Exploring continual learning strategies in artificial neural networks through graph-based analysis of connectivity: insights from a brain-inspired perspective - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Exploring continual learning strategies in artificial neural networks through graph-based analysis of connectivity: insights from a brain-inspired perspective

Résumé

Artificial Neural Networks (ANNs) aim at mimicking information processing in biological networks. In cognitive neuroscience, graph modeling is a powerful framework widely used to study brain structural and functional connectivity. Yet, the extension of graph modeling to ANNs has been poorly explored especially in term of functional connectivity (i.e. the contextual change of the activity's units in networks). From the perspective of designing more robust and interpretable ANNs, we study how a brain-inspired graph-based approach can be extended and used to investigate their properties and behaviors. We focus our study on different continual learning strategies inspired by the human brain and modeled with ANNs. We show that graph modeling offers a simple and elegant framework to deeply investigate ANNs, compare their performances and explore deleterious behaviors such as catastrophic forgetting.
Fichier principal
Vignette du fichier
Exploring_Continual_Learning_Strategies_preprint.pdf (2.94 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04284871 , version 1 (14-11-2023)

Licence

Identifiants

  • HAL Id : hal-04284871 , version 1

Citer

Lucrezia Carboni, Dwight Nwaigwe, Marion Mainsant, Raphaël Bayle, Marina Reyboz, et al.. Exploring continual learning strategies in artificial neural networks through graph-based analysis of connectivity: insights from a brain-inspired perspective. 2023. ⟨hal-04284871⟩
202 Consultations
113 Téléchargements

Partager

More