the equation reads, using that ⟨z1eiθ, z2eiθ⟩ = ⟨z1, z2⟩, for all z1, z2 ∈ C and all
θ ∈ R, ∫

R
⟨icρ′ − cθ′ρ + ρ(1 − ρ2), φ⟩ − ⟨ρ′ + iρθ′, iθ′φ + φ′⟩ + 2κ⟨ρ, ρ′ + iθ′ρ⟩⟨ρ, φ⟩′ = 0. (2.5)

Taking iφ1 and then φ1 for any φ1 ∈ H1(R;R) in place of φ in (2.5), we deduce:∫
R

cρ′φ1 + ρ′θ′φ1 − θ′ρφ′
1 = 0, (2.6)∫

R
(−cθ′ρ + ρ(1 − ρ2))φ1 − (θ′)2ρφ1 − ρ′φ′

1 + 2κρρ′(ρφ1)′ = 0. (2.7)
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Setting φ1 = ρφ2 ∈ H1(R;R) in (2.6), we obtain
∫
R −c(1−ρ2)′φ2/2−θ′ρ2φ′

2 = 0, it follows, by integration
by parts of the first term, that (−c(1 − ρ2)/2 + θ′ρ2)′ = 0 in the distributional sense. We conclude from
the integrability at infinity of 1−ρ2 and θ′2 that equation (2.3) is satisfied in L2(R), which in turn implies
that θ′ ∈ H1(R). In particular, (2.3) satisfied pointwisely. To deduce equation (2.4), we just replace θ′

by c(1 − ρ2)/(2ρ2) in (2.7).
We now prove the converse; it follows from the assumptions that ρ and 1/ρ are essentially bounded,

with weak derivatives in L2(R). Similar to what has been done to obtain (2.3)–(2.4) from (TW(c, κ)),
choosing adequate test functions in H1(R), we deduce that u = ρeiθ belongs to N X (R) and satisfies
equation (TW(c, κ)) in the weak sense.

Remark 2.4. We also deduce from the proof of Corollary 2.3 that if u ∈ X (R) is a solution to (TW(c, κ)),
with inf [a,b] |u| > 0, for some interval (a, b), so that u = ρeiθ in [a, b], then there exists a constant K ∈ R
such that

θ′ = c(1 − ρ2)
2ρ2 + K, in (a, b). (2.8)

The next result shows that equation (TW(c, κ)) can be recast as two equations for the (real-valued)
intensity profile η, which is key for our classification results, in the same spirit of [6, 20,23].

Proposition 2.5. Let uc,κ ∈ C2(R) ∩ X (R) be a solution to (TW(c, κ)). Then ηc,κ = 1 − |uc,κ|2, satisfies

(1 − 2κ + 2κηc,κ)η′′
c,κ + κ(η′

c,κ)2 = −3η2
c,κ + (2 − c2)ηc,κ, in R. (2.9)

(1 − 2κ + 2κηc,κ)(η′
c,κ)2 = η2

c,κ(2 − c2 − 2ηc,κ), in R. (2.10)

In particular, assuming without loss of generality that |ηc,κ| reaches a global maximum at the origin, we
obtain either

η(x) = 0, for all x ∈ R, or η(0) = 1 − c2

2 . (2.11)

Proof. Let u = u1 + iu2, writing the equations satisfied by u1 and u2, we obtain

u′′
1 − cu′

2 + u1(η + κη′′) = 0, in R, (2.12)

u′′
2 + cu′

1 + u2(η + κη′′) = 0, in R. (2.13)

Multiplying (2.12) by −u2, and (2.13) by u1, and adding these equations, we get

(u1u′
2 − u′

1u2)′ = c

2η′.

Since u′ ∈ L2(R) ∩ C(R), there exists a sequence (Rn)n∈N such that limn→∞ Rn = ∞ and u′(Rn) =
u′

1(Rn) + iu′
2(Rn) → 0 as n → ∞. Integrating from x ∈ R to Rn, we obtain

(u1u′
2 − u′

1u2)(x) = c

2η(x) + Kn, for all x ∈ R, (2.14)

where Kn = (u1u′
2 − u′

1u2)(Rn) − c
2 η(Rn) → 0, as n → ∞. Thus equation (2.14) reads

(u1u′
2 − u′

1u2) = c

2η, in R. (2.15)

On the other hand, multiplying (2.12) by u′
1 and (2.13) by u′

2, and adding these equations, we have

1
2

(
(u′

1)2 + (u′
2)2
)′

= η′

2 (η + κη′′),

so integrating this relation from x to Rn, and taking the limit as before, we obtain

|u′|2 = 1
2(η2 + κ(η′)2). (2.16)

In addition, multiplying (2.12) by u1, (2.13) by u2 and adding these equations, we have

c(u1u′
2 − u′

1u2) = u1u′′
1 + u2u′′

2 + |u|2(η + κη′′).
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We are now in a position to deduce (2.9). Indeed, since η′′ = −2(|u′|2 +u1u′′
1 +u2u′′

2), using (2.15)–(2.16),
we get

η′′ = −(η2 + κ(η′)2) − c2η + 2|u|2(η + κη′′),

which is exactly (2.9). To obtain (2.10), we notice that( (η′)2

2 (1 − 2κ + 2κη)
)′

= η′′η′(1 − 2κ + 2κη) + κ(η′)3, (2.17)

so that multiplying (2.9) by η′, integrating from x to Rn and taking the limit as n → ∞, we finally
deduce (2.10). Since η satisfies (2.1), it must reach a global extremum at some x0 ∈ R. We fix x0 = 0
and evaluate (2.10) at 0 to obtain (2.11).

Remark 2.6. Notice that if η ∈ C2(R) satisfies (2.10), and if η′ only vanishes on a set of measure zero,
then η satisfies (2.9). Conversely, if η ∈ C2(R) satisfies (2.9) and if η ∈ H1(R), then η satisfies (2.10).
This remark motivates our choice to study solutions to both (2.9)–(2.10) to shorten the statements of
the results.

Equation (2.9)–(2.10) provides a simpler formulation to (TW(c, κ)) given by two real-valued equations.
Combining Proposition 2.5 with the following result, we deduce the equivalence of these problems for
regular solutions with nonzero speed c.

Proposition 2.7. If c > 0 and ηc,κ ∈ C2(R) is a solution to (2.9)–(2.10), then, ηc,κ < 1 on R, and the
function

θc,κ(x) = c

2

∫ x

a

( ηc,κ(y)
1 − ηc,κ(y)

)
dy, for all x ∈ R, (2.18)

is well-defined in R, for all a ∈ R. Moreover, the function uc,κ =
√

1 − ηc,κeiθc,κ belongs to C2(R;C) and
satisfies (TW(c, κ)). Also, if ηc,κ ∈ H1(R), then uc,κ ∈ N X (R).

Proof. Let u = ρeiθ, with ρ =
√

1 − η, we show first that ρ(x) > 0, for all x ∈ R. Suppose that ρ(x0) = 0,
for some x0 ∈ R, then η(x0) = 1 and is necessarily a global maximum of η. Equation (2.11) implies that
c = 0, contradicting our assumptions. We conclude that θ is well-defined and belongs to C3(R). In view
of (2.18), we have

u′(x) = − eiθ(x)η′(x)
2
√

1 − η(x)
+ ieiθ(x) cη(x)

2
√

1 − η(x)
. (2.19)

Computing the left-hand side of (TW(c, κ)) using (2.19), one can check that the imaginary part is zero.
Using (2.9)–(2.10), computations yield that the real part is zero too, thus u satisfies (TW(c, κ)). Now
suppose additionally that η ∈ H1(R). Using (2.19) we get∫

R
|u′|2 =

∫
R

η′2

4(1 − η) + c2η2

4(1 − η) , (2.20)

Then |u′|2 is integrable, since η ∈ H1(R) and infR(1 − η) > 0. Therefore u ∈ N X (R).

Remark 2.8. If u =
√

1 − ηeiθ ∈ N X (R) is a solution to (TW(c, κ)), then the formulas for Eκ(u) and
p(u) in (1.14) and (1.13), can be simplified as

Eκ(u) = 1
2

∫
R

η2 and p(u) = c

4

∫
R

η2

1 − η
, (2.21)

by using respectively (2.16) and (2.3).

3 Classification of smooth traveling waves
Equation (2.10) yields necessary conditions on (c, κ) for the existence of nontrivial traveling waves. For
instance, taking x large enough, we expect that

0 < (2 − c2)(1 − 2κ), or equivalently (c, κ) ∈ D, (3.1)

is a necessary condition for the existence of nontrivial solutions. Corollary 3.1 and Proposition 3.2 aim
to provide a rigorous proof of this fact.
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Corollary 3.1. Let c ≥ 0 and κ ∈ R, with κ ̸= 1/2. Assume that (c, κ) /∈ D and that u ∈ C2(R)∩X (R) is
a solution to (TW(c, κ)). Then u is a trivial solution, i.e., there is a constant ϕ ∈ R such that u(x) = eiϕ,
for all x ∈ R.

Proof. Let η ∈ H1(R) be the solution to (2.9)–(2.10) given by Proposition 2.5. We distinguish three cases
for the parameters: (i) c =

√
2 and κ ∈ R, (ii) c >

√
2 and κ < 1/2, (iii) 0 ≤ c <

√
2 and κ > 1/2. We

show now that in each case we can conclude that η ≡ 0 in R.
If (i) is satisfied, then (2.11) implies that 0 is the only possible global extremum of η, thus η ≡ 0. In the

case (ii), suppose by contradiction that η is not the zero function, then, using (2.11), η(0) = 1− c2/2 < 0.
By (2.1) and, using the intermediate value theorem, we infer that there exists x1 ∈ R such that

η(x1) = max
{2 − c2

4 ,
2κ − 1

4κ

}
if κ > 0, and η(x1) = 2 − c2

4 if κ ≤ 0.

Hence η(x1)2(2 − c2 − 2η(x1)) < 0 and 1 − 2κ + 2κη(x1) > 0. Therefore, computing the sign of both
sides of equation (2.10), we obtain a contradiction. We conclude that η ≡ 0. Case (iii) can be treated
analogously to case (ii), by taking η(x1) = min

{
2−c2

4 , 2κ−1
4κ

}
.

Corollary 3.1 provides a first nonexistence result for nontrivial finite energy solutions to (TW(c, κ)),
where the case κ = 1/2 was excluded. We will handle the case κ = 1/2, finding the explicit smooth
solutions to (TW(c, κ)), and checking that this solution does not belong to the energy space. This
explicit solution will also enable us to construct the dark compactons in Subsection 4.2.

Proposition 3.2. Let κ = 1/2 and c ≥ 0. Assume that η ∈ C2(R) is a nonzero solution to (2.9)–(2.10),
satisfying (2.11). Then for all x ∈ R, we have

η(x) = (2 − c2)
2 cos2

( x√
2

)
. (3.2)

In particular, there is no nontrivial solution to (TW(c, κ)) with κ = 1/2 in C2(R) ∩ X (R).

Proof. If c =
√

2, then (2.11) shows that η ≡ 0 is the only solution, so (3.2) is trivially satisfied.
Let us now verify formula (3.2) in the case 0 ≤ c <

√
2. Notice first that (2.9) reads

ηη′′ + (η′)2/2 = −3η2 + (2 − c2)η, in R. (3.3)

By (2.11), we can assume that |η| reaches a global maximum at x = 0 with η(0) = 1 − c2/2, hence
η′(0) = 0 and (3.3) yields η′′(0) < 0. Since η is strictly concave at x = 0, η(0) is the global maximum
of η and letting R = sup{x > 0 : η(s) > 0, for all s ∈ (0, x)}, we infer that η′ < 0 on (0, R). Indeed,
otherwise setting x1 = inf{x > 0, η′(x) = 0}, we would have x1 < R and 0 < x1 by concavity. Then,
evaluating (2.10) at x1 yields η(x1) = 1 − c2/2 since η(x1) > 0 by definition of R. Using Rolle’s theorem,
the latter identity contradicts the minimality of x1. We deduce again from (2.10) that

η′√
η(2 − c2 − 2η)

= −1, in (0, R). (3.4)

By direct integration, we obtain R = π/
√

2 and

η(x) = 2 − c2

2 tan2 (x/
√

2
)

+ 2
= (2 − c2)

2 cos2 (x/
√

2
)
, x ∈

[
0,

π√
2

)
. (3.5)

The same argument shows that the formula (3.5) remains valid for −π/
√

2 < x < 0, so (3.2) holds on
(−π/

√
2, π/

√
2). It follows that,

η′(x) = −2 − c2
√

2
sin
( x√

2

)
cos
( x√

2

)
, for all x ∈

(
− π√

2
,

π√
2

)
, (3.6)

η′′(x) = −2 − c2

2

(
cos2

( x√
2

)
− sin2

( x√
2

))
, for all x ∈

(
− π√

2
,

π√
2

)
. (3.7)
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Since η ∈ C2(R), we conclude from these explicit formulas that η(±π/
√

2) = 0, η′(±π/
√

2) = 0, and
η′′(±π/

√
2) = (2 − c2)/2. Because η is strictly convex at x = −π/

√
2, letting

R2 = inf{x < −π/
√

2 : η(s) < 1 − c2/2, for all s ∈ (x, −π/
√

2)},

we deduce that (3.4) still holds replacing (0, R) by (R2, −π/
√

2), arguing as before. Integrating (3.4),
we obtain R2 = −

√
2π, and (3.5) remains true in (−

√
2π, −π/

√
2]. From the same arguments and an

induction procedure, we infer that η satisfies (3.2). In the case c >
√

2, similar ideas allow us to deduce
that (3.2) also holds.

Finally, suppose by contradiction that u ∈ C2(R) ∩ X (R) satisfies (TW(c, κ)) with κ = 1/2 and is
nontrivial. Then η = 1 − |u|2 satisfies (2.9)–(2.10) and (2.11), by Proposition 2.5. Hence (3.2) holds, and
therefore η /∈ L2(R), contradicting u ∈ X (R). Additionally, we can check that (2.21) also holds in that
case, so that we have Eκ(u) = ∞.

Remark 3.3. Using (3.2) and (2.18), we deduce that the only nontrivial C2(R)-solution u to (TW(c, 1/2))
such that η = 1 − |u|2 satisfies (2.11) is given, up to invariances and for any c > 0 by

u(x) =

√
1 − (2 − c2)

2 cos2
( x√

2

)
eiθ(x),

where θ is a smooth odd function satisfying, for all x ≥ 0 and all k ∈ N,

θ(x) = −cx

2 −

(
atan

( c√
2

cot
( x√

2

))
− π

2 − kπ

)
, if x ∈

(
k
√

2π, (k + 1)
√

2π
)
.

In the case c = 0, this solution degenerates to the periodic solution to (TW(0, 1/2)) given by u(x) =
i sin(x/

√
2).

We continue the study of the equations (2.9)–(2.10) in Proposition 2.5 when the parameters (c, κ)
belong to D, using the regions D1, D2 and D3, defined in(1.18)–(1.19).

Corollary 3.4. Let (c, κ) ∈ D and assume that η ∈ C2(R) is a nonzero solution to (2.9)–(2.10) satisfying
(2.1). Then up to translation, η is even, reaching a global extremum at the origin with η(0) = 1 − c2/2.
Moreover, we have η > 0 and η′ < 0 on (0, ∞) if (c, κ) ∈ D1 ∪ D2, while η < 0 and η′ > 0 on (0, ∞) if
(c, κ) ∈ D3. Additionally, the function η belongs to C∞(R) and is exponentially decaying, as well as all
its derivatives, i.e. for every j ∈ N there exists positive constants C0 and C such that

|Djη(x)| ≤ C0e−C(|x|−1), for all |x| ≥ 1.

Proof. We recall that D = D1 ∪D2 ∪D3. Let us treat case first the case (c, κ) ∈ D1 ∪D2. Using (2.11), we
assume that η reaches a positive global maximum 1 − c2/2 at x = 0. Notice that η > 0, indeed, otherwise
we would have η(x1) = 0, for some x1 ∈ R. Then, equation (2.10) yields η′(x1) = 0. Using (2.9), we infer
that (η, η′)T satisfies (

η
η′

)′

(x) =
(

η′(x)
−3η2(x)+(2−c2)η(x)−κ(η′(x))2

1−2κ+2κη(x)

)
= F ((η, η′)T ), (3.8)

in a neighborhood of x1. Since F is well-defined and locally Lipschitz in (R\{1 − 1/(2κ)}) × R, by
Cauchy–Lipschitz theorem, for any initial condition in (R\{1 − 1/(2κ)}) × R, there is a unique maximal
solution of (3.8). In particular, since (η(x1), η′(x1))T = (0, 0)T , is an equilibrium, we deduce that η ≡ 0
in R, which is a contradiction.

The fact that η is even also follows from the Cauchy–Lipschitz theorem. Indeed, setting η̃(x) = η(−x),
for all x ∈ R, we deduce that (η̃, η̃′)T satisfies (3.8) with initial condition (η̃(0), η̃′(0))T = (1 − c2/2, 0)T .
Thus η2 = η.

We show now that η′(x) < 0, for all x ∈ (0, ∞). Evaluating equation (2.9) at x = 0, yields η′′(0) < 0,
hence η′ is decreasing in the vicinity of 0. This implies that η′(x) < 0, for x > 0 near 0. Now suppose by
contradiction that η′(x1) = 0, for some x1 > 0, and let x2 = inf{x > 0 : η′(x) = 0}. Since η(0) = 1−c2/2,
we infer from Rolle’s theorem that we cannot have η(x2) = 1 − c2/2. Hence, evaluating (2.10) at x = x2,
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we obtain η(x2) = 0, which contradicts the positivity of η. Thus η′ does not change sign and remains
negative in (0, ∞).

To prove the remainder properties, we use that η > 0 on R, thus

1 − 2κ + 2κη(x) > 1 − 2κ > 0, for all x ∈ R,

and therefore η remains in the domain of F , so it is a global solution to (3.8). Thus, the smoothness of
η follows by an induction argument on the ODE (3.8). For the decay estimates, since η is decreasing in
(0, ∞), we get from (2.10)

η′(x) = −η(x)

√
−2η(x) + (2 − c2)
1 − 2κ + 2κη(x) , for all x > 0. (3.9)

Thus η′ ≤ −Cη(x), for all x ≥ 1, where C = infx≥1

{√
−2η(x)+(2−c2)
1−2κ+2κη(x)

}
> 0. Integrating this differential

inequality, we get η(x) ≤ η(1)e−C(x−1). The decay of higher other derivatives is then obtained by
differentiating (3.9), together with an induction argument.

Finally, the case (c, κ) ∈ D3 can be treated similarly, noticing that η also satisfies (3.9), since η < 0
and η′ > 0 on (0, ∞).

Now we prove the main result of this subsection: the existence and uniqueness (up to translation)
of ηc,κ ∈ C2(R) ∩ H1(R) satisfying (2.9)–(2.10), for any (c, κ) ∈ D. Then, in the case c > 0, Theorem
1.1 is deduced using the equivalence stated in Proposition 2.7. We prove beforehand, that the functions
(1.22)–(1.24) are well-defined, and injective so that we can define their inverse. The idea behind (1.22)–
(1.24) is to integrate explicitly the ODE (3.9) taking into account the properties of the solutions stated
in Corollary 3.4.

Lemma 3.5. The functions Fc,κ, Gc,κ and Hc,κ are well-defined. Moreover,
(i) Fc,κ is decreasing, belongs to C∞(I◦

c ) ∩ C(Ic), and

lim
y→0+

Fc,κ(y) = ∞, Fc,κ(1 − c2/2) = 0, F ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ I◦

c . (3.10)

(ii) Hc,κ is increasing, belongs to C∞(J ◦
c ) ∩ C(Jc), and

Hc,κ(1 − c2/2) = 0, lim
y→0−

Hc,κ(y) = ∞, H ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ J ◦

c . (3.11)

(iii) Gc,κ is decreasing, belongs to C∞(I◦
c ) ∩ C(Ic), and

lim
y→0+

Gc,κ(y) = ∞, Gc,κ(1 − c2/2) = 0, G′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ I◦

c . (3.12)

Proof. It is immediate to check that

(σ, (c, κ)) ∈ Ic × D1 =⇒ 1 − 2κ + 2κσ ≥ 1 − 2κ > 0, (3.13)
(σ, (c, κ)) ∈ Ic × D2 =⇒ 1 − 2κ + 2κσ ≥ 1 − κc2 > 0, (3.14)
(σ, (c, κ)) ∈ Jc × D3 =⇒ 1 − 2κ + 2κσ < 1 − 2κ < 0, (3.15)

so the square roots in (1.22)–(1.23) and in (3.10)–(3.12) are well-defined. Since the domain of definition
of atanh is (−1, 1), in case (i), it remains to check that (1 − 2κ)(2 − c2 − 2y) < (2 − c2)(1 − 2κ + 2κy),
which is equivalent to the condition

y(c2κ − 1) < 0, (3.16)

which is satisfied in this case, since y > 0. Thus, Fc,κ belongs to C∞(I◦
c )∩C(Ic), and one gets immediately

the values of Fc,κ at y = 0+ and y = 1 − c2/2 in (3.10). Finally, simple computations give

d

dy

(
atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

))
= −

√
κ√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,
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and
d

dy

(
atanh

(√ (1 − 2κ)(2 − c2 − 2y)
(2 − c2)(1 − 2κ + 2κy)

))
= −

√
(1 − 2κ)(2 − c2)

2y
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

so that we obtain the derivative of Fc,κ in (3.10).
The case (ii) follows using the same computations, noticing that (3.16) is still satisfied in this case,

since y < 0.
In case (iii), we check that for all y ∈ Ic,

0 ≤ −κ(2 − c2 − 2y) < 1 − 2κ + 2κy,

and (3.16) is still satisfied, since κ < 0 and y > 0. Therefore, both atanh in (1.23) are well-defined.
Noticing that

d

dy

(
atanh

(√
−κ

√
2 − c2 − 2y

1 − 2κ + 2κy

))
= −

√
−κ√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

the conclusion follows as in the previous cases.

In view of Lemma 3.5, the inverse functions of Fc,κ, Hc,κ and Gc,κ are well-defined in (0, ∞):

Fc,κ = F −1
c,κ , for (c, κ) ∈ D1; Gc,κ = G−1

c,κ, for (c, κ) ∈ D2; Hc,κ = H−1
c,κ , for (c, κ) ∈ D3. (3.17)

We show that these functions can be smoothly extended to R.

Lemma 3.6. Let (c, κ) ∈ D and Fc,κ, Gc,κ and Hc,κ be defined as in (3.17). Then they extend to R as
even functions, that we still denote by Fc,κ, Gc,κ and Hc,κ, respectively, and satisfy

Im(Fc,κ) = (0, 1 − c2/2], Im(Gc,κ) = (0, 1 − c2/2], Im(Hc,κ) = [1 − c2/2, 0). (3.18)

In addition, these extensions belong to C∞(R).

Proof. We prove the statements only for Fc,κ, since the proofs for Gc,κ and Hc,κ are similar. Since
F ′

c,κ ∈ C∞(I◦
c ; (0, ∞)) is negative valued, we have Fc,κ = F −1

c,κ ∈ C1((0, ∞)) with

F ′
c,κ(x) = 1

F ′
c,κ(Fc,κ(x)) = −Fc,κ(x)

√
2 − c2 − 2Fc,κ(x)

1 − 2κ + 2κFc,κ(x) , (3.19)

in fact, this yields Fc,κ ∈ C∞((0, ∞); I◦
c ). Using (3.19) we know the monotonicity of Fc,κ, and we conclude

that Fc,κ ∈ C([0, ∞); Ic), with Fc,κ(0) = 1 − 1/c2. Symmetrizing Fc,κ with respect to the ordinate axis,
and still denoting by Fc,κ the extension, we deduce that Fc,κ defines an even function and belongs to
C(R)∩C∞(R\{0}). It remains to show that Fc,κ is smooth at the origin. For this purpose, let h ∈ R\{0},
so that, by the mean value theorem, there exists 0 < |xh| < |h| such that

Fc,κ(h) − Fc,κ(0) = hF ′
c,κ(xh).

Regarding (3.19), we have F ′
c,κ(xh) → 0 as h → 0, therefore Fc,κ ∈ C1(R; Ic) and F ′

c,κ(0) = 0. Differenti-
ating (3.19) and proceeding by induction, we infer that Fc,κ ∈ C∞(R; Ic), using the same arguments.

We are in a position to show that the function ηc,κ defined in (1.26) is the nonzero smooth solution
to (2.9)–(2.10).

Proposition 3.7. Let (c, κ) ∈ D and ηc,κ defined in (1.26). Then ηc,κ belongs to C∞(R) ∩ H1(R) and
is a nonzero to solution to (2.9)–(2.10). Moreover, it is, up to a translation, the unique nonzero solution
to (2.9)–(2.10) in C2(R) ∩ H1(R).

Proof. We show the result only for (c, κ) ∈ D1, so that ηc,κ = Fc,κ, since the other cases are analogous.
For the sake of simplicity, we omit the subscripts c and κ. By definition, η is even, with η(0) = 1 − c2/2,
η′(0) = 0, η > 0 on R, and

Fc,κ(η(x)) = x, for x > 0. (3.20)
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In particular, η satisfies (2.10) for x = 0. Bearing in mind that η(x) ∈ Ic, for all x > 0, we can invoke
Lemma 3.5 to differentiate (3.20), using (3.10), to obtain

η′(x)
η(x)

√
1 − 2κ + 2κη(x)
2 − c2 − 2η(x) = −1, for all x > 0, (3.21)

so that η satisfies (2.10) for all x ≥ 0. Since η is even, we conclude that η satisfies (2.10) in R. Also, by
differentiating (2.10), we deduce that η also solves (2.9), using Remark 2.6.

The property η ∈ H1(R) is a consequence of the decay of global solutions to (2.9)–(2.10), stated in
Corollary 3.4.

Now, for the uniqueness, suppose that there exists another function η̃ ∈ C2(R) ∩ H1(R), a nonzero
solution to (2.9)–(2.10). Then (2.11) applies, so that we can assume, up to a translation, that η̃ reaches
a global extremum at the origin, with η̃(0) = 1 − c2/2. Thus (η̃, η̃′) is also a global solution to the
ODE (3.8) with initial condition (η̃, η̃′)(0) = (1 − c2/2, 0). Therefore, by Cauchy–Lipschitz theorem, we
conclude that η = η̃.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. The assertion (i) is a direct consequence of Corollary 3.1 and Proposition 3.2.
To prove (ii), let (c, κ) ∈ D1, let η be the unique (up to a translation) global solution to (2.9)–(2.10)

given by Proposition 3.7. In the case c > 0, from Proposition 2.7, u =
√

1 − ηeiθ with θ given by (2.18)
is up to invariances the unique finite energy solution of (TW(c, κ)). The smoothness and decay of u is a
consequence of the smoothness and the decay of η.

It remains to analyze the case c = 0, where η(0) = 1 and 0 < η < 1 on R \ {0}, and u is the odd real
function defined in (1.28), so that u(0) = 0. Hence, we need to modify the arguments given above. It is
clear that u is smooth for x ̸= 0. To avoid tedious computations, we use the following argument to verify
that u is a smooth solution to (TW(c, κ)).

Let us define ũ ∈ C∞((−R, R)) as the local real solution, given by the Cauchy–Lipschitz theorem, of

(1 − 2κũ2)ũ′′ + ũ(1 − ũ2 − 2κ(ũ′)2) = 0, (3.22)
ũ(0) = 0, ũ′(0) = 1/

√
2, (3.23)

for some R > 0, since 1 − 2κy2 > 0, for y near 0. In this manner, ũ satisfies (TW(c, κ)) with c = 0 on
(−R, R). Notice that we chose the value of ũ′(0) to have compatibility with the identity in (2.16), since
η(0) = 1 and η′(0) = 0. Let η̃ = 1 − ũ2. Since η̃ ≤ 1 in (−R, R), with η̃(0) = 1, we infer that η̃ reaches a
global maximum at the origin, so that η̃′(0) = 0. Arguing as in the proof of Proposition 2.5, with u2 ≡ 0
and c = 0, but integrating between 0 and x, instead of x and Rn, we conclude that η̃ satisfies equation
(2.9) with c = 0 in (−R, R). Thus, η̃ and η satisfy the same ODE problem (3.8), with the same initial
condition. By Cauchy–Lipschitz theorem, we have η̃ = η, in (−R, R), i.e.

|ũ(x)| = |u(x)|, for all x ∈ (−R, R). (3.24)

Recall that u > 0 in (0, ∞), and that u < 0 in (−∞, 0). Since ũ′(0) > 0, we deduce that there is some
R0 ∈ (0, R] such that ũ > 0 in (0, R0) and ũ < 0 in (0, R0). We conclude from (3.24) that ũ = u in
(−R0, R̃0), so that u ∈ C∞(R). This also implies that ũ is a global solution to (3.22)–(3.23), and that
ũ = u in R, so that u is solution to (TW(c, κ)), with c = 0.

Finally, we need to prove the uniqueness of the black soliton u in (1.28), up to invariances. Let us
assume that ǔ ∈ C∞(R;C) ∩ X (R) is another solution to (TW(c, κ)) with c = 0. Setting η̌ = 1 − |ǔ|2, we
deduce that η̌ satisfies (2.9)–(2.10) by Proposition 2.5, so that Proposition 3.7 implies that η̌ = η(· − x0)
for some x0 ∈ R. Up to a translation, we assume that x0 = 0. Also, by Corollary (3.4), we deduce that

|ǔ| ≤ 1 on R. (3.25)

In this manner, we have η̌(0) = 1 and η̌′(0) = 0, so that ǔ(0) = 0. By using (2.16), we also get
|ǔ′|(x0) = 1/

√
2, thus ǔ′(0) = eiϕ/

√
2, for some ϕ ∈ R.

To conclude, we consider the function v = e−iϕǔ. It is clear that v satisfies (TW(c, κ)) with c = 0.
Therefore, the real-valued function V = (Re(v), Im(v)) satisfies the ODE system in (1.32), with c = 0,
that we rewrite as

V ′′ = G(V, V ′), (3.26)
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with initial condition
V (0) = (0, 0), V (0) = (1/

√
2, 0). (3.27)

Notice that G(V, V ′) includes the multiplication by A(V )−1, which is well-defined on R, in view of (3.25),
since 2κ < 1. Because the black soliton u satisfies (3.22)–(3.23), the function U = (u, 0) is also a solution
to (3.26)–(3.27). Therefore, by the Cauchy–Lipschitz theorem, we conclude that U = V , i.e. that ǔ = eiϕu
on R, completing the proof.

We end this section with a word on the regularity of uc,κ with respect to (c, κ). Because ηc,κ satisfies
the autonomous ODE (3.8) and since the right-hand side is a smooth vector field F = F (c, κ, η, η2), the
regularity of the flow with respect to the initial condition (see e.g [28]) yields η ∈ C∞(D × R), where
η(c, κ, x) = ηc,κ(x). We prove by induction that η ∈ C∞(D, Hk(R)) for all k ∈ N.

Proposition 3.8. For every multi-index α = (α1, α2, j) ∈ N3, (c, κ) ∈ D, there exists R, C0, C positive
constants depending continuously on (c, κ) but not on x ≥ R, such that for all |x| ≥ R

|Dα
c,κ,xηc,κ(x)| ≤ C0e−C(|x|−R), (3.28)

where Dα
c,κ,x = ∂α1

c ∂α2
κ ∂j

x. Moreover, η ∈ C∞(D; Hj(R)) where η(c, κ, x) = ηc,κ(x).

Proof. By simplicity, we prove (3.28) only for α2 = 0, since the case α2 ≥ 1 follows by induction on α2.
By induction on α1, the case α1 = 0 is just the exponential decay of η and all its derivatives in x.

Since ηc,κ satisfies (2.9)–(2.10), from Corollary 3.4 and the regularity of the flow, we have for all α1 ≥ 0
and all x > 0

∂x∂α1
c ηc,κ(x) = − dα1

(dc)α1
F (c, κ, ηc,κ(x)), where F (c, κ, y) = y

√
2 − c2 − 2y

1 − 2κ + 2κy
. (3.29)

We infer that using the induction hypothesis, there exists R > 1 such that for all x ≥ R

|∂x∂α1
c ηc,κ(x) + ∂yF (c, κ, ηc,κ(x))∂α1

c ηc,κ(x)| ≤ C1e−C2(x−R), for some C1, C2 > 0. (3.30)

For instance, with α1 = 1, (3.29) yields

∂x∂cηc,κ(x) = − d

dc
F (c, κ, ηc,κ(x)) = −∂cηc,κ(x)∂yF (c, κ, ηc,κ) − ηc,κ

∂cF (c, κ, ηc,κ)
ηc,κ

, (3.31)

Using |η(x)| ≤ |η(1)| < |1 − c2/2| for all x ≥ 1, we can bound (∂cF )/η independently of x ≥ 1, we can
conclude that (3.31) implies (3.30). On the other hand, we have

∂yF (c, κ, ηc,κ) = (1 − 2κ + 2κηc,κ)(2 − c2 − 2ηc,κ) + ηc,κ(κc2 − 1)√
(1 − 2κ + 2κηc,κ)3(2 − c2 − 2ηc,κ)

. (3.32)

Since ∂yF (c, κ, ηc,κ(x)) tends to
√

(2 − c2)/(1 − 2κ), as x → ∞, we get C3 < ∂yF (c, κ, ηc,κ(x)) for all
x ≥ R and some C3 > 0 and R > 1. From (3.30), we deduce the decay estimate as follows. Let
G(x) =

∫ x

R
∂yF (c, κ, ηc,κ(s))ds, then, multiply (3.30) by eG(x) and integrate from R to w ≥ R. By

integration by part of
∫ w

R
eG(x)∂x∂α1

c ηc,κ(x)dx, we obtain

−C1

∫ w

R

eG(x)−C2(x−R)dx ≤ eG(w)∂α1
c ηc,κ(w) − ∂α1

c ηc,κ(R) ≤ C1

∫ w

R

eG(x)−C2(x−R)dx. (3.33)

Moreover, we can check that for all R ≤ x ≤ w, we have G(x)−G(w) ≤ −C3(w−x). Adding ∂c,κη(c,κ)(R)
and multiplying by e−G(w) every side of (3.33) we get, using the latter estimate on G

∂c,κηc,κ(R)e−G(w) − C1

∫ w

R

e−C3(w−x)−C2(x−R)dx ≤ ∂α1
c ηc,κ(w), (3.34)

and also the upper bound on ∂α1
c ηc,κ

∂α1
c ηc,κ(w) ≤ ∂α1

c ηc,κ(R)e−G(w) + C1

∫ w

R

e−C3(w−x)−C2(x−R)dx. (3.35)
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If C2 = C3 we obtain using (3.34)–(3.35)

|∂α1
c ηc,κ(w)| ≤ (|∂α1

c ηc,κ(R)| + C1(w − R))e−C2(w−R), (3.36)

while if C2 ̸= C3, computing the integrals in (3.34)–(3.35) yields

|∂α1
c ηc,κ(w)| ≤ |∂α1

c ηc,κ(R)|e−C3(w−R) + C1

|C3 − C2|
(e−C2(w−R) + e−C3(w−R)) (3.37)

From (3.36)–(3.37) follows the exponential decay estimate (3.28) for j = 0. Using the same method, we
get (3.28) for x ≤ −R. The case j ≥ 1 is then obtained by induction, differentiating (3.29) j − 1 times
with respect to x.

Since (ηc+h,κ(x)−ηc,κ(x))/h−∂cηc,κ(x) converges to 0 for every x ∈ R as h → 0 and supch∈(c−h,c+h) |∂cηch,κ(·)|
is a continuous exponentially decaying function uniformly in (c, κ) since the constant in (3.28) are con-
tinuous with respect to (c, κ) ∈ D. We also get the convergence to 0 in the L2-norm using the dominated
convergence theorem. Induction of this argument ensures that η ∈ C∞(D; Hk(R)).

4 Classification of singular traveling waves
We start by defining the notion of weak solution for (QGP).

Definition 4.1. We say that Ψ ∈ L1
loc(R; H1(R)) is a global weak solution to (QGP) if for any φ ∈

C∞
0 (R; H1(R)) we have∫∫

R×R
⟨iΨ, ∂tφ⟩dxdt =

∫∫
R×R

⟨∂xΨ, ∂xφ⟩ − (1 − |Ψ|2)⟨Ψ, φ⟩ + κ∂x(1 − |Ψ|2)∂x⟨Ψ, φ⟩dxdt. (4.1)

We can check that uc,κ ∈ X (R) is a solution to (1.15) if and only if Ψ(x, t) = uc,κ(x − ct) is a weak
solution to (QGP). In the following subsection, we prove Theorems 1.2, 1.4, 1.7, and Propositions 1.6
and 1.3 that provide qualitative results on the weak solutions.

4.1 Properties of singular solutions
Let (c, κ) ∈ [0, ∞)×R, throughout this subsection, we assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)).
Let u1 = Re(uc,κ), u2 = Im(uc,κ) and ηc,κ = 1 − |uc,κ|2. Taking ϕ = ϕ1 ∈ H1(R;R) and ϕ = ϕ2 ∈
H1(R;R), in (1.15), we see that (1.15) is equivalent to the system of two real equations in (1.32), satisfied
in the weak sense. Therefore, since uc,κ is continuous, we expect that solutions to (TW(c, κ)) are smooth
on the open set

Ω(uc,κ) :=
{

x ∈ R : |uc,κ|2 ̸= 1
2κ

}
= Γ(uc,κ)c. (4.2)

This is exactly the conclusion of the result below. Note that if κ ≤ 0, we trivially have Ω(uc,κ) = R. Also,
in the case κ ̸= 1/2, bearing in mind (2.1), we can find R > 0 such that −∞ < −R ≤ ac,κ ≤ bc,κ ≤ R < ∞
and (−∞, −R) ∪ (R, ∞) ⊂ Ω(uc,κ), where ac,κ, bc,κ are given by (1.34).

Lemma 4.2. Let (c, κ) ∈ [0, ∞) × R. If uc,κ ∈ X (R) satisfies (TW(c, κ)), then uc,κ ∈ C∞(Ω(uc,κ)). In
particular, if κ ̸= 1/2 so that −∞ < ac,κ ≤ bc,κ < ∞, then uc,κ is smooth in (−∞, ac,κ) ∪ (bc,κ, ∞).

Proof. As usual, let u = uc,κ and write u = u1 + iu2, so that U = (u1, u2) satisfies the system (1.32),
that we recast as

A(u)U ′′ = F (U, U ′),

in the distributional sense, where F (U, U ′) denotes the right-hand side in (1.32). Because F (U, U ′)
belongs to L1

loc(R), we conclude that A(u)U ′′ also belongs to L1
loc(R). Since the determinant (1.33) in

nonzero on Ω(u), we deduce that (A(u))−1 ∈ L∞
loc(Ω(u)), and thus U ′′ = (A(u))−1F (U, U ′) ∈ L1

loc(Ω(u)).
Therefore, U ′ ∈ W 1,1

loc (Ω(u)). Using that, by the Sobolev embedding theorem, the functions W 1,1
loc (Ω(u))

are continuous, we conclude that u′ is in C(Ω(u)). This implies that F (U, U ′) ∈ C(Ω(u)), so u is twice
continuously differentiable in Ω(u). The smoothness follows using a bootstrap argument.
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If |uc,κ(x)|2 ̸= 1/(2κ), for all x ∈ R, then by Lemma 4.2, uc,κ ∈ C2(R) so we can refer to Theorem 1.1
to determine uc,κ. Hence, from now on, we always assume Ω(uc,κ) ̸= R (or equivalently Γ(uc,κ) ̸= ∅) in
an attempt to describe singular solutions to (TW(c, κ)). To analyze the behavior at infinity of singular
solutions (see Theorem 1.4), we introduce the following variant of equations (2.9)–(2.10). Let uc,κ ∈ X (R)
be a singular solution to (TW(c, κ)) such that Γ(uc,κ) is bounded, and define the real numbers ac,κ, bc,κ

according to (1.34). Repeating the arguments of Proposition 2.5, we deduce that ηc,κ = 1−|uc,κ|2 satisfies
the following ODEs:

(1 − 2κ + 2κηc,κ)η′′
c,κ + κ(η′

c,κ)2 = −3η2
c,κ + (2 − c2)ηc,κ, in (−∞, ac,κ) ∪ (bc,κ, ∞), (4.3)

(1 − 2κ + 2κηc,κ)(η′
c,κ)2 = η2

c,κ(2 − c2 − 2ηc,κ), in (−∞, ac,κ) ∪ (bc,κ, ∞). (4.4)

In particular, the sign constraints in equation (4.4) imply some conditions on (c, κ), which we discuss in
the following lemma.

Lemma 4.3. Let (c, κ) ∈ [0, ∞) × R and assume that κ ̸= 1/2. If uc,κ ∈ X (R) satisfies (TW(c, κ)) and
Γ(uc,κ) ̸= ∅, then we necessarily have (c, κ) ∈ D̃.

Proof. Let us remove the subscripts of uc,κ. We saw above that since κ ̸= 1/2, Γ(u) is bounded, so that
the function η = 1 − |u|2 satisfies (4.3)–(4.4). By contradiction, assume that (c, κ) ∈ ([0, ∞) × R)\D̃.
Then, since κ ̸= 1/2, we have either (c, κ) ∈ D2 or (c, κ) meet the assumption of Corollary 3.1. By
definition of Γ(u), if κ ≤ 0, then Γ(u) = ∅, therefore (c, κ) meet the assumption of Corollary 3.1. Using
ideas along the same lines as in Corollary 3.1, we infer that there exists x0 > b such that (2 − c2 −
2η(x0))/(1 − 2κ + 2κη(x0)) < 0, which further implies that (η′(x0))2 < 0 in (4.4), a contradiction. We
conclude that (c, κ) ∈ D̃.

We are now in a position to prove Theorem 1.2, using the previous lemmas.

Proof of Theorem 1.2. Let (c, κ) /∈ (D̃∪C) and assume by contradiction that Γ(uc,κ) ̸= ∅. Since (c, κ) /∈ C,
we can apply Lemma 4.3 to deduce that (c, κ) ∈ D̃, contradicting the assumptions on (c, κ). Thus
Γ(uc,κ) = ∅, and using Lemma 4.2, we deduce that uc,κ ∈ C2(R), so that the conclusion follows from
Theorem 1.1.

Let (c, κ) ∈ D̃, and a ≤ b be given real numbers. We discuss the behavior of any solution η to (4.3)–
(4.4) with ac,κ = a and bc,κ = b reaching the critical value at the boundaries η(a−) = η(b+) = 1−1/(2κ).
We will show later, in the proof of Theorem 1.4, that such a solution is uniquely determined using (1.39)
and satisfies η(x) = η(a − x + b), for all x < a. Therefore, in the next result, we consider only the
properties of the function on (b, ∞). Most of the ideas in this result come from Corollary 3.4.

Lemma 4.4. Let (c, κ) ∈ D̃ and assume that one of the following conditions holds:

(i) (c, κ) ∈ D1 ∪ B− or (ii) (c, κ) ∈ D3 ∪ B+.

Suppose that η ∈ C2((−∞, a) ∪ (b, ∞)) satisfies (2.1), (4.3)–(4.4), and the boundary conditions

η(a−) = η(b+) = 1 − 1/(2κ).

Then η ∈ C∞((b, ∞)), we have η < 0 and η′ > 0 on (b, ∞) in case (i), while in case (ii), η > 0 and
η′ < 0 on (b, ∞). In addition, if (c, κ) ∈ D1 ∪ D3, for all j ∈ N, there exist C, C0 > 0 such that

|∂j
xη(x)| ≤ C0e−C1(|x|−b−1), for all |x| ≥ b + 1,

Finally, if (c, κ) ∈ B− ∪ B+, for all j ∈ N, there exist C0, C1 > 0 such that

|∂j
xη(x)| ≤ C0

(x − b − 1 + C1)2+j
, for all |x| ≥ b + 1. (4.5)

Proof. We place ourselves in case (i). We prove that the function η does not vanish in (b, ∞) using the
same ODE argument as in Corollary 3.4. Then, since η(b+) < 0, we get η < 0 in (b, ∞). Using condition
(2.1), there must exist R > b such that 1 − 1/(2κ) < η(R) < 0, hence by the mean value theorem,
there exists b < x0 < R such that η′(x0)(R − b) = η(R) − 1 + 1/(2κ). We conclude that η′ > 0 is the
neighborhood of x0. Now suppose that η′(x̃) = 0, for some x̃ ∈ (b, ∞). From (4.4), we infer that η(x̃) = 0
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or η(x̃) = 1 − c2/2 ≥ 0, which is absurd since η cannot vanish in (b, ∞). Therefore, η′ > 0 in (b, ∞).
Proceeding along the same lines as in Corollary 3.4 we recover the exponential decay of η if c ̸=

√
2. It

remains to prove (4.5) for (
√

2, κ) ∈ B−. In this case, since η < 0 and η′ > 0 in (b, ∞), we obtain using
(4.4)

η′(x) =
√

−2η3(x)√
1 − 2κ + 2κη(x)

, for all x > b. (4.6)

Thus η′(x) ≥
√

−2η3(x)/
√

1 − 2κ, for all x ≥ b + 1, and we obtain (4.5) for j = 0 by integrating this
inequality. We get (4.5) for higher order derivatives using (4.6) for j = 1, and differentiating (4.3) with
respect to x, together with an induction argument for j ≥ 2. Case (ii) is analogous, bearing in mind that
η(b+) = 1 − 1/(2κ) > 0, so that η > 0 and η′ < 0 in (b, ∞).

We now prove an adapted version of Lemma 3.5 to the functions (1.35)–(1.38), using the same argu-
ments.

Lemma 4.5. The functions fc,κ, gκ, g̃κ and hc,κ are well-defined. Moreover,
(i) fc,κ is increasing, belongs to C∞(T◦

κ) ∩ C(Tκ), and

fc,κ(1 − 1/(2κ)) = 0, lim
y→0−

fc,κ(y) = ∞, f ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ T◦

κ. (4.7)

(ii) gκ is increasing, belongs to C∞(T◦
κ) ∩ C(T◦

κ), and

gκ(1 − 1/(2κ)) = 0, lim
y→0−

gκ(y) = ∞, g′
κ(y) = −1

y

√
1 − 2κ + 2κy

−2y
, for y ∈ T◦

κ. (4.8)

(iii) g̃κ is decreasing, belongs to C∞(J◦
κ) ∩ C(Jκ), and

lim
y→0+

g̃κ(y) = ∞, g̃κ(1 − 1/(2κ)) = 0, g̃′
κ(y) = −1

y

√
1 − 2κ + 2κy

−2y
, for y ∈ Jκ. (4.9)

(iv) hc,κ is decreasing, belongs to C∞(J◦
κ) ∩ C(J◦

κ), and

lim
y→0+

hc,κ(y) = ∞, hc,κ(1 − 1/(2κ)) = 0, h′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ J◦

κ. (4.10)

Consequently, the functions in (1.35)–(1.38) are injective and their inverse lie in C∞(T◦
κ)∩C(Tκ) in cases

(i)–(ii) (respectfully in C∞(J◦
κ) ∩ C(Jκ) in cases (iii)–(iv)).

Proof. For case (i), it can be proved just as in Lemma 3.5 that the square roots are well-defined for all
y ∈ T◦

κ. The only difference between the formula of fc,κ and Fc,κ given by (1.22), is the inversion of the
argument in atanh. Here, we have y(c2κ−1) > 0, which is equivalent to the condition (1−2κ)(2−c2−2y) >
(2 − c2)(1 − 2κ + 2κy) > 0. Therefore, the atanh in fc,κ is well-defined. Moreover, we have for all y ∈ T◦

κ,

d

dy

(
atanh

(√ (2 − c2)(1 − 2κ + 2κy)
(1 − 2κ)(2 − c2 − 2y)

))
= −

√
(1 − 2κ)(2 − c2)

2y
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

We refer to Lemma 3.5 for the formula of the derivative of the other terms in fc,κ. The other cases are
analogous to (i).

We are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that uc,κ ∈ C∞((−∞, ac,κ) ∩ (bc,κ, ∞)) with −∞ < ac,κ ≤ bc,κ < ∞ and
that ηc,κ satisfies (4.3)–(4.4). Without loss of generality, we assume that bc,κ = 0 and we set a = ac,κ.
Let us treat the case (c, κ) ∈ D1, using Lemma 4.4, we get 1 − 2κ < ηc,κ(x) < 0, (i.e. ηc,κ(x) ∈ T◦

κ) for
all x > 0 and that η′

c,κ > 0 for all x > 0. From this and equation (4.4), we have in the fashion of (3.9)

η′
c,κ(x)

ηc,κ(x)

√
1 − 2κ + 2κηc,κ(x)
2 − c2 − 2ηc,κ(x) = −1, for all x > 0. (4.11)

27



Integrating (4.11) from ε to x and taking the limit as ε → 0, we obtain from (4.7) that fc,κ(ηc,κ(x)) = x
for all x ≥ 0 and we obtain (1.39) by applying f−1

c,κ to both sides. Additionally, the symmetry formula
ηc,κ(x) = ηc,κ(a− x) holds for all x ≥ 0. Indeed, using ideas from Lemma 4.4, we can show that ηc,κ < 0
and η′

c,κ < 0 in (−∞, a). Thus, ηc,κ(a − x) ∈ Tκ, for all x ≥ 0, and also satisfies (4.11). Then, we infer
that

fc,κ(ηc,κ(a − x)) = fc,κ(η(x)) = x, for all x ≥ 0,

and we conclude by applying f−1
c,κ to the previous equation. Since 1 − 1/(2κ) < ηc,κ(x) < 0, we have

ηc,κ(x) < 1 for all x ∈ (−∞, a) ∪ (0, ∞). Hence, we recover uc,κ =
√

1 − ηc,κeiθc,κ with θ′
c,κ = cηc,κ/(2 −

2ηc,κ) in (−∞, a)∪ (0, ∞) using ideas similar to the ones in Corollary 2.3 adapted to intervals of the form
(−∞, a) ∪ (0, ∞). On the other hand, the limits of η′

c,κ as x → a−
c,κ and x → 0+ are obtained taking the

limit in (4.11) and using ηc,κ(x) = ηc,κ(a− x) for all x ≤ a. The general result for (c, κ) ∈ D̃ follows from
the same arguments because we can show that the formula (4.11) still holds in all cases. Notice that
formula (1.39) does not contradict the finite energy assumption on uc,κ. Indeed, using ideas along the
same line as in the proof of Proposition 2.7, we deduce that the condition u′

c,κ ∈ L2((−∞, a) ∪ ((0, ∞))
reduces to ηc,κ ∈ H1((−∞, a) ∪ ((0, ∞)). From the symmetry formula, this question further simplifies to
whether or not ηc,κ ∈ H1((0, ∞)). For all ε > 0 due to the exponential decay estimates in Lemma 4.4,
we have ηc,κ ∈ H1((ε, ∞)). Since ηc,κ in continuous in (0, ∞), we have ηc,κ ∈ L2((0, ε)), and, concerning
η′

c,κ, which is unbounded near 0, we get using equation (4.11),

∫ ε

0
η′(x)2dx = −

∫ ε

0
η′(x)η(x)

√
2 − c2 − 2η(x)

1 − 2κ + 2κη(x)dx. (4.12)

Performing the change of variable y = η(x), the integrability problem in (4.12) simplifies to the integra-
bility of s 7→ (

√
s)−1 near 0. Therefore, ηc,κ ∈ H1((−∞, a) ∪ ((0, ∞)) and u′

c,κ ∈ L2((−∞, a) ∪ ((0, ∞))
follows.

Properties of solution with two or more singular points

We are now interested in the behavior of a singular solution uc,κ ∈ X (R) in the interval (ac,κ, bc,κ). We
assume that this interval is nonempty, i.e. that card(Γ(uc,κ)) ≥ 2. If (c, κ) ∈ D̃ so that −∞ < ac,κ <
bc,κ < ∞, then from the variations of ηc,κ in (−∞, ac,κ) ∪ (bc,κ, ∞) (see the proof of Theorem 1.4) we
have

Z(uc,κ) ⊂ (ac,κ, bc,κ), and − ∞ < a0
c,κ < x0 < b0

c,κ < ∞, (4.13)

where a0
c,κ and b0

c,κ are the closest singular points to x0 ∈ Z(uc,κ) defined in (1.43). Notice that we omit
the dependence of a0

c,κ and b0
c,κ on x0 for notational simplicity. The following lemma establishes that if

κ = 1/2, then ac,κ = −∞ and bc,κ = ∞, so that there are infinitely many points in Γ(uc,κ) and (4.13)
still holds unless uc,κ is trivial.

Lemma 4.6. Let (c, κ) ∈ C. If u ∈ X (R) satisfies (TW(c, κ)) with κ = 1/2, then ac,1/2 = −∞ and
bc,1/2 = ∞. In particular |u(x)| = 1 for an infinite number of x ∈ R.

Proof. If Γ(u) = ∅, then from Lemma 4.2, we have u ∈ C2(R), and Proposition 3.2 yields that u is
the trivial solution. Now assume that Γ(u) ̸= ∅ so that ac,1/2 ≤ bc,1/2. By contradiction, if −∞ <
ac,1/2 ≤ bc,1/2 < ∞ , then η = 1 − |u|2 satisfies (4.3)–(4.4). In view of (2.1), the definition of bc,1/2
implies that η must reach a nonzero extremum at some x0 > bc,1/2 . Hence, ideas along the same
lines as in Proposition 3.2 yield η(x) = (1 − c2/2) cos2((x − x0)/

√
2), for all x > bc,1/2; in particular,

η(x0 + π/
√

2) = 0. This implies that b ≥ x0 + π
√

2, which is absurd. This proves that bc,1/2 = ∞, and
the proof of ac,1/2 = −∞ is analogous.

In the fashion of Proposition 2.5, we obtain near any local extremum x0 ∈ Z(uc,κ) a system of
equations similar to (2.9)–(2.10) satisfied by η = 1 − |uc,κ|2 in (a0

c,κ, b0
c,κ), making the analysis tractable.

Lemma 4.7. Let (c, κ) ∈ D̃ ∪ C. Consider u = uc,κ ∈ X (R) a nontrivial solution to (TW(c, κ)) with
card(Γ(uc,κ)) ≥ 2, so that there exists x0 ∈ Z(uc,κ) satisfying −∞ < a0

c,κ < x0 < b0
c,κ < ∞. Then,
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denoting η0 = η(x0) and K0 = |u′(x0)|2, we have u ∈ C∞((a0
c,κ, b0

c,κ)), and there exists K1 ∈ R such that
η = 1 − |u|2 satisfies in (a0

c,κ, b0
c,κ)

2(1 − 2κ + 2κη)η′′ + 2κ(η′)2 = P (η) + (η − η0)P ′(η), (4.14)
(1 − 2κ + 2κη)(η′)2 = (η − η0)P (η), (4.15)

where P (y) = −2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1, for all y ∈ R.

Proof. By simplicity, we fix x0 = 0 and we adapt arguments from Proposition 2.5 to obtain (4.14)–(4.15),
taking this time Rn = x0 = 0, for all n ∈ N. Writing uc,κ = u1 + iu2, we obtain similarly to (2.14)

(u1u′
2 − u′

1u2)(x) = c

2η(x) + K1, in (a0
c,κ, b0

c,κ), (4.16)

where K1 = (u1u′
2 − u′

1u2)(0) − cη0/2. We also get in the fashion of (2.16),

2|u′|2 = η2 + κ(η′)2 − η2
0 + 2K0, in (a0

c,κ, b0
c,κ). (4.17)

From u1u′′
1 + u2u′′

2 = c(u1u′
2 − u′

1u2) − |u|2(η + κη′′) and η′′ = −2(|u′|2 + u1u′′
1 + u2u′′

2), we recover
η′′ = −(η2 + κ(η′)2 − η2

0 + 2K0) − c2η − 2cK1 + 2|u|2(η + κη′′), which can be recast as

(1 − 2κ + 2κη)η′′ + κ(η′)2 = −3η2 + (2 − c2)η + η2
0 − 2K0 − 2cK1 in (a0

c,κ, b0
c,κ). (4.18)

Multiplying (4.18) by η′ and integrating from 0 to x we get, using (2.17),

(1 − 2κ + 2κη)(η′)2 = η2(2 − c2 − 2η) + (2η2
0 − 4K0 − 4cK1)η − (2 − c2)η2

0 + 4K0η0 + 4cK1η0,

which can be algebraically factorized into (4.15) due to the choice of integration bounds. From this
factorization, we deduce that (4.18) can be recast as (4.14) by differentiation of (4.15) with respect to
x.

Equations (4.14)–(4.15) imply constraints on P (η): By the intermediate value theorem, η reaches at
least once every number in I = (η0, 1 − 1/(2κ)). Thus, equation (4.15) yields

(y − η0)P (y)
1 − 2κ + 2κy

≥ 0, for all y ∈ I. (4.19)

We are in a position to prove Theorem 1.7. A consequence of this result is that the strict inequality in
(1.47) holds.

Proof of Theorem 1.7. The symmetry property follows from ODEs arguments along the same lines as in
Corollary 3.4. For the monotonicity of η in (x0, b0

c,κ), we assume without loss of generality that x0 = 0
and that η0 < 1 − 1/(2κ). Suppose by contradiction that η′(x) = 0 for some x ∈ (0, b0

c,κ) and let
x1 = inf{x > 0 : η′(x) = 0}. If x1 = 0, then there is an infinite sequence (xn) of zeros of η′ tending
to 0. This yields η′′(0) = 0, further implying that P (η0) = 0 so that η0 is an equilibrium of equation
(4.14), a contradiction to η(b0

c,κ) = 1 − 1/(2κ). Therefore, x1 > 0 and we necessarily have η(x1) ̸= η0,
otherwise Rolle’s theorem provides a contradiction to the minimality of x1. Hence, evaluating equation
(4.15) at x1, we get P (η(x1)) = 0. If η(x1) is a zero of P of multiplicity 2, notice that η(x1) is then
an equilibrium point of equation (4.14). Therefore, we can apply ODE arguments along the same lines
as in Corollary 3.4 to deduce that η ≡ η(x1) in (a0

c,κ, b0
c,κ), contradicting that η0 ̸= η(x1). Thus η(x1)

is a zero of P of multiplicity 1, and we denote by y1 the other root of P . By contradiction, if η0 is a
local maximum of η, then by definition of x1, we have η′ < 0 in (0, x1). In particular (η − η0) < 0 and
1 − 2κ + 2κη < 1 − 2κ + 2κη0 < 0 in (0, x1), therefore the condition (4.19) yields P (η) ≥ 0 in (0, x1). We
deduce by analyzing the sign of P that y1 > η(x) > η(x1), for all x ∈ [0, x1). Notice that the inequality
y1 > η is strict because otherwise, η0 would be a root of multiplicity 2 in the right-hand side of (4.15),
thus an equilibrium point of (4.14), which contradicts that η(b0

c,κ) ̸= η0.
Since η(b0

c,κ) = 1 − 1/(2κ) > η0, using the intermediate value theorem, there exists x2 ∈ (x1, b0
c,κ)

such that η0 < η(x2) < y1 so that P (η(x2)) > 0. Since x2 < b0
c,κ, we have 1 − 2κ + 2κη(x2) < 0, therefore

(4.19) does not hold for y = η(x2). We deduce that η0 is not a local maximum of η. Then, we can assume
that η0 is a local minimum. Analogously to the previous case, we have η′ > 0 and η−η0 > 0 in (0, x1). By
the definition of b0

c,κ, we have η(x1) < 1 − 1/(2κ), and using the intermediate value theorem, we can find
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x2 ∈ (x1, b0
c,κ) satisfying η(x1) < η(x2) < 1 − 1/(2κ). Since η′ > 0 in (0, x1), we obtain 1 − 2κ + 2κη < 0

in (0, x1). Condition (4.19) implies that P (η(x)) ≤ 0, for all x ∈ (0, x1), and P (η(x2)) ≤ 0, therefore the
analysis of sign of P gives η(x) ≤ η(x1) < y1 ≤ η(x2). Once again, by the intermediate value theorem,
there exists x1 ≤ x3 ≤ x2 satisfying η(x1) < η(x3) < y1. This relation implies that η(x3) − η0 > 0, and,
η(x3) < y1 ≤ η(x2) yields 1 − 2κ + 2κη(x3) < 0. Since P (η(x3)) > 0, condition (4.19) is not fulfilled for
y = η(x3) yielding a contradiction. We conclude that η′ ̸= 0 in (0, b0

c,κ). By the mean value theorem, we
deduce that η′ > 0 in (0, b0

c,κ).
In the case η0 > 1 − 1/(2κ), the result follows using the same ideas.

By the monotonicity of ηc,κ, we can check that if u(x0) = 0, then |uc,κ| > 0 in (x0, b0
c,κ), so that,

using Remark 2.4, we can lift uc,κ in (x0, b0
c,κ) as

uc,κ =
√

1 − ηc,κeiθc,κ with θ′
c,κ = cηc,κ

2(1 − η) + K, (4.20)

for some K ∈ R. We will use this fact in the proof of Proposition 1.3, as follows.

Proof of Proposition 1.3. Assume by contradiction that uc,κ(0) = 0 and c > 0. If card(Γ(uc,κ)) < 2, this
contradicts the explicit formula of uc,κ given in Theorems 1.1 and 1.4. Hence, card(Γ(uc,κ)) ≥ 2 and we
infer that 0 ∈ Z(uc,κ). We deduce that (4.20) holds, with η = ηc,κ solution to (4.14)–(4.15) in (0, b0

c,κ).
The contradiction comes from the fact that u′

c,κ cannot be square integrable near 0. Indeed, from (4.20),

u′
c,κ = eiθ

( η′

2
√

1 − η
+ i

cη

2
√

1 − η
+ iK

√
1 − η

)
, in (0, b0

c,κ).

Since u′
c,κ ∈ L2(R), we deduce that cη/(2

√
1 − η) + K

√
1 − η ∈ L2((0, b0

c,κ)), which implies that∫ b0
c,κ

0

c2η2

4(1 − η) < ∞. (4.21)

To compute (4.21), we proceed as in (4.12). Precisely, using (4.15) and inequality (1.47), we have

η′(x)

√
1 − 2κ + 2κη

(η − 1)P (η) = −1, (4.22)

so plugging (4.22) into (4.21), and performing the change of variable y = η(x), we obtain∫ 1

1−1/(2κ)

cy2

4(1 − y)

√
1 − 2κ + 2κy

(1 − y)P (y) < ∞.

However, this is a contradiction with the non-integrability of (1 − y)−3/2 near 1. We conclude that if
c > 0, then infx∈R |uc,κ(x)| > 0.

Now suppose that c = 0 and u0,κ(0) = 0. We observe a weaker correlation between the two real
equations in (1.32), indeed, if u′

0,κ(0) = reiϕ for some r ≥ 0 and ϕ ∈ R, then the Cauchy–Lipschitz
theorem yields that ũ = u0,κe−iϕ must coincide with the local real solution to the simpler problem (3.22)
with initial condition (0, r). Thus ũ(x) ∈ R, for all x ∈ (−R, R), for some R > 0. Assume by contradiction
that there exists x̃ > 0 such that Im(ũ)(x̃) ̸= 0 and let x0 = sup{τ > 0 : Im(ũ) = 0, in (0, τ)}. By
continuity, we infer that x0 ≤ x̃ and that Im ũ(x0) = 0. If ũ(x0) = 0, then the latter argument applies so
that there exists ϕ0 ∈ R such that e−iϕ0 ũ ∈ R in (x0 − R0, x0 + R0), for some R0 > 0. But then, since
ũ(x) ∈ R, for all 0 < x < x0, we conclude that ϕ0 = 2lπ for some l ∈ N, contradicting the definition of
x0. We deduce that ũ(x0) ̸= 0 so that we can lift ũ = ρeiθ in a neighborhood of x0 with θ′ = K for some
K ∈ R by Remark 2.4. Once again, since ũ(x) ∈ R for all 0 < x < x0, the constant K must be 0, which
further implies that θ is constant in the neighborhood of x0. Therefore, ũ remains real-valued in the
neighborhood of x0, contradicting its definition. Consequently, there is no x̃ > 0 such that Im ũ(x̃) ̸= 0.
The same holds for all x < 0 with similar arguments, which means that ũ is real-valued. If c = 0, and
uc,κ ∈ N X (R), the proof is easier since we get from Corollary 2.3 that we can lift uc,κ = ρeiθ with θ′ ≡ 0
in R.
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In the setting of Lemma 4.7, the next result establishes that the constant K1 in (4.14)–(4.15) must
be zero.

Lemma 4.8. Let (c, κ) ∈ D̃∪C and u = uc,κ ∈ X (R) be a solution to (TW(c, κ)) satisfying card(Γ(uc,κ)) ≥
2 so that there exists x0 ∈ Z(uc,κ) and Lemma 4.7 applies. Then η = 1 − |u|2 satisfies (4.14)–(4.15) near
x0 and the constant K1 in those equations must be 0.

Proof. If u ∈ N X (R), then we can lift u =
√

1 − ηeiθ with θ′ = cη/(2 − 2η) by Corollary 2.3. Clearly the
expression for K1 = (u1u′

2 − u′
1u2)(x0) − cη(x0)/2 can be recast as

K1 = (1 − η(x0))θ′(x0) − cη(x0)/2, (4.23)

so that K1 = 0. On the other hand, if u vanishes at some point, then by Proposition 1.3, we must have
c = 0, and we can find ϕ ∈ R so that eiϕu(x) ∈ R for all x ∈ R. If u(x0) = 0 then we get K1 = 0,
whereas if u(x0) ̸= 0 we can lift u =

√
1 − ηeiθ near x0, so that we can rewrite K1 with (4.23) and c = 0.

We must have θ′ = 0 in the neighborhood of x0 otherwise contradicting the fact that eiϕu(x) ∈ R for all
x ∈ R. This lets us conclude that K1 = 0

We deduce that (1.47) simplifies to

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 < 0, for all y ∈ [η0, 1 − 1/(2κ)). (4.24)

We now prove Proposition 1.6 stating that unless κ = 1/2, uc,κ cannot be of constant intensity in
subintervals (a, b) ⊂ (ac,κ, bc,κ). Indeed, assume that |uc,κ|(x) = 1/(2κ) for all x ∈ (a, b), then uc,κ ̸= 0
in (a, b) so that we can apply the same reasoning as in Remark 2.4 to recover that uc,κ = ρeiθ in (a, b)
with θ′ ≡ θ̇0 ∈ R and ρ ≡ 1/

√
2κ satisfying

(θ̇0)2 + cθ̇0 + ρ2 − 1 = 0. (4.25)

Although one can build local solutions in (a, b), choosing adequate θ̇0, we show that global solutions add
constraints on θ̇0 preventing this behavior.

Proof of Proposition 1.6. On one hand, if uc,κ ∈ N X (R), then we can write u = ρeiθ with θ and ρ
satisfying (2.3)–(2.4). Setting ρ ≡ 1/

√
2κ in (2.3) yields θ̇0 = c(κ − 1/2), which replaced in (4.25) implies

that (κ − 1/2)(c2(κ − 1/2) + c2 − 1/κ) = 0. Since (c2(κ − 1/2) + c2 − 1/κ) ̸= 0, for all (c, κ) ∈ D̃, we
deduce that κ = 1/2.

On the other hand, if uc,κ(x0) = 0 for some x0 ∈ R, we deduce by Proposition 1.3 that c = 0 so that
κ ≤ 1/2. Indeed, if κ > 1/2 we deduce that |u(x)|2 = 1 for all x ∈ R by Theorem 1.2, in particular
|u(x)| ≠ 1/(2κ) for all x ∈ R. Thus, equation (4.25) writes (θ̇0)2 + 1/(2κ) − 1 = 0, which further implies
that κ = 1/2 and θ̇0 = 0.

4.2 Construction of singular solutions
We are now in a position to show the existence of singular solutions. We start with the case card(Γ(uc,κ)) =
1, i.e. the cuspons in Corollary 1.5, constructed using the functions in Theorem 1.4. To show that the
cuspons defined by parts is indeed a global weak solution to (TW(c, κ)), we use the following lemma,
which provides sufficient conditions for gluing two strong solutions into a weak solution.

Lemma 4.9. Let c ≥ 0 and k ∈ R \ {0}, and let I1, I2 be two nonempty disjoint open intervals such that
I1 and I2 share one bound a ∈ R, i.e. cl(I1) ∩ cl(I2) = {a}, where cl is the usual closure on R, and set
I = I1 ∪ I2 ∪ {a}. Suppose that u ∈ C(I) ∩ C2(I1 ∪ I2) is a solution to (TW(c, κ)) on I1 ∪ I2, and assume
that |u(a)|2 = 1/(2κ), so that we can write u =

√
1 − ηeiθ with η < 1 in (a − 2δ, a + 2δ) for some δ > 0.

If θ′ has a well-defined limit as x → a, and if the function η belongs to H1((a − δ, a + δ)), with

lim
x→a

η′(x)(1 − 2κ + 2κη(x)) = 0, (4.26)

then u is a weak solution to (TW(c, κ)) on I, i.e. u satisfies (1.15) for every ϕ ∈ C∞
0 (I;C).

Remark 4.10. It is enough to assume that the limit in (4.26) exists, but this limit is going to be equal
to zero in all our applications.
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Proof. Since we are assuming that u lies in C(I) ∩ C2(I1 ∪ I2), we deduce that θ is also is continuous on I.
In addition, since θ′ has a limit as x → a, we infer that θ′ is bounded in (a − δ, a + δ). Therefore, using
that

u′(x) = eiθ(x)

2
√

1 − η(x)
(

− η′(x) + i(1 − η)θ′(x)
)
, (4.27)

we conclude that u′ ∈ L2((a − δ, a + δ)).
To check that u is a weak solution, let us take without loss of generality a = 0, I1 = (r1, 0) and

I2 = (0, r2), for some −∞ ≤ r1 < 0 < r2 ≤ ∞, 0 < ε < δ small, and Iε = I \ (−ε, ε), so that
u ∈ C2(cl(Iε)). Taking φ ∈ C∞

0 (I;C), and integrating by parts, we deduce that

Re
∫

Iε

(icu′ + uη)φ̄ − u′φ̄′ + 2κ⟨u, u′⟩(uφ̄)′ = Re
∫

Iε

(icu′ + uη + u′′ − 2κu(|u′|2 + ⟨u, u′′⟩))φ̄

+ Re
[

− u′φ̄ + 2κ⟨u, u′⟩(uφ̄)
]x=−ε

x=ε
(4.28)

Since u ∈ Ḣ1((−ε, ε))∩C(I), we can use the dominated convergence theorem to conclude that the integral
in the left-hand side of (4.28) converges to the integral in I, as ε → 0. On the other hand, the integral
in the right-hand side of (4.28) vanishes because u is a pointwise solution to (TW(c, κ)) on Iε.

We verify now that the last term in (4.28) goes to zero, as ε → 0. Using (4.27), we have for all
x ∈ [−ε, ε] with x ̸= 0

−u′(x) + 2κ⟨u(x), u′(x)⟩u(x) = eiθ

2
√

1 − η(x)

(
η′(x)(1 − 2κ − 2κη(x)) − i(1 − η(x))θ′(x)

)
.

Finally, invoking (4.26), the continuity of η and θ and the fact that θ′ has a limit as x → 0, we conclude
that the last term in (4.28) goes to zero, as ε → 0, which completes the proof.

Remark 4.11. This result can be adapted to handle strong solution in
⋃

j∈J Ij where (Ij)j∈J is a finite
family of open intervals touching at one of their bounds and to recover a weak solution in cl(

⋃
j∈J Ij)

Applying this result we deduce Corollary 1.5, and also Proposition 1.9.

Proof of Corollary 1.5. Since Γ(uc,κ) = {0}, we deduce from Theorem 1.4 that ac,κ = bc,κ = 0, and that,
up to phase shift, uc,κ must be given by uc,κ =

√
1 − ηc,κeiθc,κ , where ηc,κ is the function in (1.39), and

θc,κ(x) = c
2
∫ x

0
ηc,κ(y)

1−ηc,κ(y) . In the course of the proof of Theorem 1.4, we established that uc,κ ∈ X (R), thus
it remains to verify that uc,κ is indeed a weak solution. Since ηc,κ satisfies (4.4) in R\{0}, we can check
that (4.26) holds multiplying (4.4) by 1 − 2κ + 2κηc,κ, and taking the square root of both sides of the
equation. It is straightforward to check that θc,κ is well-defined and that u ∈ C(R) ∩ C2(R\{0}) satisfies
(TW(c, κ)) in R\{0} using ideas similar to the ones in Proposition 2.7. Finally, θ′

c,κ tends to cκ(1 − 2κ),
as x → 0, therefore we can apply Lemma 4.9 to conclude.

Proof of Proposition 1.9. By construction u
(j)
c,1/2 is continuous R, is a strong solution in Ij by Proposi-

tion 3.2, and is a constant of modulus 1 outside Ij . Thus, it is simple to check that u
(j)
c,1/2 is a global

weak solution by invoking Lemma 4.9.

We focus now on the construction of solutions satisfying card(Γ(uc,κ)) ≥ 2. Thus, we need to find
solutions to (4.14)–(4.15) satisfying the boundary condition η(b0

c,κ) = 1 − 1/(2κ), for some b0
c,κ ∈ R. We

show now that such solutions exist when the numbers η0 and K0 satisfy (4.24).

Proposition 4.12. Let (c, κ) ∈ D̃ ∪ C. For any η0 ≤ 1, with η0 ̸= 1 − 1/(2κ), and any K0 ≥ 0 satisfying
(4.24), there exist a nonempty interval (a0

c,κ, b0
c,κ) containing 0, and a unique solution η to (1.44)–(1.45),

with K1 = 0, on (a0
c,κ, b0

c,κ), such that η(0) = η0. Moreover a0
c,κ = −b0

c,κ, the function η is even in
(a0

c,κ, b0
c,κ), and monotonous in (0, b0

c,κ). Also η belongs to H1(a0
c,κ, b0

c,κ)) ∩ C([a0
c,κ, b0

c,κ]), with

η(a0
c,κ) = η(b0

c,κ) = 1 − 1/(2κ). (4.29)
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Proof. Let us assume first that η0 < 1 − 1/(2κ). We look for a solution η in (0, b0
c,κ) with η(0) = η0 and

η((b0
c,κ)−) = 1 − 1/(2κ), with b0

c,κ > 0 to be determined. Let y ∈ [η0, 1 − 1/(2κ)], and

F (y) =
∫ y

η0

f(s)ds, where f(s) = −

√
1 − 2κ + 2κs

(s − η0)P (s) , for all s ∈ (η0, 1 − 1/(2κ)).

Using condition (4.24), which can be recast as P (y) < 0 in [η0, 1 − 1/(2κ)) with P given by (1.46), we
see that f is a well-defined smooth function in (η0, 1 − 1/(2κ)). Also, f(s) = O((s − 1 + 1/(2κ))−1/2), as
s → 1 − 1/(2κ), and since P (η0) < 0, it follows that f(s) = O((s − η0)−1/2) as s → η0, so that f is locally
integrable in (η0, 1 − 1/(2κ)). We deduce that F ∈ C∞((η0, 1 − 1/(2κ))) is a well-defined function, which
we can extend by continuity to [η0, 1 − 1/(2κ)], with F (η0) = 0 and F (1 − 1/(2κ)) := b0

c,κ.
Since F ′(y) < 0, for all y ∈ (η0, 1 − 1/(2κ)), we deduce that F is bijective, and its inverse function

F = F −1 lies in C([0, b0
c,κ])∩C∞((0, b0

c,κ)). In addition, F can be extended by reflection to [−b0
c,κ, b0

c,κ] as
an even function, that we still denote by F . This extension satisfies Im(F) = [η0, 1−1/2κ] with F(0) = η0
and F(±b0

c,κ) = 1 − 1/(2κ). Moreover, we can prove, using ideas similar to the ones in Lemma 3.6, that
F ∈ C∞((−b0

c,κ, b0
c,κ)). Letting η = F , we get η′ = 1/f(η) in (−b0

c,κ, b0
c,κ). We see that this imply that

η is not only a solution to (4.15), but also satisfies (4.14) in (−b0, b0)\{0}. Since η ∈ C∞((−b0
c,κ, b0

c,κ)),
it must satisfy (4.14) at x = 0, by a continuity argument. It remains to check that η ∈ H1((a0

c,κ, b0
c,κ)).

Since η is a continuous function, we just need to show that η′ is square integrable near b0
c,κ to conclude.

Indeed, since ∫ bc,κ

0
(η′)2 = −

∫ b0
c,κ

0
η′

√
(η − η0)P (η)
1 − 2κ + 2κη

, (4.30)

the change of variable y = η in (4.30), yields∫ bc,κ

0
(η′)2 ≤

∣∣∣∣∣
∫ 1−1/(2κ)

η0

√
(y − η0)P (y)
1 − 2κ + 2κy

∣∣∣∣∣ < ∞,

where we used that y 7→ (1 − 2κ + 2κy)−1/2 is integrable near 1 − 1/(2κ). This concludes the existence
part of the result.

For the uniqueness, let η̌ be another solution in (a0
c,κ, b0

c,κ) such that η̌(0) = η0. Then, by (4.15) we
obtain (η̌)′(0) = 0. Thus, it also satisfies (4.14) with the same initial condition at x = 0 as η. By the
Cauchy–Lipschitz theorem, we deduce that η̌(x) = η(x) for all x ∈ (a0

c,κ, b0
c,κ) The same ideas apply to

treat the case η0 > 1 − 1/(2κ).

Inspired by Corollary 2.7, we prove now that getting a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ)) in
(a0

c,κ, b0
c,κ) from η solution to (4.14)–(4.15), is equivalent to

K0 = (cη0)2/(4 − 4η0). (4.31)

In this manner, condition (4.24) reduces to (1.48).

Proposition 4.13. Let (c, κ) ∈ D̃ ∪ C. Assume that η0 < 1, with η0 ̸= 1 − 1/(2κ), and K0 ≥ 0
fulfill (4.24). If b0

c,κ > 0 and η ∈ C∞((−b0
c,κ, b0

c,κ)) are given by Proposition 4.12, then the function
u =

√
1 − ηeiθ defined in (1.50) satisfies (TW(c, κ)) if and only if K0 = c2η2

0/(4 − 4η0). Moreover, this
is, up to phase shift, the unique C2((−b0

c,κ, b0
c,κ))-solution to (TW(c, κ)) such that 1 − |u|2(0) = η0 and

θ′(0) = cη0/(2 − 2η0).

Proof. Using (4.27) together with the formula for θ′ in (1.50), we can compute the left-hand side of
(TW(c, κ)). A direct verification yields that the imaginary part is zero. On the other hand, the real part
writes

−c
√

1 − ηθ′ − η′′

2
√

1 − η
(1 − 2κ + 2κη) − (η′)2

4(1 − η)3/2 − (θ′)2√1 − η − η
√

1 − η. (4.32)

We can factorize (−4(1 − η)3/2)−1 in (4.32) and use consecutively equations (4.14)–(4.15) to remove
respectively the term in η′′ and the terms in (η′)2. Then, we infer that, since (1 − η) does not vanish in
(−b0

c,κ, b0
c,κ), formula (4.32) is zero if and only if

2c2η − c2η2 + (1 − η0)P (η) + (η − η0)(1 − η)P ′(η) − 4η(1 − η)2 = 0, (4.33)
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where P is given by (1.46) with K1 = 0. In addition, when expanding all the terms in the left-hand side
of (4.33), we see that (4.33) reduces to the identity (1 − η0)P (0) − η0P ′(0) = 0. Thus, we check that
(4.32) is zero if and only if (4.31) holds.

Let us prove the uniqueness. Assume that ǔ ∈ C2((−b0
c,κ, b0

c,κ)) is another solution that can be lifted
near 0, ǔ =

√
1 − η̌ exp(iθ̌), with η̌(0) = η0 and θ̌′(0) = cη0/(2 − 2η0). Then, by Lemma 4.7 and the

condition (4.31) for K0, we deduce that η and η̌ both satisfy (4.14)–(4.15). From Proposition 4.12, we
obtain η̌ = η in (−b0

c,κ, b0
c,κ), thus we can lift ǔ in (−b0

c,κ, b0
c,κ). Using the latter identity and Remark 2.4,

(or equivalently using (4.16)), we check that θ̌′ satisfies the same equation as θ′ in (1.50) in (a0
c,κ, b0

c,κ),
therefore θ̌ = θ + ϕ, which completes the proof.

In the case c = 0, we can also obtain a local solution to (TW(c, κ)) vanishing at the origin (so that
η0 = 1), using ideas similar to the ones in the proof of Theorem 1.1.

Proposition 4.14. Let c = 0 and 0 < κ ≤ 1/2. Assume that η0 = 1 and K0 ≥ 0 are real numbers so that
(4.24) holds. If b0

0,κ > 0 and η ∈ C∞((−b0
0,κ, b0

0,κ)) are given by Proposition 4.12, then the real-valued
function u(x) = ±

√
1 − η(x) for all ±x ∈ [0, b0

0,κ) defined in (1.51) is, up to phase shift, the unique
C2((b0

0,κ, b0
0,κ))-solution to (TW(c, κ)) with c = 0 such that u(0) = 0 and |u′(0)|2 = K0.

Proof. Using the Cauchy–Lipschitz theorem, define ũ ∈ C∞((−R, R)) to be the local real solution of
equation (3.22), with initial conditions ũ(0) = 0 and ũ′(0) =

√
K0, for some R > 0. Note that ũ is a local

solution to (TW(c, κ)) with c = 0 such that 0 ∈ Z(ũ).
Then, following computations along the same lines as in Lemma 4.7, we infer that η̃ = 1−|ũ|2 satisfies

(4.14)–(4.15) with η0 = 1 and K0 = (u′(0))2 (and K1 = 0). By Proposition 4.12, we obtain η̃ = η in
I = (−b0

0,κ, b0
0,κ) ∩ (−R, R). We deduce that |ũ| =

√
1 − η in I. Since ũ′(0) > 0, we see that ũ is negative

and then becomes positive in the neighborhood of 0. Therefore, ũ and u coincide in I. This yields that
ũ and ũ′ are bounded and η̃ does not reach 1 − 1/(2κ) in I if R < b0

0,κ. Thus, we can assume that
the local solution ũ exist in (−R, R) with R ≥ b0

0,κ, which further implies that u satisfies (TW(c, κ)) in
(−b0

0,κ, b0
0,κ) with c = 0.

To prove uniqueness, suppose that ǔ is another solution in (−b0
c,κ, b0

c,κ). Then by assumption, ǔ

satisfies the initial value problem associated to (TW(c, κ)) with ǔ(0) = 0 and ǔ′(0) = eiϕ
√

K0, for some
ϕ ∈ R. Hence e−iϕǔ satisfies (TW(c, κ)) with the same initial conditions as u, therefore ǔ = u, by the
Cauchy–Lipschitz theorem.

We can extend these local solutions to R by a cuspon-like solution outside (a0
c,κ, b0

c,κ) if (c, κ) ∈ D̃,
and by constants of modulus one if κ = 1/2. By Lemma 4.9, we recover a composite-wave (and a
compacton if κ = 1/2) satisfying (TW(c, κ)) weekly. For instance, this procedure yields the solutions in
Proposition 1.8. To obtain Proposition 1.8, we just need to show that (1.48) holds for η0 small enough

Proof of Proposition 1.8. Let η0 < 1 − 1/(2κ) and K0 = c2η2
0/(4 − 4η0), then condition (1.48) writes

P (y) < 0 for all y ∈ (η0, 1 − 1/(2κ)) where P is the quadratic polynomial in (1.46) with K1 = 0.
Computing the discriminant of P (y) yields

∆ = (2 − c2 − 2η0)2 + 8(2 − c2 − 2η0)η0

1 − η0
. (4.34)

We can check that ∆ → ∞ as η0 → −∞, thus there exists A1(c, κ) < 0 such that ∆ > 0 for all η0 < A1.
We show that 1 − 1/(2κ) is smaller than the smallest root of P , y1 = (2 − c2 − 2η0 −

√
∆)/4 for η0

small enough. Indeed, y1 = (2 − c2 − 2η0)(1 −
√

1 + 8η0/((2 − c2 − 2η0)(1 − η0)))/4 for η0 < 1 − c2/2
and we can check that y1 → 1 as η0 → −∞ so there exists A(c, κ) < A1(c, κ) such that 1 − 1/(2κ) < y1
for all η0 ≤ A(c, κ). This implies (1.48), so we can build the composite wave solution u by extending
the local solution in (−b0

c,κ, b0
c,κ) of Proposition 4.13 with a cuspon like solution or a constant solution if

κ = 1/2. The uniqueness follows from the uniqueness in Proposition 4.13 and from Theorem 1.4 ruling
out the behavior at infinity of the solutions. Finally, since P (1 − 1/(2κ)) < 0 we obtain (1 − |u|2)′ → ∞
as x → b0

c,κ using (1.45) so that N (u) = {−b0
c,κ, b0

c,κ}.

This ends the classification in the case card(Z(uc,κ)) < ∞. Moreover, the next result establishes that
the classification of solutions with 2 ≤ card(Γ(uc,κ)) < ∞ can be reduced to the cases already treated.
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Lemma 4.15. Let (c, κ) ∈ D̃ ∪ C and uc,κ be a solution to (TW(c, κ)). If 2 ≤ card(Γ(uc,κ)) < ∞, then
card(Z(uc,κ)) = card(Γ(uc,κ)) − 1.

Proof. We show that between two elements of Γ(uc,κ) lies exactly one element of Z(uc,κ). Let a < b be
two consecutive elements of Γ(uc,κ). By Lemma 4.2, uc,κ is smooth in (a, b). Since the intensity profile
ηc,κ = 1 − |uc,κ|2 satisfies ηc,κ(a) = ηc,κ(b) = 1 − 1/(2κ), we can apply Rolle’s theorem to deduce the
existence of x0 ∈ (a, b) such that η′(x0) = 0. Since Γ(uc,κ) ∩ (a, b) = ∅, we deduce that x0 ∈ Z and that
a = a0

c,κ and b = b0
c,κ. Using the monotonicity of ηc,κ in (a, b) established in Theorem 1.7, the conclusion

follows.

In conclusion, we classified all the solutions with card(Γ(uc,κ)) < ∞. On the other hand, by Propo-
sition 1.6, if κ ̸= 1/2 then Γ(uc,κ), is a closed bounded set of empty interior. Hence, it is possible that
Γ(uc,κ) contains a countable number of points (for instance, Γ(uc,κ) = {1/n : n ≥ 1}), or even uncount-
able many points (for instance, Γ(uc,κ) is the Cantor set). These cases are beyond the scope of this paper,
and we refer to [37] treating these kinds of considerations in the context of the Camassa–Holm equation.
Similarly, the question of whether Γ(uc,1/2) can be any closed subset of R is still open. Also, as explained
in the proof of Proposition 4.12, in general, the value of b0

c,κ with respect to the parameters is not explicit
and relies on our ability to compute the integral from η0 to 1 − 1/(2κ) of a function fc,κ,η0 . It is an open
problem to determine if there is a one-to-one correspondence between the maximal amplitude η0 and the
half-length b0

c,κ of the interval of existence.
We end this section with a comment on the regularity and decay of the cuspon solutions to mirror

Proposition 3.8 about the dark solitons. Let uc,κ be the cuspon solution given by Corollary 1.5, then,
from the regularity of the flow of ODEs, for all x ̸= 0, and all j ∈ N, ∂j

xη(·, ·, x) is smooth for all
(c, κ) ∈ D̃ where η(c, κ, x) = ηc,κ(x) (the derivatives in the c direction are in the sense of Dini for c =

√
2,

and κ ̸= 1/2). At x = 0, ηc,κ(0) = 1 − 1/(2κ) so η(·, ·, 0) is also smooth in D̃, however, ηc,κ(·) is not
continuously differentiable in 0. To summarize, we have η ∈ C∞(D̃ × R\{0}) and the following decay
estimates. Since the proof involves the same ideas as the ones in Proposition 3.8, we omit it.

Proposition 4.16. Let (c, κ) ∈ D1 ∪ D3. Consider uc,κ ∈ X (R) the singular solution given by Corol-
lary 1.5 and ηc,κ = 1 − |uc,κ|2 be its intensity profile. Then, for every multi-index α = (α1, α2, k) ∈ N3,
there exist R, C0, and C positive numbers such that for all |x| ≥ R

|Dα
c,κ,xηc,κ(x)| ≤ C0e−C(|x|−R), where Dα

c,κ,x = ∂α1
c ∂α2

κ ∂k
x . (4.35)

5 Energy and momentum of traveling waves
In this section, we compute explicit formulas the energy and the momentum of the dark solitons and the
cuspons given by Theorem 1.1 and Corollary 1.5 in N X (R), respectively. In this manner, we can check
the stability condition (1.53). For the sake of simplicity, we use the notations Eκ(c), pκ(c), Ẽκ(c) and
p̃κ(c), corresponding to the set of parameters D and D̃, as defined in (1.54) and (1.55).

The starting point is the following elementary result.

Lemma 5.1. For all (c, κ) ∈ D, we have

Eκ(c) =
∫ 0

1−c2/2
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, pκ(c) = c

2

∫ 0

1−c2/2

−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, (5.1)

where we exclude the value c = 0 for momentum. Similarly, for all (c, κ) ∈ D̃, we have

Ẽκ(c) =
∫ 0

1−1/(2κ)
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, p̃κ(c) = c

2

∫ 0

1−1/(2κ)

−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy. (5.2)

Proof. Since η is even, from (2.21) we obtain Eκ(u) =
∫∞

0 η2. Equation (3.21) yields Eκ(c) = −
∫∞

0 ηη′
√

1−2κ+2κη
2−c2−2η ,

so that the formula for Eκ(u) in (5.1) follows from a change of variables. Concerning pκ(c), for c > 0 we
have 1 − η > 0, therefore the momentum in (2.21) is well-defined, and the same argument gives us the
expression for pκ(c).

Noticing that the formulas in (2.21) are still valid for the cuspons, we obtain similarly the expressions
in (5.2), by using (4.11).
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It remains to compute the integrals in (5.1)–(5.2). To simplify our results, let us set the constants

Ac,κ = 3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1, Bc,κ = 3c2κ − 4κ − 1,

Cc,κ = c2κ − 4κ − 1, Dc,κ =
√

(1 − 2κ)(2 − c2), Lc,κ =
√

2 − c2

1 − 2κ
.

Proposition 5.2. (i) Let (c, κ) ∈ D1 ∪ D3, and set s = 1 if (c, κ) ∈ D1, and s = −1 if (c, κ) ∈ D3. Then

Eκ(c) = 1
16κ3/2

(
Ac,κ atan(

√
κLc,κ) − s

√
κBc,κDc,κ

)
, (5.3)

pκ(c) = c

4

(Cc,κ√
κ

atan(
√

κLc,κ) − sDc,κ

)
+ atan

(Lc,κ

c

)
, if c > 0. (5.4)

Ẽκ(c) = 1
16κ3/2

(
Ac,κ

[
atan(

√
κLc,κ) − π/2

]
− s

√
κBc,κDc,κ

)
, (5.5)

p̃κ(c) = c

4

(Cc,κ√
κ

[
atan(

√
κLc,κ) − π/2

]
− sDc,κ

)
+ atan

(Lc,κ

c

)
− π/2. (5.6)

(ii) For (c, κ) ∈ D2, with κ < 0, we have

Eκ(c) = −1
16|κ|3/2

(
Ac,κ atanh(

√
|κ|Lc,κ) −

√
|κ|Bc,κDc,κ

)
, (5.7)

pκ(c) = c

4

( Cc,κ√
|κ|

atanh(
√

|κ|Lc,κ) − Dc,κ

)
+ atan

(Lc,κ

c

)
, if c > 0. (5.8)

(iii) If (c, κ) ∈ B+ ∪ B−, we have

Ẽκ(c) = π
(2κ − 1)2

32κ3/2 , p̃κ(c) = π
(
√

2κ − 1)2

4
√

2κ
. (5.9)

Proof. Given Lemma 5.1, we use the following antiderivatives: In case (I), for all y ∈ Ic ∪ Tκ,

∫
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = 1

16κ3/2

(
(3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1) atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
−

√
κ
√

(2 − c2 − 2y)(1 − 2κ + 2κy)(3c2κ − 4κy − 4κ − 1)
)

,

and

c

2

∫
−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = c

4

(c2κ − 4κ − 1√
κ

atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
−
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
)

+ atan
(1

c

√
2 − c2 − 2y

1 − 2κ + 2κy

)
.

In case (ii) and for all y ∈ Ic, we take
√

−κ instead of
√

κ and atanh instead of the first atan in the
formulas above, in the fashion of Lemma 3.5. In case (iii), for all y ∈ Jc ∪ Jκ, we take∫

−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = 1

16κ3/2

(
(3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1) atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+

√
κ
√

(2 − c2 − 2y)(1 − 2κ + 2κy)(3c2κ − 4κy − 4κ − 1)
)

,

c

2

∫
−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = c

4

(c2κ − 4κ − 1√
κ

atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
)

+ atan
(1

c

√
2 − c2 − 2y

1 − 2κ + 2κy

)
.
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We verify that these are indeed the antiderivatives of the integrands in (5.1)–(5.2) from the derivatives
computed in Lemma 3.5, and using that

d
dy

(
atan

(√ 2 − c2 − 2y

c2(1 − 2κ + 2κy)

))
= −c

2(1 − y)
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

d
dy

√
(2 − c2 − 2y)(1 − 2κ + 2κy) = −4κy + 4κ − κc2 − 1√

(2 − c2 − 2y)(1 − 2κ + 2κy)
.

In the case (iii), by the dominated convergence theorem, the integrals (5.2) are continuous in (c, κ) ∈ D̃.
Therefore, it suffices to take the limit as c →

√
2 in (5.5) to obtain (5.9).

As a consequence of Proposition 5.2, we can compute the limit cases stated in the following result.
We omit the proof, since it only uses Taylor expansions and the identity atan(x) + atan(1/x) = π/2, for
all x ̸= 0.

Corollary 5.3. For all c > 0, as κ → 1/2, we have

(Ek(c), pk(c)) →
(

π
3c4/4 − 3c2 + 3

8
√

2
, π
(c3/2 − 3c

4
√

2
+ 1/2

))
= E(u(1)

c,1/2), p(u(1)
c,1/2), (5.10)

where u
(1)
c,1/2 is the dark compacton given by Proposition 1.9, and (Ẽκ(c), p̃κ(c)) converges to (0, 0). Also,

for all c > 0, as κ → 0,

(Eκ(c), pκ(c)) →
( (2 − c2) 3

2

3 ,
π

2 − atan
( c√

2 − c2

)
− c

2
√

2 − c2
)

= (E(uc,0), p(uc,0)),

where uc,0 is the dark soliton of the Gross–Pitaevskii equation, given in (1.5). Finally, for all κ ∈ R, as
c →

√
2, (Eκ(c), pκ(c)) → 0, while Ẽκ(c) and p̃κ(c) converge to the values for the energy and momentum

in (5.9).

Remark 5.4. Notice that from (5.4), we deduce that pκ(0+) = π/2 for all κ < 1/2.

We check now if the stability condition (1.53) is satisfied for the smooth solitons given by Theorem 1.1,
according to regions D1, D2 and D3, for c > 0. In this case the functions c 7→ pκ(·) are c 7→ Eκ(·) are
smooth with respect c, on (0,

√
2), so that we introduce the notations

p′
κ(c) = d

dc
pκ(c) and E′

κ(c) = d

dc
Eκ(c). (5.11)

In analogous manner, we define Ẽ′
κ and p̃′

κ

To rigorously compute the Vakhitov–Kolokolov criterion, we need the Hamilton group property, which
is just a consequence of the formulas in Proposition 5.2.

Lemma 5.5. If (c, κ) ∈ D with c > 0, then E′
κ(c) = c p′

κ(c). In the same manner, if (c, κ) ∈ D̃ with
c > 0, then Ẽ′

κ(c) = c p̃′
κ(c).

Consequently, it is enough to compute p′
κ, as follows.

Proposition 5.6. Let (c, κ) ∈ D with c > 0. Then

p′
κ(c) =3c2κ − 4κ − 1

4
√

κ
atan

(√
κ

√
2 − c2

1 − 2κ

)
− 3(2 − c2)

4

√
1 − 2κ

2 − c2 , if (c, κ) ∈ D1 ∪ D3, (5.12)

p′
κ(c) =3c2κ − 4κ − 1

4
√

−κ
atanh

(√
−κ

√
2 − c2

1 − 2κ

)
− 3(2 − c2)

4

√
1 − 2κ

2 − c2 , if (c, κ) ∈ D2. (5.13)

Furthermore, we have p′
κ(c) < 0 if (c, κ) ∈ D1, p′

κ(c) > 0 if (c, κ) ∈ D3, and

p′
κ(c) < max{p′

κ(0+), 0}, if (c, κ) ∈ D2. (5.14)
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Proof. The formulas in (5.12)–(5.13) follow directly by differentiating the expressions in the momentum
in Proposition 5.2.

If (c, κ) ∈ D1, then 3c2 < 6 < 4 + 1/κ, so that 3c2κ − 4κ − 1 < 0 and we conclude that p′
κ(c) > 0.

Similarly, if (c, κ) ∈ D3, then 3c2κ − 4κ − 1 > 0, and we get p′
κ(c) > 0, since c2 > 2.

Finally, we consider the case (c, κ) ∈ D2. We remark from (5.13) that p′
κ(c) can be seen as a function

of c2. Differentiating twice with respect to c2, we obtain

d2

(dc2)2 p′
κ(c) = (1 − 2κ)2

4(2 − c2)(1 − κc2)2

√
1 − 2κ

2 − c2 . (5.15)

Thus, p′
κ(c) is a strictly convex function of c2, for c2 ∈ (0, 2), so that it is below its end points,

p′
κ(c) < max{p′

κ(0+), p′
κ(

√
2

−
)}.

Since p′
κ(c) → 0, as c →

√
2−, inequality in (5.14) follows.

We focus now on the case (c, κ) ∈ D2, where the sign of p′
k(c) is unclear. Indeed, it depends on p′

κ(0),
which corresponds to the function in (5.13), evaluated at c = 0, i.e.

w(k) = p′
κ(0) = −4κ − 1

4
√

−κ
atanh

(√ −2κ

1 − 2κ

)
− 3

2

√
1 − 2κ

2 , (5.16)

where w is continuous on (−∞, 0), with w(−∞) = ∞ and w(0+) = −
√

2. In addition, using that
x ≤ atanh(x), for all 0 ≤ x < 1, one can verify that w′ < 0 on (−∞, 0). Therefore, w is strictly
decreasing and w has a unique zero in (−∞, 0), which we denote by κ0. Using Newton’s method, we can
check that κ0 ≈ −3.636. This value allows us to establish the following result.

Lemma 5.7. Let (c, κ) ∈ D2 with c > 0. We have

Eκ(0+) = Eκ(u0,κ), pκ(0+) = π/2, Eκ(
√

2
−

) = pκ(
√

2
−

) = 0. (5.17)

If κ ∈ [κ0, 0), then E′
κ < 0 and p′

κ < 0 in (0,
√

2). Also, if κ < κ0, there is c̃κ ∈ (0,
√

2), such that E′
κ > 0

and p′
κ > 0 in (0, c̃κ), while E′

κ < 0 and p′
κ < 0 in (c̃κ,

√
2).

Proof. The limits in (5.17) follow from (5.7)–(5.8). If κ ∈ [κ0, 0), then, by definition of κ, p′
κ(0) = w(κ) ≤

0. Therefore, the conclusion follows from (5.14) and (5.11).
Assume now that κ < κ0, so that p′

κ(0) = w(κ) > 0. Recall that, from the proof of Proposition 5.6,
p′

κ is a strictly convex function of c2, satisfying p′
κ(

√
2−) = 0. Also, from (5.15), d2

(dc2)2 pκ(c) goes to ∞,
as c →

√
2−. Therefore, we conclude that there exists a unique zero of p′

κ in (0,
√

2), which we denote by
c̃κ, so that p′

κ > 0 in (0, c̃κ) and p′
κ < 0 in (c̃κ,

√
2).

Remark 5.8. In Lemma 5.7, we have pκ(c) → π/2, as c → 0+. However, it is not true that the
momentum of the black soliton u0,κ is π/2. A naive approach will be to try to use the formula (1.10), in
a generalized sense. However, since u0,κ is a real-valued function, we have ⟨iu0,κ, u′

0,κ⟩ = 0, so this would
imply that the momentum of u0,κ is zero. Indeed, a proper definition of the momentum of vanishing
functions is a difficult problem, and it requires the use of the notion of untwisted momentum, explained
in [8, 22]. For this reason, the analysis of black solitons goes beyond the scope of this article.

An immediate consequence of the monotonicity of E′
κ in Lemma 5.7, is that the critical speed c∗

κ in
(1.61) is well-defined, and that there is a bijection between the speeds and the momenta as follows.

Corollary 5.9. (i) If κ ∈ [κ0, 0), then c∗
κ = 0. If κ < κ0, then there exists a unique c ∈ (0,

√
2) such that

Eκ(0) = Eκ(c), thus this value corresponds to c∗
κ. In any case, Eκ(c∗

κ) = Eκ(u0,κ).
(ii) Define q0(κ) as q0(κ) = pκ(c∗

κ), if c∗
κ ∈ (0,

√
2), and as q0(κ) = π/2, if c∗

κ = 0. Then the function
pκ : (c∗

κ,
√

2) → (0, q0(κ)) can be extended by continuity to [c∗
κ,

√
2], is strictly decreasing, and it defines

a continuous bijective function, whose inverse function we denote by cκ : [0, q0(κ)] → [c∗
κ,

√
2], with

cκ(0) =
√

2 and cκ(q0(κ)) = c∗
κ.

Proof. In view of (5.17), the assertions are a straightforward consequence of the monotonicity results in
Lemma 5.7.
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In Figure 7, we plot the functions Eκ and pκ, for κ = −50 and c ∈ (0,
√

2), so that κ < k0 and
Lemma 5.7 applies. We also see the values c̃κ ≈ 0.51, c∗

κ ≈ 0.75 and q0(κ) ≈ 3.5 in Corollary 5.9. Due to
the change in the monotonicity of the functions pκ and Eκ, we observe the cusp in the right diagram of
Figure 6 because the tangent vector must jump from (1, c̃−

κ ) to −(1, c̃+
κ ) near the cusp by the Hamilton

group property (1.52).

c∗
κc̃κ

Eκ(c)

q0

pκ(c)

c̃κ c∗
κ

Figure 7: Plot of the energy Eκ(c) and momentum pκ(c) of the dark solitons uc,κ, for (c, κ) ∈ D2, with
κ = −50. The left panel displays Eκ(c) and the constant line crossing Eκ(0) in orange. The value
c̃κ ≈ 0.51 is defined in Lemma 5.7, c∗

κ ≈ 0.75 is the point defined in (1.61). The right panel depicts pκ(c),
where we also highlight the values c̃κ and c∗

κ.

Finally, we remark that in the case κ < κ0, the function pκ defines also a bijection between the
intervals (c̃κ,

√
2) and (0, pκ(c̃κ)), but we do need to use this fact in the sequel. In addition, we will show

in the next section that q0(κ) is equal to q∗
κ, defined in (1.59).

Notice that function cκ in Corollary 5.9, allows to us determine that ucκ(q) is the unique smooth soliton
of momentum q, up to invariances, for all q ∈ (0, q0(κ)). In particular, in view of the minimization problem
(1.57), we have

Eκ(q) ≤ Eκ(ucκ(q),κ), for all q ∈ (0, q0(κ)). (5.18)

6 Variational characterization of dark solitons
In this section, we prove Theorem 1.10. The starting point is that equation (TW(c, κ)) corresponds to
the Euler–Lagrange equation associated with the minimization of the energy at constant momentum,
and that c appears as a Lagrange multiplier. Since N X (R) is not a vector space, we use the Gâteau
differential, denoted by d, as follows.

Lemma 6.1. Let v ∈ N X (R) be a (complex valued) function and h ∈ H1(R;C). For t ∈ R small enough,
the functions t 7→ p(u + th) and t 7→ Eκ(u + th) are differentiable, and

d

dt
p(u + th)|t=0 =

∫
R

⟨ih′, u⟩,

dE(u)[h] := d

dt
Eκ(u + th)|t=0 =

∫
R

⟨u′, h′⟩ − η⟨u, h⟩ − 2κ⟨u, u′⟩⟨u, h⟩.

Also for all c ≥ 0, c dp(u) = dEκ(u)[h], for all h ∈ H1(R), if and only if u satisfies (TW(c, κ)).

We omit the proof of Lemma 6.1, since it is a straightforward adaptation of the computations in
Lemma 6.1 in [24].

6.1 The minimization curve
We first show that the minimization problem (1.57) does not define a real-valued function of q ∈ R, for
κ > 0. Therefore, the variational problem is not well-suited to study the dark solitons in D1 ∪ D3 given
by Theorem 1.1.

Proposition 6.2. For all κ > 0 and all q ∈ R, we have Eκ(q) = −∞.
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Proof. Let κ > 0 and q ∈ R. We define a family of functions in N X (R), indexed by t ≥ 0, such that
t 7→ Eκ(u(·, t)) and t 7→ p(u(·, t)) are continuous. More precisely, let u = ρeiθ, where

ρ(x, t) =


−txακ + t + 1√

2κ
+ 1, for x ∈ (0, 1),

(2 − x)( 1√
2κ

+ 1) + x − 1, for x ∈ (1, 2),
1, for x ≥ 2,

θ(x, t) =


0, for x ∈ (0, 1),
qJκ(x − 1), for x ∈ (1, 2),
qJκ, for x ≥ 2,

for some ακ > 1 to be chosen later, and

Jκ =
(

2
∫ 2

1
(1 − ρ(x, t)2)dx

)−1
= −3κ/(1 + 3

√
2κ).

We define u(x, t) = u(−x, t), for all x ≤ 0. Remark that ∂xu(t) = eiθ(t)(∂xρ(t) + i∂xθ(t)ρ(t)) ∈ L2(R) for
all t ≥ 0. Also 1 − ρ2(t) ∈ L2(R), for all t ≥ 0, since it is continuous and compactly supported in [−2, 2].
We have ρ(t, x) ≥ 1, hence u(·, t) ∈ N X (R) for all t ≥ 0. We compute, using the symmetry of ρ,

p(u(·, t)) =
∫
R
(1 − ρ(t)2)∂xθ(t) = 2

∫ 2

1
(1 − ρ(t)2)qJκ = q.

On the other hand, from (1.9) we obtain

Eκ(u(·, t)) =
∫ 1

0
(tακ)2x2αk−2 + (1 − ρ2(x, t))2/2 − 2κ(tακxακ−1ρ(t, x))2dx (6.1)

+
∫ 2

1
|∂xu(x, t)|2 + (1 − ρ(x, t))2/2 − 2κ(∂xρ(x, t)ρ(x, t))2dx. (6.2)

We can prove that the second integral (6.2) is constant in t. Let us denote by I(t) the first integral (6.1).
It remains to show that, for ακ > 1 large enough, I(t) diverges to −∞, as t → ∞. Indeed, We have
I(t) = t4βk + (t + 1)3R(t), where

βk =
( −4κα4

κ

(2ακ − 1)(4ακ − 1)(3ακ − 1) + 1
2 − 2

ακ + 1 + 3
2ακ + 1 − 2

3ακ + 1 + 1
8ακ + 2

)
,

and R is a bounded function, for t ≥ 0. Since βκ → −∞ as ακ → ∞, we deduce that for ακ large enough,
Eκ(u(·, t)) → −∞ as t → ∞, which completes the proof.

From now on, we assume that κ < 0, so that the energy density eκ(u) satisfies

eκ(u) = |u′|2

2 + η2

4 + |κ|
4 (η′)2 ≥ e0(u) ≥ 0. (6.3)

Hence, several properties shown for the curve Emin in [24] remain true. Indeed, the curve Emin in [24] is
associated with the nonlocal energy

EW(u) = 1
2

∫
R

|u′|2 dx + 1
4

∫
R
(W ∗ η)η dx = 1

2

∫
R

|u′|2 dx + 1
8π

∫
R

Ŵ(ξ)|η̂(ξ)|2 dξ,

where W is a tempered distribution, with bounded nonnegative Fourier transform Ŵ, among other
hypotheses. In our case, by using Plancherel’s theorem, we can recast the energy as

Eκ(u) = 1
2

∫
R

|u′|2 dx + 1
8π

∫
R

Ŵκ(ξ)|η̂(ξ)|2 dξ, with Ŵκ = 1 + |κ|ξ2,

for all u ∈ X(R), so that η ∈ H1(R). In this manner, we recover the potential (1.8) mentioned in the
introduction. Thus, formally, W is the tempered distribution Wκ = δ0 − |κ|(δ0)′′, but we do not use this
formulation, since η ∈ H1(R). In conclusion, in most of the proofs in this subsection, we will use that
the potential energy can be written as

Ep(u) = 1
4

∫
R
(η2 + |κ|(η′)2)dx, and Ep(u) = 1

8π

∫
R

Ŵκ(ξ)|η̂(ξ)|2 dξ. (6.4)

More precisely, we will rely on the potential energy written in the Fourier variable to invoke the arguments
in [24] not needing that Ŵ to be bounded. Of course, some arguments will be performed directly in the
variable x, if they are simpler.
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Proposition 6.3. Let k < 0. Then the function Eκ is well-defined, is even and Lipschitz continuous,
with

|Eκ(p) − Eκ(q)| ≤
√

2|p − q|, for all p, q ∈ R. (6.5)

In particular, Eκ(q) ≤
√

2q, for all q ≥ 0. Also Eκ is nondecreasing and concave on [0, ∞). Moreover, for
all v ∈ X (R),

Eκ(v) ≤ Eκ(q), for some q ∈ [0, q∗
κ) ⇒ v ∈ N X (R). (6.6)

Proof. It is straightforward to check that Lemmas 3.1, 3.2, 3.4 in [24] hold with the same proofs. Corol-
lary 3.7 is still true, and the proof is simpler, using the first expression for Ep in (6.4). Thus, using the
notation in the proof of Corollary 3.7, we obtain Ep(un) = Ep(vn) + Ep(wn), which gives the conclusion.
As a consequence, we deduce, as in Corollary 3.8 and Proposition 3.9 in [24], that

Eκ(q) = inf{Eκ(v) : v ∈ X ∞
0 (R), p(v) = q},

where
X ∞

0 (R) = {v ∈ N X (R) ∩ C∞(R) : ∃R > 0 s.t. v is constant on B(0, R)c},

and that Eκ satisfies (6.5). The fact that Eκ is nondecreasing follows as in Lemma 3.11.
The proof of concavity is exactly the same as in Proposition 3.12, without any extra assumption

needed. Indeed, using the reflection functions defined in the proof of Proposition 3.12 and the first
expression in (6.4), it is immediate to verify that Ep(u+) + Ep(u−) = 2Ep(u), so that the conclusion
follows.

Finally, let 0 ≤ q < q∗
κ so that, by definition of q∗

κ, we can find q < q̌ < q∗
κ satisfying

∀v ∈ X (R), Eκ(v) ≤ Eκ(q̌) =⇒ v ∈ N X (R). (6.7)

Since Eκ is nondecreasing on [0, +∞), we deduce that Eκ(q) ≤ Eκ(q̌), so that (6.7) holds with q instead
of q̌, which proves (6.6).

Proposition 6.4. Assume that κ < 0.

(i) Let u = ρeiθ ∈ X (R) and assume that there is ε ∈ (0, 1) such that 1 − ε ≤ |u|2 ≤ 1 + ε on an open
set Ω ⊂ R. Then

1
2

∫
Ω

|ηθ′| ≤ 1√
2(1 − ε)

∫
Ω

eκ(u). (6.8)

In particular, if 1 − ε ≤ |u|2 ≤ 1 + ε on R, then
√

2(1 − ε)p(u) ≤ Eκ(u).

(ii) For any u ∈ X (R), we have
∥η∥2

L∞(R) ≤ (1 + |κ|−1)Eκ(u). (6.9)

(iii) There is a constant K0 > 0 such that

√
2q − K0q

3/2 ≤ Eκ(q), for all q ∈

[
0,

|κ|
8(1 + |κ|)

)
. (6.10)

Proof. Using the Cauchy inequality ab ≤ a2/2 + b2/2, with a = η/2 and b = θ′2, we have∣∣∣∣∫
Ω

η

2θ′
∣∣∣∣ ≤

∫
Ω

(η2

4 + θ′2

2

)
≤ 1

4

∫
Ω

η2 + 1
2(1 − ε)

∫
Ω

ρ2θ′2. (6.11)

Bearing in mind (1.14) and that κ ≤ 0, (6.8) follows.
The estimate in (ii) is an immediate consequence of

η2(x) = 2
∫ x

−∞
ηη′ ≤

∫
R
(η2 + η′2) ≤ 4(1 − κ−1)Eκ(u).

In view of (6.8) and (6.9), the inequality in (6.10) follows exactly as in Proposition 3.14 in [24].
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Proposition 6.5. Let k < 0. We have

Eκ(q) <
√

2q, for all q > 0. (6.12)

Proof. In view of Proposition 6.5, and since Eκ in concave on R+, we only need to prove that the strict
inequality in (6.12) holds for q small. For this purpose, we will use the behavior of solitons uc,κ in
Proposition 5.2-(ii) for c close to

√
2. By setting ε =

√
2 − c2, and computing a Taylor expansion in

formulas (5.7)–(5.8), we deduce that

Eκ(uc,κ) = ε3

3
√

1 − 2κ + 2ε5κ

15
√

1 − 2κ
+ o(ε6), p(uc,κ) = ε3

3
√

2
√

1 − 2κ + 3 + 2κε5

60
√

2(1 − 2κ)
+ o(ε6).

Therefore, there is ε0 > 0 small, such that Eκ(p(uc,κ)) ≤ Eκ(uc,κ) <
√

2p(uc,κ), for all c ∈ (c(ε0),
√

2),
where c(ε0) = (2−ε2

0)1/2. By Corollary 5.9, we can assume that pκ is a diffeomorphism from (c(ε0),
√

2) to
(0, pκ(c(ε0)). Thus, we conclude that there exists q0 > 0 such that Eκ(q) <

√
2q, for all q ∈ (0, pκ(c(ε0)).

We can prove now the minimizing curve is strictly subadditive, which is the crucial property to deduce
the compactness of minimizing sequences in Theorem 6.8.

Corollary 6.6. If κ < 0, then Eκ is strictly subadditive on R+.

Proof. From Propositions 6.3 and 6.4-(iii), we deduce that the right derivative of Eκ at the origin, denoted
by E+

κ , exists and that E+
κ (0) =

√
2. By invoking Lemma 3.16 in [24], Proposition 6.5 implies that Eκ is

strictly subadditive on R+.

6.2 Compactness of minimizing sequences
We are now in a position to prove the compactness of minimizing sequences in the problem Eκ(q), with
κ < 0, and that the minimizers are the solitons uc,κ, with c = cκ(q). Notice that in the rest of this
section, uc,κ refers to the dark soliton to (TW(c, κ)), given by Theorem 1.1.

We will use the general argument given [24], based on the properties of the minimizing curve Eκ and an
adaptation of the concentration-compactness principle. However, we need to guarantee the nonvanishing
properties of the limit of the minimizing sequences. This is the purpose of the constant q∗

κ defined in
(1.59). To relate q∗

κ with q0(κ), let us state some properties related to the energy of the black soliton
u0,κ in (1.60), i.e. the solution to (TW(c, κ)) with c = 0.

Lemma 6.7. Let κ < 0 and q ≥ 0. There exists a sequence (un) ⊂ N X (R) satisfying

p(un) = q, for all n ∈ N, and lim
n→∞

Eκ(un) = Eκ(u0,κ). (6.13)

In addition,
inf{Eκ(v) : v ∈ H1

loc(R), inf
x∈R

|v(x)| = 0} = Eκ(u0,κ). (6.14)

In particular, for all q > 0, we have 0 ≤ Eκ(q) ≤ Eκ(u0,κ) and q0(κ) ≤ q∗
κ.

Proof. The existence of a sequence (un) satisfying (6.13) is analogous to the case κ = 0, done in Propo-
sition 3.4 in [5].

The minimization problem (6.14) correspond to Lemma 1 in [6] in the case κ = 0. In the case κ < 0,
the same proof holds, using that u0,κ is the unique solution to (TW(c, κ)) that vanishes at some point,
up to a translation.

Finally, let us show that (6.14) implies that q0(κ) ≤ q∗
κ. Let q ∈ (0, q0(κ)) and let v ∈ E(R) such

that Eκ(v) ≤ Eκ(q). By (5.18), we deduce that Eκ(v) ≤ Eκ(ucκ(q),κ), with cκ(q) ∈ (c∗
κ,

√
2). Since, by

definition, Eκ(ucκ(q),κ) = Eκ(cκ(q)), and, by Lemma 5.7, the map c 7→ Eκ(c) is strictly decreasing on
[c∗

κ,
√

2], we get Eκ(v) < Eκ(c∗
κ). By Corollary 5.9, we have Eκ(c∗

κ) = Eκ(u0,κ), so that Eκ(v) < Eκ(u0,κ).
Thus, using (6.14), we infer that infR |v| > 0. This implies that q ≤ q∗

κ, which completes the proof.

In order to obtain the stability of minimizers, we will prove a more general result than the one stated
in Theorem 1.10, as follows.

42



Theorem 6.8. Let κ < 0, q ∈ (0, q0(κ)) and (un) in N X (R) be a sequence satisfying

Eκ(un) → Eκ(q) and p(un) → q, as n → ∞. (6.15)

There exist θ ∈ R and a sequence of points (xn) such that, up to a subsequence still denoted by un, the
following convergences hold, as n → ∞,

un(· + xn) → eiθuc(q),κ(·), in L∞
loc(R), (6.16)

1 − |un(· + xn)|2 → 1 − |uc(q),κ(·)|2, in L2(R), (6.17)
u′

n(· + xn) → eiθu′
c(q),κ(·), in L2(R). (6.18)

Moreover, we have q∗
κ = q0(κ), Eκ(q) = Eκ(uc(q),κ) for q ∈ (0, q∗

κ), and Eκ(q) = Eκ(u0,κ) for q ≥ q∗
κ. In

particular, Eκ is strictly increasing on (0, q∗
κ).

Proof. As explained before, the proof follows the same steps as in Theorem 4.1 in [24], without the extra
decomposition introduced to handle the nonlocal interactions. The characterization of the limit function
is obtained by invoking Corollary 5.9. Therefore, we only give a sketch of the proof.

First, using Proposition 6.5, we can set Σq = 1 − Emin(q)/(
√

2q) ∈ (0, 1), for any q > 0. In addition,
without loss of generality, we can assume that

Eκ(un) ≤ 2Eκ(q). (6.19)

Thus, we can apply Lemmas 2.4 and 2.5 in [24], with with L = 1+Σq, E = 2Eκ(q) and m0 = Σ̃q := Σq/L,
to deduce that there exist R > 0, two integers ℓ, l∗, with 1 ≤ ℓ ≤ l∗, depending on E and q, but not on
n, and points xn

1 , xn
2 , . . . , xl∗ , satisfying

|xn
k − xn

j | −→
n→∞

∞, for 1 ≤ k ̸= j ≤ ℓ, and xn
j ∈

ℓ
∪

k=1
B(xn

k , R), for ℓ < j ≤ l∗.

In addition, the sequence ηn = 1 − |un|2 satisfies

|ηn(xn
j )| ≥ Σ̃q, ∀1 ≤ j ≤ ℓ, and |ηn(x)| ≤ Σ̃q, ∀x ∈ R \

ℓ⋃
j=1

B(xn
j , R + 1). (6.20)

Applying standard weak compactness results for Hilbert spaces, the Rellich–Kondrachov theorem,
and Fatou’s lemma, to the translated sequence un,j(·) = un(· + xn

j ), we infer that there exist functions
vj = ρjeiϕj ∈ N X (R), j ∈ {1, . . . , ℓ}, satisfying, up to a subsequence,

un,j → vj , in L∞
loc(R), u′

n,j ⇀ v′
j , in L2(R), ηn,j = 1 − |un,j |2 ⇀ ηj = 1 − |vj |2, in L2(R), (6.21)

as n → ∞, and also, ∫ A

−A

|v′
j |2 ≤ lim inf

n→∞

∫ A

−A

|u′
n,j |2, for all A ∈ (0, ∞], (6.22)∫ A

−A

(η2
j + |κ|(η′

j)2) ≤ lim inf
n→∞

∫ A

−A

(η2
n,j + |κ|(η′

n,j)2), for all A ∈ (0, ∞], (6.23)

lim
n→∞

∫ A

−A

ηn,jϕ′
n,j =

∫ A

−A

ηjϕ′
j , for all A ∈ (0, ∞), (6.24)

as well as
Eκ(qj) ≤ Eκ(vj) ≤ Eκ(q), (6.25)

where un,j = ρn,jeiϕn,j and qj = p(vj). Notice that the fact that vj belongs to N X (R), follows from (6.6)
and (6.25), since q < q0(κ) ≤ q∗

κ. We also remark that we only have an inequality in (6.23), whereas we
had an equality in the potential energy in (4.25) in [24]. The rest of the proof consists in showing the
following steps.

Step 1. There exist q̃ ∈ R and Ẽ ≥ 0 such that

Eκ(q) ≥
ℓ∑

j=1
Eκ(qj) + Ẽ and q =

ℓ∑
j=1

qj + q̃. (6.26)
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The proof of the first inequality is the same as in [24], handling the potential energy in the same
manner as the kinetic energy in (6.22). For the momentum, we use inequality (6.8), instead of Lemma
2.3 in [24]. Thus, there is no need to introduce cut-off functions that caused the appearance of some
reminder terms.

Step 2. We have √
2
(
1 − Σ̃q

)
|q̃| ≤ Ẽ. (6.27)

This inequality follows as in Claim 2 in [24], but using inequality (6.8), instead of introducing cut-off
functions.

Step 3. We have Ẽ = q̃ = 0 and ℓ = 1.

The proof of this step is the same as in Claim 3 in [24], since it only uses the properties of the function
Ek in Propositions 6.3, 6.5 and Corollary 6.6.

Step 4. The weak convergences in (6.21) are also strong in L2(R) (for j = 1).

We set from now on v = v1 and η = 1 − |v1|2. For the previous step, we have

p(un,1) → q = p(v) and Eκ(un,1) → Emin(q) = Eκ(v). (6.28)

To prove that u′
n,1 → v′ in L2(R), it is enough to show that

lim sup
n→∞

∥u′
n,1∥L2(R) ≤ ∥v′∥L2(R). (6.29)

Arguing by contradiction, taking a subsequence that we still denote by un,1, we suppose that

M := lim
n→∞

∥u′
n,1∥2

L2(R), with M > ∥v′∥2
L2(R).

Hence, using (6.28),

lim
n→∞

Ep (un,1) = lim
n→∞

(
Eκ(un,1) − ∥u′

n,1∥2
L2(R)/2

)
= Eκ(v) − M/2 < Eκ(v) − ∥v′∥2

L2(R)/2 = Ep(v),

which contradicts (6.23) (with A = ∞). Therefore u′
n,1 → v′ in L2(R). Let us show that this also implies

that
∥η′

n,1 − η′∥L2(R) → 0. (6.30)

Indeed, noticing that η′ − η′
n,1 = 2(⟨v, v′⟩ − ⟨un,1, u′

n,1⟩), we have

∥η′
n,1 − η′∥L2(R) ≤ 2∥(v − un,1)v′∥L2(R) + 2∥(v′ − u′

n,1)un,1∥L2(R). (6.31)

From inequality (6.9), we obtain the existence of a constant C(q) > 0 such that ∥un,1∥L∞(R) ≤ C(q).
Thus, the second term in the right-hand side of (6.31) goes to zero. By using the dominated convergence
theorem, we also infer that the other term in the right-hand side of (6.31) also tends to zero, which
completes the proof of (6.30).

Finally, going back to (6.28), we conclude that

lim sup
n→∞

∥ηn,1∥L2(R) = ∥η∥L2(R),

which combined with the last weak convergence in (6.21) (with j = 1), implies that ηn,1 → η in L2(R).

Step 5. There exists (θ, y) ∈ R2 such that v = eiθuc(q),κ(· − y).

By Theorem 6.3 in [24], since p(v) = q and Eκ(q) = Eκ(v), we conclude that v is a solution to
(TW(c, κ)), for some speed c. In addition, as in Theorem 4 in [24], we deduce that c ∈ (0,

√
2). Therefore,

by Corollary 5.9, v satisfies (TW(c, κ)) with c = c(q), and the conclusion follows from Theorem 1.1.

Step 6. We have q∗
κ = q0(κ) and Eκ(q) = Eκ(u0,κ), for all q ≥ q∗

κ.
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By continuity of Eκ, invoking Corollary 5.9, and using the previous step, we deduce that

Eκ(q0(κ)) = lim
q→q0(κ)−

Eκ(q) = lim
q→q0(κ)−

Eκ(uc(q),κ) = Eκ(uc∗
κ,κ) = Eκ(u0,κ) (6.32)

where we used the definition (1.61) for the equality. Since u0,κ(0) = 0, we conclude, using the definition
of q∗

κ, that q0(κ) ≥ q∗
κ. By Lemma 6.7, we have q0 ≤ q∗

κ, hence, q0 = q∗
κ.

Finally, we show that Eκ is constant in [q∗
κ, ∞). Indeed, for q ≥ q∗

κ. using that Eκ is nondecreasing,
and (6.32), we have Eκ(q) ≥ Eκ(q0(κ)) ≥ Eκ(u0,κ). Since the reverse inequality was already proved in
Lemma 6.7, we conclude that the equality holds.

At last, in view of Lemma 5.7, and Steps 5 and 6, we conclude that Eκ is strictly increasing on (0, q∗
κ),

which finishes the proof of the theorem.

6.3 Some additional properties of the energy
As seen in (6.3), if κ ≤ 0, then 0 ≤ EGP (u) ≤ Eκ(u), where EGP = E0 is the Gross–Pitaevskii energy.
Moreover, our energy space X (R) is exactly the domain of the functional EGP . The following result
discusses the relation between X (R) and the domain of Eκ, defined as

Dom(Eκ) := {u ∈ H1
loc(R), |Eκ(u)| < ∞}

depending on the sign of κ.

Proposition 6.9. If κ ≤ 0, then Dom(Eκ) = X (R). If κ > 0, then there is u ∈ H1
loc(R)\X (R) such that

|E(u)| < ∞, i.e. X (R) ⊊ Dom(Eκ).

Proof. The case κ ≤ 0 is simple in regard of Lemma 2.1, so we just prove the second statement. For this
purpose, we consider κ > 0 and we construct u as follows. Let

f(x) =


0 if x ∈ [−1, 1],
(x − n − j

2|n| )gκ if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, with 0 ≤ j ≤ 2|n| − 1 even, n ∈ Z,

(n + j
2|n| − x)gκ + gκ

2|n| if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, with 0 ≤ j ≤ 2|n| − 1 odd, n ∈ Z,

with gκ =
√

1/(8κ4) + 1/(4κ2) > 0 and set u =
√

1 + 1/(2κ) + f(x) ∈ H1
loc(R). Note that f is a decaying

triangle wave that satisfies f ∈ L∞(R)∩L1(R). Indeed, we have 0 ≤ f(x) ≤ gκ/(2|n|) for all x ∈ [n, n+1]
, n ∈ Z, and ∫

R
f(x)dx =

∑
|n|≥1

2|n|−1∑
j=0

∫ n+(j+1)/(2|n|)

n+j/(2|n|)
f(x)dx.

Since
∫ n+(j+1)/(2|n|)

n+j/(2|n|) f(x)dx = gκ/(2|n|) × 1/(2|n|+1) for all |n| ≥ 1 and 0 ≤ j ≤ 2|n| − 1, we deduce∫
R f(x)dx =

∑
|n|≥1 gκ/(2|n|+1) = gκ. In addition, is f weakly differentiable, with

f ′(x) =


0 if x ∈ [−1, 1],
gκ if x ∈

[
n + j

2|n| , n + j+1
2|n|

]
, when 0 ≤ j ≤ 2|n| − 1 is even,

−gκ if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, when 0 ≤ j ≤ 2|n| − 1 is odd.

We see that f ′ /∈ L2(R) and, since u′(x) = f ′(x)/(2
√

1 + 1/(2κ) + f(x)), for all x ∈ R, we deduce that
u /∈ X (R). However, |Eκ(u)| < ∞, indeed,

Eκ(u) = 1
2

∫
|x|≥1

(gκ)2

4(1 + 1/(2κ) + f(x))dx + 1
4

∫
R

( 1
2κ

+ f(x)
)2

− κ(f ′(x))2dx,

= 1
8

∫
|x|≥1

−(gκ)2(2κ + 2κf) + 2(1 + 1/(2κ) + f)(1/(4κ2) + f/κ + f2)
1 + 1/(2κ) + f

dx + R, (6.33)

with |R| = |
∫

|x|≤1(1/(2κ) + f(x))2dx|/4 < ∞. It remains to see that the integral in (6.33) is finite.
Indeed, the integrals involving f , f2 and f3 are finite, since f ∈ Lp(R) for all p ∈ [1, ∞]. In addition, the
constant term is equal to (gκ)2(−2κ) + 1/(2κ2) + 1/(4k3), and this terms is equal to 0, due to our choice
of gκ. This completes the proof of |E(u)| < ∞.
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7 Local well-posedness of (QGP) and orbital stability
The Cauchy problem with vanishing conditions at infinity associated with (1.2) is locally well-posed in
Sobolev spaces Hs(R) of high regularity. This was shown for (1.2) in [14, 16], for s ≥ 3. Best regularity
results were obtained in [40] in l1Hs(R) spaces, containing Hs(R), with s > 1/2+2, and recently improved
in [29,46].

Concerning (QGP), we can decompose Ψ as Ψ = v + φ, where v satisfies condition (1.1) and φ ∈
Hs(R). Then, we obtain a quasilinear equation on φ with vanishing conditions. In this setting, it
is not straightforward to show well-posedness in v + Hs(R), using the latter results. This is due to
the nonhomogenous nature of the equation on φ. However, more general quasilinear models have been
considered in [31]. Their results provide local well-posedness in v + Hs(R) ∩ Hw(R), for any s ≥ 1/2 + 11,
with some additional smoothness and decay assumptions on v, where Hw(R) is some weighted Sobolev
space.

For our purposes, we will use the approach developed in [3], where they proved that the Euler–
Korteweg system is locally well-posed. As shown now, (QGP) can be written as an Euler–Korteweg
system, with initial conditions given by Hs(R)-perturbations of a dark soliton for s ≥ 1.

Assume that κ ≤ 0 and c > 0. Let Ψ0 = uc,κ + ϕ0 satisfying infx∈R |Ψ0| > 0, where ϕ0 ∈ Hs(R) with
s ≥ 1 and uc,κ is the dark soliton given by Theorem 1.1. Since Ψ0 ∈ N X (R), then for any local solution
Ψ ∈ C([0, T ]; uc,κ + Hs(R)), we deduce that there exists T > 0 such that Ψ(t) also belongs to N X (R),
for all t ∈ [0, T ], so that we can perform the Madelung transform [10]. Namely, writing Ψ = √

ρeiθ, with
ρ(t) ∈ L∞(R) ∩ Ḣs(R) and θ(t) ∈ C(R) ∩ Ḣs(R) for all t ∈ [0, T ]. We conclude that (ρ, θ) satisfies in
[0, T ] the system 

∂tρ − 2∂x(∂xθρ) = 0,

− ∂tθ + (∂xθ)2 = 1 − 2κρ

2ρ
∂xxρ − (∂xρ)2

4ρ2 + 1 − ρ.
(7.1)

Therefore, setting

ρ̃(x, t) = ρ(x, −t/2), ṽ(x, t) = ∂x(θ(x, −t/2)), K(y) = (1 − 2κy)/4y, g0(y) = (y − 1)/2, (7.2)

for all y > 0, we deduce that (ρ̃, ṽ) satisfies the Euler–Korteweg system in [0, T ]:
∂tρ̃ + ∂x(ṽρ̃) = 0,

∂tṽ + ṽ∂xṽ = ∂x

(
K(ρ̃)∂xxρ̃ + K ′(ρ̃)

2 (∂xρ̃)2 − g0(ρ̃)
)

.
(7.3)

The result established in [3] concerning the general Euler–Korteweg system (7.3) is as follows.

Theorem 7.1 (Theorem 5.1 in [3]). Take s > 2 + 1/2. Let ρ0 ∈ L∞(R) ∩ Ḣs(R) be a function taking
values in a compact subset of (J−, J+) ⊂ (0, ∞). Assume that K, g0 ∈ C∞(R), with K > 0 in (J−, J+). If
v0 ∈ Hs−1(R), then there exists T > 0 such that (7.3) has a unique solution (ρ, v) on R× [0, T ], satisfying
ρ(·, 0) = ρ0, v(·, 0) = v0, and 

(ρ − ρ0) ∈ C([0, T ]; Hs(R)),
(∂xρ, v) ∈ C([0, T ]; Hs−1(R)),
ρ(R × [0, T ]) ⊂⊂ (J−, J+).

(7.4)

Also, the flow map is continuous in a neighborhood of (ρ0, u0) in (ρ0 + Hs(R)) × Hs−1(R).

For all κ ≤ 0, it is clear that K given in (7.2) satisfies K(y) > 0, for all y > 0, so that we can apply
Theorem 7.1 with (J−, J+) = (0, ∞). In the next result, we obtain the local well-posedness of (QGP) for
small Hs(R)-perturbations of uc,κ using Theorem 7.1 and defining Ψ = ρeiθ ∈ uc,κ + Hs(R) such that
(7.1)–(7.2) hold. Also, we deduce the continuity of the flow map and the conservation of energy and
momentum.

Corollary 7.2 (Well-posedness of (QGP)). Let s > 1/2+2, κ < 0 and c > 0. If Ψ0 ∈ uc,κ+Hs(R) belongs
to N X (R), then there exists TΨ0 > 0, the maximal time of existence such that for every T ∈ (0, TΨ0),
(QGP) has a unique solution Ψ on R × [0, T ], satisfying Ψ(·, 0) = Ψ0 and{

Ψ ∈ C([0, T ]; uc,κ + Hs(R)),
infR×[0,T ] |Ψ| > 0.

(7.5)
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Moreover, the flow map is continuous in a neighborhood of Ψ0 in uc,κ + Hs(R), and the energy and
momentum are conserved, i.e. Eκ(Ψ(·, t)) = Eκ(Ψ0) and p(Ψ(·, t)) = p(Ψ0), for all t ∈ [0, T ].

Proof. Existence. We start by performing the Madelung transform to the initial condition: Ψ0 = √
ρ0eiθ0 .

Then, setting v0 = ∂xθ0, we can apply Theorem 7.1 to obtain (ρ̃, ṽ) a solution to (7.3) satisfying (7.4),
with the functions K and g0 defined in (7.2). Setting ρ(x, t) = ρ̃(x, −2t) and v = v(x, −2t), it remains to
define θ ∈ C(R × [0, T ]) so that Ψ = √

ρeiθ satisfies (QGP) and (7.5). Indeed, taking

θ(·, t) = θ0 +
∫ t

0
v2 − 1 − 2κρ

2ρ
∂xxρ − (∂xρ)2

4ρ2 + ρ − 1,

yields θ ∈ C1([0, T ]; L2(R)), thus θ satisfies the second equation in (7.3). Since infR ρ > 0, we deduce
that √

ρeiθ is a nonvanishing local solution to (QGP). We verify that Ψ is still a Hs(R)−perturbation
of uc,κ for t > 0 to ensure (7.5). Since Ψ0 − uc,κ ∈ Hs(R), we can conclude if we prove that Ψ − Ψ0 ∈
C([0, T ]; Hs(R)). It is easy to check that ∂x(Ψ − Ψ0) belongs in C([0, T ]; Hs−1(R)) using (7.4), thus, we
just need to verify that Ψ − Ψ0 ∈ C([0, T ]; L2(R)). Since (ρ, θ) satisfies (7.1), we deduce using (7.4) that
∂tθ ∈ C([0, T ]; Hs−2(R)), in particular θ−θ0 ∈ C1([0, T ]; L2(R)) and we see that Ψ−Ψ0 ∈ C([0, T ]; L2(R))
follows from this observation and (7.4).

Uniqueness. Assume that ρ̌eiθ̌ is another solution to (QGP) defined on [0, Ť ] with the same initial
condition, then T̃ = min{Ť , T} and relabeling T̃ as T , we have ρ̌ = ρ and ∂xθ = ∂xθ̌ in [0, T ] by
Theorem 7.1. Since ρ̌eiθ̌ satisfies (QGP), we infer that θ̌ satisfies the second line in (7.3). Therefore, we
deduce that ∂tθ̌ = ∂tθ in C([0, T ]; L2(R)), so that, integrating the latter identity, we obtain θ̌ = θ. We
conclude using Theorem 7.1 that there exists T such that the flow map is well-defined in the vicinity of
any initial condition Ψ0 ∈ uc,κ + Hs(R) satisfying infR |Ψ0| > 0, moreover this map takes its value in
C([0, T ]; uc,κ + Hs(R)).

Continuity with respect to the initial data. Let Ψ0 ∈ uc,κ + Hs(R) such that infR |Ψ0| > 0, then
the flow map is well-defined in a neighborhood V of Ψ0 and valued in C([0, T ], uc,κ + Hs(R)), for some
T > 0. By simplicity, we only show that this map is continuous at Ψ0, the continuity in V is similar.
Let (Ψ(n)

0 ) ⊂ V satisfying ||Ψ(n)
0 − Ψ0||Hs(R) → 0 as n → ∞. Let Ψ(n) = ρ(n)eiθ(n) and Ψ = ρeiθ be the

unique solution of (QGP) in R × [0, T ] satisfying (7.5) and Ψ(n)(·, 0) = Ψ(n)
0 and Ψ(·, 0) = Ψ0. By the

continuity of the flow map in Theorem 7.1 we get

lim
n→∞

||(ρ(n), ∂xθ(n)) − (ρ, ∂xθ)||C([0,T ];Hs(R)×Hs−1(R)) = 0. (7.6)

Since θ(n) and θ satisfies the second equation in (7.1), we deduce using (7.6) that ||∂tθ
(n)−∂tθ||C([0,T ];L2(R)) →

0, as n → ∞, thus ||θ(n) − θ||C([0,T ];L2(R)) → 0, as n → ∞. We see that this relation and (7.6) are enough
to ensure that ||ρ(n)eiθ(n) − ρeiθ||C([0,T ];Hs(R)) → 0 as n → ∞, hence the flow map is continuous in Ψ0.

Conservation laws. Assume that Ψ0 satisfies infR |Ψ0| > 0 and is regular enough so that the solution
Ψ of (QGP) belongs in C([0, T ]; uc,κ + Hs(R)), for some s > 4 + 1/2. Then the energy and momentum of
Ψ are conserved in time (one just needs to derive with respect to time in the integrals). The conclusion
follows for s > 2 + 1/2, by using a density argument and the continuity of the flow map.

As a conclusion, the following the maximal time of existence is well-defined:

TΨ0 = sup
{

T > 0 :
There exists a unique solution to (QGP) Ψ defined on [0, T ]
satisfying (7.5) and Ψ(·, 0) = Ψ0.

}
, (7.7)

associated with an initial condition Ψ0 ∈ N X (R) ∩ uc,κ + Hs(R).

Finally, we can prove the stability of dark solitons, as stated in Theorem 1.11, by invoking Theorem 6.8,
and the Cazenave–Lions argument [11].

Proof of Theorem 1.11. Using that c is a bijection between (0, q∗
κ) and (c∗

κ,
√

2), we just need to show the
result for uc(q),κ, parametrized by q ∈ (0, q∗

κ). By contradiction, we suppose that for some q ∈ (0, q∗
κ),

the dark soliton uc(q),κ is not orbitally stable. Then there exist ε0 > 0, and a sequence (v(n)
0 ) ⊂ Hs(R),

s > 5/2, such that the solution Ψ(n)(x, t) = uc(q),κ(x) + v(n)(x, t) to (QGP), with initial data Ψ(n)
0 =
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uc(q),κ + v
(n)
0 , defined for t ∈ [0, TΨ(n)

0
), satisfies

d(Ψ(n)
0 , uc(q),κ) < 1/n, (7.8)

and inf
(y,θ)∈R2

d(Ψ(n)(tn), uc(q),κ(· − y)eiθ) > ε0, (7.9)

for some tn ∈ (0, TΨ(n)
0

). Let us recall that Lemma 5.5 in [24] establishes that if vn, v ∈ X (R) satisfy
d(vn, v) → 0, then,

∥|vn| − |v|∥L∞(R) → 0 and ∥|vn|2 − |v|2∥L2(R) → 0. (7.10)

In particular, this implies the continuity of the energy Eκ(vn) → Eκ(v) (with respect to d). In addition,
if vn, v ∈ N X (R), then we also have the continuity of the momentum, i.e. that p(vn) → p(v). By
conservation of energy, we have

Eκ(Ψ(n)(t)) = Eκ(Ψ(n)
0 ), for all 0 ≤ t ≤ tn. (7.11)

From (7.11), we infer that, up to a subsequence that we do not relabel, we have Ψ(n)(t) ∈ N X (R) for all
0 ≤ t ≤ tn. Indeed, in view of (7.8) and the continuity of the energy with respect to d, we obtain,

Eκ(Ψ(n)
0 ) < Eκ(uc(q),κ) + δn = Eκ(q) + δn, (7.12)

for some positive sequence δn → 0. Thus, for n large enough, using (7.11)–(7.12) and that Eκ is strictly
increasing in (0, q∗

κ) (see Theorem 6.8), we deduce that there is q̃ ∈ (q, q∗
κ) such that

Eκ(Ψ(n)(t)) < E(q̃), for all 0 ≤ t ≤ tn. (7.13)

By the definition of q∗
κ in (1.59), we deduce that Ψ(n)(t) ∈ N X (R), for all 0 ≤ t ≤ tn. We can now invoke

the conservation of momentum and the continuity of the momentum (with respect to d), to conclude that
p(Ψ(n)(tn)) → q. Again, using (7.11) and the continuity of the energy, we obtain Eκ(Ψ(n)(tn)) → Eκ(q).
From Theorem 6.8, we deduce that there exist θ ∈ R and a sequence of points (xn) such that

1 − |Ψ(n)(· + xn, tn)|2 → 1 − |uc(q),κ|2, in L2(R), (7.14)
(Ψ(n))′(· + xn, tn) → eiθu′

c(q),κ, in L2(R). (7.15)

Let us show that (7.14)–(7.15) imply that

d(Ψ(n)(tn), eiθuc(q),κ(· − xn)) → 0. (7.16)

Indeed, it is immediate that (7.15) leads to ||(Ψ(n))′(tn) − eiθu′
c(q),κ(· − xn)||L2(R) → 0. In addition, we

have the estimate:

∥|Ψ(n)| − |uc(q),κ(· − xn)|∥2
L2(R) ≤

∥|Ψ(n)|2 − |uc(q),κ(· − xn)|2∥2
L2(R)

infR((|Ψ(n)| + |uc(q),κ(· − xn)|)2)
. (7.17)

Since 0 ≤ 1−|uc(q),κ|2 ≤ 1− c(q)2/2 (see Proposition 3.7), we deduce that |uc(q),κ| ≥ c(q)/
√

2. Therefore,
using (7.17) and (7.14), we conclude that ∥|Ψ(n)| − |uc(q),κ(· − xn)|∥L2(R) → 0, which establishes (7.16).
This contradicts (7.9).

A Orbital stability of bright solitons
This appendix is devoted to showing the orbital stability of the bright soliton (1.3) in the case κ > 0, as
an application of the results by Colin, Jeanjean and Squassina [16]. We start by recalling that replacing
(1.3) in (1.2) with s = 1, we obtain:

−ωv + v′′ + v3 + 2κv2v′′ + 2κv(v′)2 = 0. (A.1)

By Theorem 1.2 in [16], for a given ω > 0, there exists a unique real positive solution to (A.1) in H1(R),
up to translations. Therefore, this solution is given explicitly by vω,κ = F −1

ω,κ, with F −1
ω,κ defined in (1.4),
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but we omit the index κ from now on, for notational simplicity. In addition, equation (A.1) corresponds
to the Euler–Lagrange equation associated with the minimization problem of the energy at fixed L2-norm,
analogously to the solutions of (TW(c, κ)) (see Lemma 6.1). The energy functional associated with the
focusing equation (1.2) is, for v ∈ H1(R),

E(v) = 1
2

∫
R

|∂xv|2 + κ

4

∫
R
(∂x(|v|2))2 − 1

4

∫
R

|v|4, (A.2)

and the minimization problem is

m(c) = inf{E(v) : v ∈ H1(R), ∥v∥2
L2(R) = c}. (A.3)

In addition, if the minimizer is attained, then there is a Lagrange multiplier ωc > 0, such that vωc
is

a solution to (A.1). In this manner, we can define the set of solutions obtained by this minimization
approach, of mass c, by

G(c) = {v ∈ H1(R) : E(v) = m(c) and ∥v∥2
L2(R) = c}.

In [16], the authors show that this set is not empty and stable. More precisely, in the case of dimension
one, the result of Theorem 1.4 in [16] can be recast as follows.

Theorem A.1 (Theorem 1.4 in [16]). Let κ > 0. If c > 0, then m(c) < 0 and the set G(c) is nonempty
and orbitally stable in H1(R).

Therefore, to conclude the stability of the bright soliton vω, for every ω, some information is needed
to determine the relation between c and ω, as explained in Remark 5.2 in [16]. In addition, it could
happen that two different solutions vω1 , vω2 to (A.1), with ω1 ̸= ω2 have the same L2-norm, so the set
G(c) could contain several (different) solutions. By using (1.4), our final result establishes that there is
a bijection between the parameters c and ω. Hence, there is only one element in G(c), up to invariances.
Indeed, by considering the function c : (0, ∞) → (0, ∞), given by

c(ω) = ∥vω∥2
L2(R), (A.4)

we obtain the following result.

Proposition A.2. Let κ > 0, then

c(ω) = 2
√

ω + 1 + 4κω√
κ

atan(2
√

κω), for all ω > 0. (A.5)

As a consequence, the map c is one-to-one, G(c(ω)) = {eiϕvω(· − y) : ϕ, y ∈ R}, and vω is orbitally stable
in H1(R), for all ω > 0.

Proof. Let us fix ω > 0. Since vω is real-valued and belongs to H1(R) ∩ C2(R), we obtain from (A.1) that

2(1 + 2κv2
ω(x))(v′

ω(x))2 = v2
ω(x)(2ω − v2

ω(x)), for all x > 0. (A.6)

Since vω is even, reaches a maximum at x = 0, and v′
ω(x) < 0, for all x > 0, using (A.6), we get√

2(1 + 2κv2
ω(x))

v2
ω(x)(2ω − v2

ω(x))v′
ω(x) = −1, for all x > 0,

so that we can recast c(ω) as

c(ω) =
∫
R

v2
ω(x)dx = −2

∫ ∞

0
vω(x)

√
2(1 + 2κv2

ω(x))
2ω − v2

ω(x) v′
ω(x)dx.

Performing the change of variable y = vω(x), we deduce that

c(ω) = 2
√

2
∫ √

2ω

0
y

√
1 + 2κy2

2ω − y2 dy.
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We obtain an antiderivative for the latter integrated, defined for all 0 ≤ y ≤
√

2ω by

2
√

2
∫

y

√
1 + 2κy2

2ω − y2 = −
√

2
√

(2ω − y2)(1 + 2κy2) + 1 + 4ω√
κ

atan
(√ 1 + 2κy2

2κ(2ω − y2)

)
,

and (A.5) follows using the identity atan(x−1) = π/2 − atan(x), for all x ≥ 0. By differentiating (A.5),
we obtain

c′(ω) = 2/
√

ω + 4
√

κ atan(2
√

κω),

for all ω > 0, so that c is a bijection between (0, ∞) to itself. Therefore, G(c(ω)) is given by translations
and phase shifts of vω and, by Theorem A.1, we conclude that vω is orbitally stable, for all ω > 0.
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