Leanness Computation: Small Values and Special Graph Classes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Leanness Computation: Small Values and Special Graph Classes

Résumé

Let u and v be vertices in a connected graph G = (V, E). For any integer k such that 0 ≤ k ≤ dG (u, v), the k-slice Sk (u, v) contains all vertices x on a shortest uv-path such that dG (u, x) = k. The leanness of G is the maximum diameter of a slice. This metric graph invariant has been studied under different names, such as "interval thinness" and "fellow traveler property". Graphs with leanness equal to 0, a.k.a. geodetic graphs, also have received special attention in Graph Theory. The practical computation of leanness in real-life complex networks has been studied recently (Mohammed et al., COMPLEX NETWORKS'21). In this paper, we give a finer-grained complexity analysis of two related problems, namely: deciding whether the leanness of a graph G is at most some small value ℓ; and computing the leanness on specific graph classes. We obtain improved algorithms in some cases, and time complexity lower bounds under plausible hypotheses.
Fichier principal
Vignette du fichier
Leanness_R1.pdf (835.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04281128 , version 1 (12-11-2023)
hal-04281128 , version 2 (28-05-2024)
hal-04281128 , version 3 (03-07-2024)

Licence

Identifiants

  • HAL Id : hal-04281128 , version 2

Citer

David Coudert, Samuel Coulomb, Guillaume Ducoffe. Leanness Computation: Small Values and Special Graph Classes. 2024. ⟨hal-04281128v2⟩
175 Consultations
312 Téléchargements

Partager

More