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Let u and v be vertices in a connected graph G = (V,E). For any integer k such that 0 ≤ k ≤ dG(u, v), the
k-slice Sk(u, v) contains all vertices x on a shortest uv-path such that dG(u, x) = k. The leanness of G is the
maximum diameter of a slice. This metric graph invariant has been studied under different names, such as ,,interval
thinness” and ,,fellow traveler property”. Graphs with leanness equal to 0, a.k.a. geodetic graphs, also have received
special attention in Graph Theory. The practical computation of leanness in real-life complex networks has been
studied recently (Mohammed et al., COMPLEX NETWORKS’21). In this paper, we give a finer-grained complexity
analysis of two related problems, namely: deciding whether the leanness of a graph G is at most some small value
ℓ; and computing the leanness on specific graph classes. We obtain improved algorithms in some cases, and time
complexity lower bounds under plausible hypotheses.

Keywords: Leanness; Geodetic graphs; SETH-based lower bounds; Graph algorithms.

1 Introduction
The graph parameter Leanness, which is the main topic of this work, arises from Metric and Geometric
Graph Theory Bandelt and Chepoi (2008). For undefined graph terminology, see Bondy and Murty (2008).
Unless stated otherwise, all graphs considered are finite, simple (they have neither loops nor multiple
edges), undirected, unweighted and connected. Roughly, the leanness of a graph G is the smallest integer
ℓ such that, for every source vertex s and every destination vertex t, two same-speed travelers on shortest
st-paths always stay at distance at most ℓ to each other. See Sec. 2 for a formal definition of leanness,
and for the required graph notations and terminology for this work. In what follows, let λ(G) denote the
leanness of a given graph G.
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Related work. To our best knowledge, leanness of graphs has been first studied in Group Theory, under
the insightful name of fellow traveler property Epstein (1992). Although the word problem is notoriously
undecidable for general groups Novikov (1955), it was shown in Epstein (1992) that it can be solved in
quadratic time on so-called automatic groups. A beautiful combinatorial characterization of automatic
groups is given in Epstein (1992), which implies their (infinite) Cayley graph satisfies the fellow traveler
property (i.e., it has bounded leanness).

Hyperbolicity is a metric tree-likeness parameter, first introduced by Gromov Gromov (1987), which
for graphs is tightly related to leanness. A metric space (X,d) is called δ-hyperbolic if it satisfies the
following four-point condition for every u, v, x, y ∈ X: the two largest distance-sums amongst

d(u, v) + d(x, y), d(u, x) + d(v, y) and d(u, y) + d(v, x)

must differ by at most 2δ. The hyperbolicity of (X,d) is the infimum of all values δ such that (X,d) is
δ-hyperbolic. For a graph G, we denote by δ(G) its hyperbolicity. The value δ(G) is a lower bound on
the smallest additive distortion for embedding G into an edge-weighted tree Gromov (1987), with both
values differing by at most some logarithmic factor Chepoi et al. (2008); Gromov (1987). Moreover, there
is empirical evidence that some complex networks have very small hyperbolicity Kennedy et al. (2016).
In this respect, it has been argued in Kennedy et al. (2016) that hyperbolicity helps in better classifying
complex networks, while it also explains some of their observed properties Chepoi et al. (2017).

On one hand, it can be easily verified from the definition that λ(G) ≤ 2δ(G) for every graph G.
Therefore, bounded hyperbolicity implies bounded leanness(i). However, on the other hand, cycles C4n+3

satisfy λ(C4n+3) = 0 whereas δ(C4n+3) = n. Papasoglu proved a deeper relationship between hyper-
bolicity and leanness in geodesic metric spaces Papasoglu (1995), which can be restated as follows for
graphs: let H be the graph obtained from a graph G by subdividing once every edge; there exists a doubly-
exponential function f such that, if the leanness of H is at most ℓ, then G must be f(ℓ)-hyperbolic. In par-
ticular, even though the hyperbolicity of G can be arbitrarily larger than its leanness, the hyperbolicity of
G and the leanness of H are functionally equivalent. Even more strongly, the authors in Mohammed et al.
(2021) reported that all real-life networks G from Cohen et al. (2015) satisfy λ(G) = 2δ(G). In the same
way, it follows from (Chepoi et al., 2008, Proposition 10) that in modular graphs, pseudo-modular graphs
and their respective subclasses, the leanness and the hyperbolicity can only differ by some small constant
factor. For example, it was proved in Dragan and Guarnera (2019) that λ(G) ≤ 2δ(G) ≤ λ(G) + 1
for every Helly graph G (a particular case of pseudo-modular graphs). Helly graphs are one of the most
studied classes of graphs in Metric Graph Theory Bandelt and Chepoi (2008), due to their connections
with hyperconvex metric spaces.

According to Mohammed et al. (2021), computing the leanness of a graph is a good heuristic for
computing its hyperbolicity (and it always outputs a lower bound on the real value). However, while
there has been substantial work toward practical hyperbolicity computation Borassi et al. (2015); Cohen
et al. (2017, 2015); Coudert et al. (2022a,b), comparatively little has been done for leanness computation.
In Mohammed et al. (2021), an algorithm in O(n2m) time and O(n2) space was proposed. We are not
aware of any previous studies on the leanness in some graph classes (for such studies on the hyperbolicity,
see Brinkmann et al. (2001); Chepoi et al. (2008); Dragan and Guarnera (2019); Koolen and Moulton
(2002); Wu and Zhang (2011)).

(i) We note that leanness is often called interval thinness in prior works on hyperbolicity.
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Graphs with leanness equal to zero are exactly the graphs such that there exists only one shortest path
between every two vertices. They have been studied on their own under the different name of geodetic
graphs Ore (1962). Different constructions of geodetic graphs have been proposed in the literature Plesnı́k
(1977). Since their introduction by Ore in 1962, it has been asked repeatedly for a full characterization
of these graphs. An algebraic characterization was proved in Nebeskỳ (1998). Combinatorial character-
izations are known only for restricted subclasses, such as planar geodetic graphs Stemple and Watkins
(1968). Recently, Bodwin characterized the path systems that can be realized as unique shortest paths in
a graph with arbitrary real edge weights Bodwin (2019).

Our Contributions. We address the complexity of computing the leanness of a graph, under two nat-
ural restrictions. First, in Sec. 3, we consider the recognition of graphs with leanness at most some
constant ℓ. It is folklore that geodetic graphs can be recognized in polynomial time, by using a varia-
tion of breadth-first search (BFS). We present a different Õ(nω)-time algorithm for this problem, where
ω < 2.371552 Vassilevska Williams et al. (2024) denotes the exponent for square matrix multiplica-
tion(ii). By doing so, we improve the state of the art. The existence of an almost linear-time algorithm
remains an open problem. We complement this result with conditional quadratic-time lower bounds for
the recognition of graphs with leanness at most one (at most two, resp.).

Sec. 4, 5, 6 are devoted to the computation of leanness in restricted graph classes. Different types
of grids are analyzed in Sec. 4, partly because of their relationship to hyperbolicity in subclasses of
weakly modular graphs Chalopin et al. (2020); Dragan and Guarnera (2019). Other subclasses of planar
graphs are considered in Sec. 5, namely outerplanar and bicyclic graphs. Finally, in Sec. 6, we study the
cographs, chordal graphs, distance-hereditary graphs and bisplit graphs. As already noted in Mohammed
et al. (2021), the leanness is bounded on all these classes. We prove that the leanness can be computed in
linear time on all these classes, except for bisplit graphs. Furthermore, under the Strong Exponential-Time
Hypothesis (SETH) Impagliazzo and Paturi (2001), there is no subquadratic-time algorithm for computing
the leanness of bisplit graphs.

2 Definitions and notations
We now introduce the required notations and terminology for this paper. Recall that we only consider
finite, undirected, unweighted and connected graphs. The graph G = (V,E) has n = |V | vertices and
m = |E| edges. We denote N(u) the set of neighbors of vertex u ∈ V . Given two vertices u, v ∈ V ,
a uv-path of length ℓ ≥ 0 is a sequence of pairwise different vertices (u = v0, v1, . . . , vℓ = v) such
that {vi, vi+1} ∈ E for every i. The distance d(u, v) is the minimum length of a uv-path in G. The
eccentricity ecc(u) is the maximum distance between vertex u and any other vertex v ∈ V , i.e., ecc(u) =
maxv∈V d(u, v). The diameter diam(G) is the maximum eccentricity of the graph, i.e., diam(G) =
maxu∈V ecc(u).

For a pair (x, y) of vertices of G, the interval I(x, y) is the set of vertices that lay on any shortest
xy-path, i.e., I(x, y) = {u ∈ V : d(x, y) = d(x, u) + d(u, y)}. An interval can be divided into a
set of slices Sk(x, y), k = 0, 1, . . . ,d(x, y), such that Sk(x, y) = {u ∈ I(x, y) : d(x, u) = k}. We
observe that the slices of an interval I(x, y) can be constructed in time O(n) if the distance matrix of
the graph is given, or in time O(n + m) otherwise. The diameter diam(Sk(x, y)) of a slice is defined

(ii) The Õ() notation suppresses polylogarithmic factors.
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as maxu,v∈Sk(x,y) d(u, v). Let λ(x, y) = max0≤k≤d(x,y) diam(Sk(x, y)). We call the interval I(x, y)
ℓ-lean if and only if λ(x, y) ≤ ℓ (see Fig. 1 for an illustration).

Definition 1. The leanness λ(G) of a graph G = (V,E) is defined as

λ(G) = max
x,y∈V

λ(x, y).

≤ ℓ
x y

Fig. 1: An ℓ-lean interval.

Roughly, the leanness of a graph measures the maximum distance between two shortest paths with
same end-vertices. Clearly, we have 0 ≤ λ(G) ≤ diam(G) for every graph G. These bounds are sharp.
In particular, λ(G) = 0 if and only if there exists a unique shortest path between every two vertices of G.
Graphs with leanness equal to zero are called geodetic graphs. Examples of geodetic graphs are cliques,
trees and odd cycles.

Let x, y be two vertices on different biconnected components of G. Then, all shortest xy-paths must
cross some cut-vertex z. In this situation, every slice of interval I(x, y) must be a slice of I(x, z), or a
slice of I(z, y). Therefore, λ(x, y) = max{λ(x, z), λ(z, y)}. See Fig. 2 for an illustration. It follows
from this observation that λ(G) always equals the maximum leanness of its biconnected components.
Furthermore, computing the biconnected components of a graph G can be done in linear time Hopcroft
and Tarjan (1973). As a result, we can always assume in what follows that the graphs considered are
biconnected.

≤ λ(x, z) ≤ λ(z, y)
x z y

Fig. 2: A cut-vertex z inside some interval I(x, y).

A vertex pair (x, y) is called a far-apart pair if and only if for every vertex z, we have d(x, z) <
d(x, y)+d(y, z), and similarly d(y, z) < d(y, x)+d(x, z). The following observation will be often used
in our analyzes:

Lemma 1. For every graph G = (V,E), there exists a far-apart pair (x, y) s.t. λ(G) = λ(x, y).

Proof: Let (x, y) ∈ V 2 be such that λ(G) = λ(x, y) and d(x, y) is maximized. Suppose by contradiction
that (x, y) is not far-apart. By symmetry, we may assume the existence of some vertex z such that



Leanness Computation: Small Values and Special Graph Classes 5

d(x, z) = d(x, y) + d(y, z). Then, every slice of I(x, y) is also a slice of I(x, z), and so, λ(x, y) ≤
λ(x, z). However, since d(x, z) > d(x, y), the latter contradicts the maximality of d(x, y).

The leanness of a graph G can be computed in O(n4) time and O(n2) space as follows: we precompute
the distance matrix of G, then we iterate over all 4-tuples of vertices. A dynamic programming algorithm
is presented in Mohammed et al. (2021), that decreases the running time to O(n2m). In what follows,
we give a finer-grained complexity analysis for the recognition of graphs with small leanness, and for the
computation of leanness in special graph classes.

3 Recognition of graphs with small leanness
In this section, we address the recognition of graphs with leanness at most two. A new algorithm is
presented for deciding whether a graph is geodetic (Sec. 3.1). In Sec. 3.2, we prove conditional time
complexity lower bounds for the recognition of graphs with leanness at most one (at most two, resp.).

3.1 Geodetic graphs
It is folklore that geodetic graphs can be recognized in polynomial time as follows:

• We consider each vertex u sequentially, and we compute a BFS with start vertex u. By doing so, we
computed the distances d(u, v), for every vertex v. Then, if d(u, v) > 1, we check whether there
exists a unique neighbour w ∈ N(v) such that d(u,w) = d(u, v)− 1.

We summarize this discussion as follows:

Theorem 2. There is a combinatorial O(nm)-time algorithm for deciding whether a graph is geodetic.

Clearly, O(nm) = O(n3) for any graph. We now present a different algorithm that runs in Õ(nω)
time, where ω < 2.371552 Vassilevska Williams et al. (2024) stands for the exponent of square matrix
multiplication.

Theorem 3. There is an Õ(nω)-time algorithm for deciding whether a graph is geodetic.

Proof: We start pre-computing the distance matrix of G. This can be done in time Õ(nω) by using
Seidel’s algorithm Seidel (1995). The remaining steps of our algorithms, presented next, can be regarded
as an adaptation of Seidel’s algorithm to leanness computation.

First, we check all vertex pairs (u, v) such that d(u, v) is a power of two. For that, we consider each
power 2i, for i = 1, 2, . . . , ⌊log n⌋, sequentially. Let Ai be the (n × n)-dimensional matrix such that
Ai[x, y] = 1 if and only if d(x, y) = 2i−1, and Ai[x, y] = 0 otherwise. – We note that A1 is just the
usual adjacency matrix of G. – Let Bi = (Ai)

2. If there exists some pair (u, v) such that d(u, v) = 2i

and Bi[u, v] > 1, then we reject. Indeed, we claim that in this situation G is not geodetic. This is because
Bi[u, v] > 1 implies the existence of two vertices w,w′ ∈ S2i−1(u, v), where S2i−1(u, v) = {x ∈
I(u, v) : d(u, x) = 2i−1} is a slice of the interval I(u, v), and so, of two shortest uv-paths.

Conversely, we claim that if we never reject during this phase, then there exists a unique shortest uv-path
for every pair (u, v) such that d(u, v) is a power of two. Indeed, suppose by contradiction the existence
of a pair (u, v) such that d(u, v) = 2i and there exist two shortest uv-paths. Without loss of generality,
exponent i is minimized. Since we assume Bi[u, v] = 1, there exists a unique w ∈ S2i−1(u, v). But then,
let k be such that 0 < k < 2i and |Sk(u, v)| > 1. Note that k ̸= 2i−1. Therefore, either k < 2i−1 and
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there exist two shortest uw-paths, or k > 2i−1 and there exist two shortest wv-paths. In either case, the
latter contradicts the minimality of exponent i since we have d(u,w) = d(w, v) = 2i−1.

Second, we again consider each power 2i, for i = 1, 2, . . . , ⌊log n⌋, sequentially. Then, we consider all
pairs (u, v) such that d(u, v) = (2j + 1)2i−1, for some integer j ≥ 1. These are exactly the pairs (u, v)
such that 2i−1 divides d(u, v) but 2i does not divide d(u, v). If there exists such a pair (u, v) such that
|S2i−1(u, v)| > 1, then G is not geodetic, and so, we reject. Otherwise (no such a pair exists for every i),
we accept. This above condition, for every i, can be verified as follows:

1. Let Gi be the graph whose adjacency matrix equals Ai. – In particular, G1 = G. – Note that Gi is
a priori not connected. All connected components of Gi must be considered separately.

2. We compute all distances in Gi by using Seidel’s algorithm. In what follows, let di(u, v) denote
the distance between two vertices that are in a same connected component of Gi. Note that if
d(u, v) = (2j + 1)2i−1, then di(u, v) = 2j + 1. Furthermore, all shortest uv-paths of Gi are
subsets of shortest uv-paths of G (the latter might be false for other pairs (u′, v′) such that 2i−1

does not divide d(u′, v′)).

3. For r = 0, 1, 2, let Ci,r be the (n×n)-dimensional matrix such that Ci,r[x, y] = 1 if and only if x, y
are in a same connected component of Gi and di(x, y) = r (mod 3), otherwise Ci,r[x, y] = 0.
We show next that it is sufficient to compute the three matrix products AiCi,r in order to verify
the condition. Specifically, for every pair (u, v) such that d(u, v) = (2j + 1)2i−1, we claim that
|S2i−1(u, v)| > 1 if and only if, for the unique r ∈ {0, 1, 2} such that 2j = r (mod 3), we
have (AiCi,r)[u, v] > 1. This is because the vertices of S2i−1(u, v) are exactly the neighbours
of u in Gi that lie on some shortest uv-path. These are exactly the neighbours w of u in Gi s.t.
di(w, v) = di(u, v)− 1 = 2j (mod 3).

At each step i, we call Seidel’s algorithm once, and compute O(1) matrix products. Since there are Õ(1)
steps, the running time of the algorithm is in Õ(nω).

Finally, let us prove correctness of this algorithm. Suppose by contradiction the existence of two
shortest uv-paths, for some pair (u, v). Recall that d(u, v) cannot be a power of two. Therefore,
d(u, v) = (2j + 1)2i−1, for some i, j ≥ 1. Without loss of generality, exponent i is maximized.
There exists a unique w ∈ S2i−1(u, v) because otherwise we would have rejected during the second
phase of the algorithm. Furthermore, since d(u,w) = 2i−1, there exists a unique shortest uw-path.
This implies the existence of two shortest wv-path, and d(w, v) = 2ij is not a power of two. But then,
2ij = (2t+ 1)2i+s−1, for some s, t ≥ 1, thus contradicting the maximality of exponent i.

The existence of an almost linear-time algorithm is left as an intriguing open question.

3.2 Time complexity lower bounds
We were unsuccessful in establishing lower bounds for the recognition of geodetic graphs. However, in
what follows, we do prove conditional lower bounds for the recognition of graphs with leanness at most
one (at most two, resp.).

Let H = (X,R) be a 3-uniform hypergraph (i.e., R ⊆
(
V
3

)
). A 4-hyperclique in H is a vertex

subset X = {x1, x2, x3, x4} such that every 3-subset of X is a hyperedge. The so-called 3-uniform
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4-hyperclique hypothesis posits that detecting a 4-hyperclique in a 3-uniform hypergraph of n nodes re-
quires n4−o(1) time Lincoln et al. (2018). Evidence for this conjecture is that its refutation would imply
faster algorithms for well-studied problems such as MAX-3-SAT Williams (2005).

Proposition 4. Under the 3-uniform 4-hyperclique hypothesis, the recognition of n-vertex graphs G s.t.
λ(G) ≤ 1 requires Ω(n2−o(1)) time. The result holds even if G has O(n3/2) edges.

Proof: It was proved in Dalirrooyfard and Williams (2022) that detecting an induced C4 in an n-vertex
O(n3/2)-edge graph G requires Ω(n2−o(1)) time under the 3-uniform 4-hyperclique hypothesis. Let G′

be obtained from G by adding a universal vertex. Then, λ(G′) ≤ 1 if and only if G is C4-free.

The STRONG EXPONENTIAL-TIME HYPOTHESIS (SETH) posits that for every ε > 0, there exists
some integer k such that k-SAT cannot be solved in (2− ε)n time Impagliazzo and Paturi (2001). SETH-
based lower bounds have gained momentum in the nascent field of ,,Fine-Grained Complexity in P”.
These conditional lower bounds are often achieved via an intermediate problem called DISJOINTSET. In
the latter problem, we are given two families of n sets and the goal is to determine whether there exists
two disjoint sets, with one set in each family. Under the SETH, it was proved in Borassi et al. (2016);
Williams (2005) that DISJOINTSET requires Ω(n2−o(1)) time, even if the universe of both families only
contains no(1) elements. We will come back to the SETH in Sec. 6.4.

Proposition 5. Under the SETH, the recognition of n-vertex graphs G s.t. λ(G) ≤ 2 requires Ω(n2−o(1))
time. The result holds even if G has n1+o(1) edges.

Proof: Under the SETH, deciding whether an n-vertex graph G = (V,E) has diameter two or three
requires Ω(n2−o(1)) time, even if G only has n1+o(1) edges (such a graph can be constructed from any
instance of DISJOINTSET) Borassi et al. (2016). Let G′ be constructed from G as follows:

• The vertex set of G′ is V ∪ Vx ∪ Vy ∪ {x, y, z} where Vx, Vy are disjoint copies of V ;

• N(x) = Vx, N(y) = Vy , and N(z) = Vx ∪ Vy;

• Vx and Vy are independent sets;

• G′[V ] = G;

• finally, for every v ∈ V , we add two edges {vx, v}, {v, vy}.

Note that we can construct G′ from G in n1+o(1) time. Furthermore, it was proved in (Borassi et al., 2016,
Sec. 3.3) that δ(G′) = diam(G)/2, where δ(G′) denotes the hyperbolicity of G′ (see Sec. 1). Recall that
λ(G′) ≤ 2δ(G′), and so, λ(G′) ≤ diam(G). This is in fact an equality because V ⊆ S2(x, y) and G
is an isometric sugraph of G′. As a result, λ(G′) ≤ 2 iff diam(G) = 2, which, under SETH, requires
Ω(n2−o(1)) time to decide.

4 Grid variants
In this section, we establish closed-form formulas for the leanness of different types of grids. We refer to
Fig. 3, 4, 5, 7 for illustrations. We stress that grids often appear as an obstruction to small hyperbolicity or
leanness in various graph classes. For example, it follows from (Chalopin et al., 2020, Proposition 9.10)
that for median graphs G, λ(G) ≤ 2ℓ if and only if every isometric square grid of G has side at most ℓ.
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Square grids
The p × q grid is the graph G = (V,E), where V = J0, p − 1K × J0, q − 1K and E = {(u, v) ∈
V 2 : |u1 − v1| + |u2 − v2| = 1}. The distance between two vertices u and v is the Manhattan distance
d(u, v) = |u1 − v1|+ |u2 − v2|.

u

v

y

x

p

q

Fig. 3: The 4 × 5 grid.

Proposition 6. The p× q grid G has leanness λ(G) = 2min{p, q} − 2.

Proof: Without loss of generality, suppose p ≤ q. The only far-apart pairs are the two pairs of opposite
corners {x, y} = {(0, 0), (p − 1, q − 1)} and {x′, y′} = {(0, q − 1), (p − 1, 0)}. By Lemma 1, λ(G) =
max{λ(x, y), λ(x′, y′)}. Because of symmetry, they both have the same leanness, so we just need to find
the leanness of one of them, say {x, y}. Let k be such that 0 ≤ k ≤ p+ q − 2.

Sk(x, y) = {(i, j) ∈ V : i+ j = k} = {(i, k − i) : 0 ⩽ i < p, 0 ⩽ k − i < q}

Let u = (i, k − i) and v = (j, k − j) be two vertices in the slice Sk(x, y).

d(u, v) = |j − i|+ |k − i− (k − j)| = 2|j − i| ⩽ 2(p− 1)

Hence, λ(G) ≤ 2(p − 1). Then, taking u = (p − 1, 0) and v = (0, p − 1), we do have u, v ∈ Sk(x, y)
and d(u, v) = 2(p− 1), so λ(G) ≥ 2(p− 1). Thus, we have proven that λ(G) = 2(p− 1).

Cylinder grids
The cylinder grid of size p×q is given by connecting the two sides of size p from the p×q grid. Formally,
it means adding the edges {{(k, 0), (k, q − 1)} : 0 ⩽ k < p}. It can also be seen as replacing J0, q − 1K
with Z/qZ.

Proposition 7. The p× q cylinder grid has leanness

λ =

{
min {2(p− 1), q − 1} if q is odd

min
{
q, 2

⌊
2(p−1)+q

4

⌋}
if q is even
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Proof: By Lemma 1 we only need to consider far-apart pairs. It was proved in (Coudert and Ducoffe,
2016, Lemma 55) that the set of far-apart pairs is {{(0, i), (p − 1, j)} : 0 ⩽ i, j < q, j − i ≡ ±

⌊
q
2

⌋
(mod q)}. Because of symmetry, we may only look at one of them, say {x, y} = {(0, 0), (p− 1,

⌊
q
2

⌋
)}.

If q is odd, then the graph induced by I(x, y) is the p × q+1
2 grid. By Proposition 6, we get λ(G) =

min{2p, q + 1} − 2 = min{2(p− 1), q − 1}.

If q is even, then the graph induced by I(x, y) is the whole graph G. Furthermore, G is bipartite. Then,
any two vertices in a same slice will always be in the same partite set, and therefore the distance between
such vertices must be even. As the diameter of G is p− 1 + q

2 , we obtain that λ(G) ≤ 2⌊p−1+q/2
2 ⌋.

Let u = (u1, u2) and v = (v1, v2) be two vertices on a same slice Sk(x, y). Note that k = d(x, u) =
u1 +min{u2, q − u2} ≤ u1 +

q
2 . In particular, k − q

2 ≤ u1 ≤ k. Hence,

d(u, v) = |u1 − v1|+max{|u2 − v2|, q − |u2 − v2|} ≤ |u1 − v1|+ q/2 ≤ q.

Altogether combined, we obtain λ(G) ≤ min
{
q, 2

⌊
p−1+q/2

2

⌋}
.

We end up proving the above is always an equality. If q
2 ≤ p − 1, then u = ( q2 , 0) and v = (0, q

2 )

are in Sq/2(x, y), and d(u, v) = q. Else, p − 1 ≤ r =
⌊
p−1+q/2

2

⌋
≤ q

2 , vertices u = (0, q − r) and
v = (p− 1, r − p+ 1) are in Sr(x, y), and d(u, v) = 2r.

Torus grids
The torus grid of size p× q is obtained from the p× q cylinder grid by adding all edges in {{(0, k), (p−
1, k)} : 0 ≤ k < q}.

Fig. 4: A torus grid.

Proposition 8. The p× q torus grid has leanness

λ =


min {p, q} − 1 if p and q are odd
min

{
q, 2

⌊
p+q
4

⌋}
if p is odd and q is even

min
{
p, 2

⌊
p+q
4

⌋}
if p is even and q is odd

2
⌊
p+q
4

⌋
if p and q are even
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Proof: A pair {(i, j), (k, l)} is far-apart if and only if k − i ≡ ±
⌊
p
2

⌋
(mod p) and l − j ≡ ±

⌊
q
2

⌋
(mod q). By Lemma 1, it is enough to find the leanness of one of these pairs, say the pair {x, y} =
{(0, 0), (

⌊
p
2

⌋
,
⌊
q
2

⌋
)}.

If p and q are odd, then the graph induced by I(x, y) is the p+1
2 × q+1

2 grid. By Proposition 6, λ(G) =
min{p+ 1, q + 1} − 2 = min{p, q} − 1.

If p is odd and q is even, then the graph induced by I(x, y) is the p+1
2 ×q cylinder grid. By Proposition 7,

λ(G) = min
{
q, 2

⌊
p+q−1

4

⌋}
. Note that

⌊
p+q−1

4

⌋
=

⌊
p+q
4

⌋
because p + q is odd. The case when p is

even and q is odd is dealt with similarly.

Finally, assume both p and q are even. Then, diam(G) = (p+ q)/2. Furthermore, G is bipartite. Since
every slice of I(x, y) must be fully contained in one partite set, the diameter of each slice must be even.
Hence λ(G) must be even, and so, λ(G) ≤ 2

⌊
p+q
4

⌋
. Without loss of generality we assume from now on

p ≤ q. Let u = (0, q −
⌊
p+q
4

⌋
) and v = (p2 ,

⌊
p+q
4

⌋
− p

2 ). Observe that u, v ∈ S⌊ p+q
4 ⌋(x, y). Therefore,

λ(G) ≥ λ(x, y) ≥ d(u, v) = 2
⌊
p+q
4

⌋
.

King’s grids
The King’s grid of size p×q is obtained from the p×q grid by adding both diagonals in every square, i.e.,
by adding all edges in {{(i, j), (i+1, j+1)} : 0 ≤ i < p−1, 0 ≤ j < q−1}∪{{(i, j), (i−1, j+1)} :
0 < i < p, 0 ≤ j < q − 1}. It is an example of Helly graph.

Fig. 5: A King’s grid.

Proposition 9. The p× q King’s grid has leanness λ =

{
p− 2 if p = q are even
min{p, q} − 1 otherwise

Proof: Recall the definition of hyperbolicity in Sec. 1. We denote δ(G) the hyperbolicity of the King’s
grid G of size p× q. By (Dragan and Guarnera, 2019, Theorem 2), we have 2δ(G)− 1 ≤ λ(G) ≤ 2δ(G).
Furthermore, if λ(G) = 2δ(G) − 1, then necessarily δ(G) is an integer and G contains an isometric
H

δ(G)−1
3 (see Dragan and Guarnera (2019) and Figure 6 for the definition of the graphs Hk

1 , Hk
2 and Hk

3 ).
Without loss of generality, p ⩽ q. We first consider the case p < q. There are two subcases, depending

on the parity of p:

• Subcase p is even. The maximum k s.t. G contains an isometric Hk
1 (Hk

2 and Hk
3 , resp.) are k =

p
2 − 1 (k = p

2 − 1 and k = p
2 − 2, resp.). By (Dragan and Guarnera, 2019, Theorem 3), we obtain

δ(G) = p−1
2 . Since δ(G) is not an integer, we get λ(G) = 2δ(G) = p− 1.



Leanness Computation: Small Values and Special Graph Classes 11

Fig. 6: The graphs Hk
1 , Hk

2 and Hk
3 from Dragan and Guarnera (2019). They isometrically embed in the King’s grids

of respective sizes (2k + 1)× (2k + 1), (2k + 2)× (2k + 3) and (2k + 4)× (2k + 4).

• Subcase p is odd. The maximum k s.t. G contains an isometric Hk
1 (Hk

2 and Hk
3 , resp.) are k = p−1

2

(k = p−1
2 − 1 and k = p−1

2 − 2, resp.). By (Dragan and Guarnera, 2019, Theorem 3), we obtain

δ(G) = p−1
2 . Since G does not contain an isometric H

p−1
2 −1

3 , we get λ(G) = 2δ(G) = p− 1.

Finally, let us assume p = q. If p = q = 2, then G is a clique, and so, δ(G) = λ(G) = 0. Thus, from now
on we assume p ⩾ 3. Again, there are two subcases, depending on the parity of p = q:

• Subcase p = q is even. The maximum k s.t. G contains an isometric Hk
1 (Hk

2 and Hk
3 , resp.) are

k = p
2 − 1 (k = p

2 − 2 and k = p
2 − 2, resp.). By (Dragan and Guarnera, 2019, Theorem 3), we

obtain δ(G) = p
2 − 1. In particular, λ(G) ⩽ p− 2. Since the (p− 1)× q King’s grid is an isometric

subgraph of G with leanness p− 2, λ(G) ⩾ p− 2.

• Subcase p = q is odd. The maximum k s.t. G contains an isometric Hk
1 (Hk

2 and Hk
3 , resp.) are

k = p−1
2 (k = p−1

2 − 1 and k = p−1
2 − 2, resp.). By (Dragan and Guarnera, 2019, Theorem 3), we

obtain δ(G) = p−1
2 . Since G does not contain an isometric H

p−1
2 −1

3 , we get λ(G) = 2δ(G) = p−1.

Triangular grids
Lastly, the triangular grid of size p× q is obtained from the p× q grid by adding all edges in {{(i, j), (i+
1, j + 1)} : 0 ≤ i < p− 1, 0 ≤ j < q − 1}.

Proposition 10. The p× q triangular grid has leanness λ = min{p, q} − 1.

Proof: Recall the definition of the hyperbolicity δ(G) in Sec. 1. As proved in (Coudert and Ducoffe, 2016,
Lemma 51), δ(G) = min{p,q}−1

2 . Hence, λ(G) ≤ 2δ(G) = min{p, q} − 1. Without loss of generality,
p ≤ q. Let x = (p−1, 0), y = (0, q−1) and u = (0, 0), v = (p−1, p−1). Notice that d(x, y) = p+q−2.
Furthermore, we have u, v ∈ Sp−1(x, y). As a result, λ(G) ≥ λ(x, y) ≥ d(u, v) = p− 1.

5 Planar graphs
In this section, we analyze the leanness for subclasses of planar graphs.
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Fig. 7: A triangular grid.

5.1 Outerplanar graphs
An outerplanar graph is a planar graph in which all vertices belong to the outer face. Notice that out-
erplanar graphs form a hereditary class. Hence, we may restrict our study on leanness to biconnected
outerplanar graphs. We refer to Syslo (1979) for basic properties of outerplanar graphs. In particular,
the weak dual graph of a biconnected outerplanar graph (that is obtained from its classic dual graph by
removing the universal vertex corresponding to the outer face) is a tree.

We start with an important lemma for what follows:

Lemma 11. In a biconnected outerplanar graph, every slice is contained in a face.

Proof: Let x, y ∈ V be arbitrary, and let u, v ∈ Sk(x, y) for some k s.t. 0 < k < d(x, y). Suppose by con-
tradiction there is no face containing both u and v. Then, there exists some cut-edge {a, b} ∈ E such that
u and v are in two different connected components of G− {a, b}. Denote by x = u0, u1, · · ·ul = y and
x = v0, v1, · · · vl = y two shortest xy-paths with u = uk and v = vk. The path ukuk−1 · · ·u1xv1v2 · · · vk
must go through a or b, so, there exists some p such that 0 ⩽ p < k and {up, vp} ∩ {a, b} ̸= ∅. W.l.o.g.
suppose up = a. Similarly, there exists some q such that k < q ⩽ l and {uq, vq} ∩ {a, b} ≠ ∅. Then,
min{d(up, uq),d(up, vq)} ≤ d(a, b) = 1. However, since we have p < k < q, d(up, vq) ≥ d(up, uq) =
q − p ≥ 2. A contradiction. Hence, there must be a face containing both u and v.

The concept of extraction is now introduced:

Definition 2. Let G be a biconnected outerplanar graph and C be one of its faces. The extraction of C,
denoted Ĉ, is a copy of C where every edge {u, v} of C is turned into a triangle if u and v are equidistant
to some vertex in G− (C − {u, v}).

Fig. 8: Extraction of face C (the red face).
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This concept was first introduced in Cohen et al. (2017), but under the different name of ,,sunshine
graph”. In (Cohen et al., 2017, Lemma 27), a linear-time algorithm is presented in order to compute the
respective extractions of all faces in a biconnected outerplanar graph.

Theorem 12. Let F denote the set of all (inner) faces in a biconnected outerplanar graph G. Then, the
leanness of G is λ(G) = max

C∈F
λ(Ĉ).

Proof: Let x = u0, u1, · · ·ul−1, ul = y and x = v0, v1, · · · vl−1, vl = y be two shortest xy-paths for
some x, y ∈ V . We pick some k such that 0 < k < d(x, y) and d(uk, vk) is maximized. By Lemma 11,
vertices uk and vk are contained in a face C. Let us prove that d(uk, vk) ≤ λ(Ĉ). For convenience, in
what follows, for every w ∈ C, we denote by ŵ its copy in Ĉ. Consider minimal indices i and j such that
ui, vj ∈ C. We set vertex x′ and index p as follows:

• If ui = vj , then i = d(u0, ui) = d(v0, vj) = j. We set x′ = ûi and p = i.

• Else if i = j, vertices ui−1 and vi−1 are not in C, by minimality of i and j. Therefore, there is a
face C ′ ̸= C containing ui−1 and vi−1. Note that C ∩ C ′ = {ui, vj} must be a cut-edge. Since
vertex x is equidistant to ui, vj and it is a vertex of G − (C − {ui, vj}), edge {ui, vj} has been
replaced in Ĉ by a triangle. We set x′ as the third vertex in this triangle, x′ ̸= ûi, v̂j , and we set
p = i− 1.

• Otherwise, we may assume wlog that i < j. As in the previous case, it follows from the minimality
of i, j that there exists some face C ′ ̸= C such that ui−1, vj−1 ∈ C ′ and C ∩ C ′ = {ui, vj} is a
cut-edge. In particular, we get j = i + 1. Then, x, u1, . . . ui, vj , vj+1, . . . y is also a shortest path.
We set x′ = ûi and p = j − 1 = i.

By reverting the two shortest xy-paths, we can define vertex y′ ∈ Ĉ and index q in a similar way as above.
By doing so, we get the two shortest paths x′, ûp+1, · · · ûk, · · · ûq−1, y

′ and x′, v̂p+1, · · · v̂k, · · · v̂q−1, y
′

in Ĉ. As a result, λ(Ĉ) ≥ λ(x′, y′) ≥ dĈ(ûk, v̂k) = dG(uk, vk). This implies λ(G) ≤ max
C∈F

λ(Ĉ).

Conversely, let x′, y′ ∈ Ĉ be arbitrary, for some face C of G. Let us call triangle vertex any vertex
w ∈ Ĉ such that ûv̂w is a triangle and {u, v} ∈ E(C). Observe that any internal vertex in a shortest
path is not a triangle vertex. In particular, the vertices in I(x′, y′) \ {x′, y′} cannot be triangle vertices. If
x′ is a triangle vertex, and N(x′) = {û1, v̂1}, then there exists a vertex x of G − (C − {u1, v1}) that is
equidistant to u1, v1. We replace edge x′û1 (x′v̂1, resp.) by a shortest xu1-path in G (a shortest xv1-path,
resp.). We proceed similarly for y′ if it is a triangle vertex. By doing so, all shortest x′y′-paths in Ĉ can
be extended into shortest xy-paths in G. Furthermore, every slice Sk′(x′, y′), 0 < k′ < dĈ(x

′, y′), must
be contained in some slice Sk(x, y) in G. As a result, λ(Ĉ) ⩽ λ(G).

We complete Theorem 12 with a closed-form formula for the leanness of extractions. Namely:

Lemma 13. Let C be a face of length 4p+ r, 0 ⩽ r ⩽ 3, in a biconnected outerplanar graph G.

• If r is odd, then λ(Ĉ) =

{
0 if C = Ĉ

2p+
⌊
r
2

⌋
otherwise.

• If r = 2, then λ(Ĉ) =

{
2p+ 1 if there are two diametrically opposed triangles in Ĉ

2p otherwise.
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• Else, λ(Ĉ) = 2p.

Proof: By Lemma 11, λ(Ĉ) is at most the maximum diameter of its faces. Therefore, λ(Ĉ) ⩽ diam(C).
If r = 0, then λ(Ĉ) ⩾ λ(C) = diam(C) = 2p. Thus from now on we assume r > 0. If furthermore
C = Ĉ, then

λ(Ĉ) = λ(C) =

{
0 if r is odd
2p otherwise.

Therefore, we also assume for the remainder of the proof C ̸= Ĉ.
First we assume r is odd. Let uvx be some triangle in Ĉ that replaces edge {u, v} ∈ E(C). Since

C is odd, there exists a unique y ∈ C such that d(y, u) = d(y, v) = diam(C) = 2p +
⌊
r
2

⌋
. Then,

I(x, y) = {x} ∪ C. Furthermore, Sp+1(x, y) is reduced to some diametral pair of C. Hence, λ(Ĉ) ≥
diam(C) = 2p+

⌊
r
2

⌋
in this case.

Assume r = 2. As before, let uvx be some triangle in Ĉ that replaces edge {u, v} ∈ E(C). A vertex
y of C cannot be equidistant to u, v because C is bipartite. Therefore, for every y of C, λ(x, y) ≤ λ(C).
Now, let yu′v′ be some triangle in Ĉ that replaces edge {u′, v′} ∈ E(C). Without loss of generality,
G − {{u, v}, {u′, v′}} is made of a uu′-path and a vv′-path. If d(u, u′) < d(v, v′), then λ(x, y) =
λ(u, u′) ⩽ λ(C). Otherwise, d(u, u′) = d(v, v′) = 2p. In the latter situation, I(x, y) \ {x, y} = C.
Furthermore, Sp(x, y) is reduced to some diametral pair of C. Hence, λ(Ĉ) ≥ diam(C) = 2p+1 in this
case.

Corollary 14. The leanness of an outerplanar graph can be computed in linear time.

5.2 Bicyclic graphs
A bicyclic graph is a graph with m = n + 1 edges. Bicyclic graphs form a subclass of planar graphs.
Furthermore, the nontrivial biconnected components of a bicyclic graph can only be of two different types,
namely: they are either a cycle, or the union of three internally disjoint ab-paths for some vertices a, b.

For non-cycle biconnected components, the following lemma explains how to compute their leanness:

Lemma 15. Let G = (V,E) be the union of 3 disjoint ab-paths of respective lengths f ⩽ g ⩽ h. Then,
we can compute λ(G) in linear time.

Proof: Notice G contains three cycles C1, C2, C3 of respective lengths f + g ⩽ f + h ⩽ g + h.
Furthermore, C1, C2 must be isometric. This implies λ(G) ⩾ max{λ(C1), λ(C2)}. We next give a
closed-form formula for this lower bound:

Claim 1. max{λ(C1), λ(C2)} =


2
⌊
f+h
4

⌋
if f, h are of same parity

2
⌊
f+g
4

⌋
if f and g have a parity different from the parity of h

0 otherwise.

Let us first consider f, h to be of same parity. Then, λ(C2) = 2
⌊
f+h
4

⌋
because C2 is even. If f and

g are of different parity, then λ(C1) = 0 because C1 is odd; otherwise, λ(C1) = 2
⌊
f+g
4

⌋
⩽ λ(C2).
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Assume now f, h are of different parity. Then, max{λ(C1), λ(C2)} = λ(C1) because C2 is odd. In
particular, λ(C1) = 2

⌊
f+g
4

⌋
if f, g are of same parity, else λ(C1) = 0. ⋄

Case f = g = h. In order to compute λ(G), by Lemma 1, it suffices to consider far-apart pairs (x, y) of
G. For any (x, y) ̸= (a, b), let x, y ∈ Ci for some i. Since (x, y) must be far-apart, d(x, y) = diam(Ci) =
f . In particular, {x, y} ∩ {a, b} = ∅. Furthermore, I(x, y) ⊆ Ci because there is no shortest xy-path
that goes by a, b. Hence, λ(x, y) ≤ λ(Ci) = 2

⌊
f
2

⌋
. Since we also have λ(a, b) = 2

⌊
f
2

⌋
, it follows that

λ(G) = λ(a, b) = 2
⌊
f
2

⌋
.

Case f < h. Recall that λ(G) ⩾ max{λ(C1), λ(C2)}. Conversely, we prove that for most pairs x, y of
vertices we have λ(x, y) ⩽ max{λ(C1), λ(C2)}.

Claim 2. For x, y ∈ V , λ(x, y) ⩽ max{λ(C1), λ(C2)} if one of the following conditions hold:

1. x, y ∈ C1;

2. x, y ∈ C2;

3. x ∈ C1 \ C2, and min{d(x, a),d(x, b)} < g−f
2 ;

4. d(x, a) + d(a, y) ̸= d(x, b) + d(b, y).

In particular, λ(G) = max{λ(C1), λ(C2)} if g, h are of different parity.

If x, y ∈ C1 then λ(x, y) ⩽ λ(C1) because C1 is a convex subgraph of G. In particular, λ(a, b) ⩽
λ(C1). Assume now x, y ∈ C2. Either I(x, y) ⊆ C2, or f = g and there exists a shortest xy-path that
goes by a, b. Hence, λ(x, y) ⩽ max{λ(C2), λ(a, b)} ⩽ max{λ(C1), λ(C2)}.

Since C1, C2 cover G, up to symmetries, we are left considering the pairs x, y such that x ∈ C1 \
C2, y ∈ C2 \ C1. In particular, x is on the second shortest ab-path, of length g, while y must be on the
longest ab-path, of length h. Assume d(x, a) < g−f

2 , or equivalently, g − d(x, a) > f + d(x, a). Then,
every shortest xb-path must go by a. This implies every shortest xy-path must go through vertex a, so,
λ(x, y) = max{λ(x, a), λ(y, a)} ⩽ max{λ(C1), λ(C2)}. In the same way, assuming d(x, b) < g−f

2 , we
get λ(x, y) = max{λ(x, b), λ(y, b)} ⩽ max{λ(C1), λ(C2)}.

Assume d(x, a) + d(a, y) ̸= d(x, b) + d(b, y). Without loss of generality, d(x, a) + d(y, a) <
d(x, b)+d(y, b). Then again, every shortest xy-path must go by a, so, λ(x, y) = max{λ(x, a), λ(y, a)} ⩽
max{λ(C1), λ(C2)}. Finally, note that if none of the four conditions of our claim hold, then g + h =
d(x, a) + d(y, a) + d(x, b) + d(y, b) must be even. ⋄

The two above claims imply a closed-form formula for λ(G) if g, h are of different parity, namely:

λ(G) =

2
⌊
f+h
4

⌋
if f and h have a parity different from the parity of g

2
⌊
f+g
4

⌋
if f and g have a parity different from the parity of h.

From now on, we assume g, h to be of same parity.

Claim 3. Let (xlim, ylim) be the unique pair of vertices in (C1\C2)×(C2\C1) so that d(xlim, a) =
⌈
g−f
2

⌉
and d(xlim, ylim) =

g+h
2 . Then, λ(G) = max{λ(C1), λ(C2), λ(xlim, ylim)}.
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Assume the existence of a pair (x, y) such that λ(x, y) > max{λ(C1), λ(C2)} (else, we are done). We
deduce from the previous claim that, up to symmetries:

• x ∈ C1 \ C2, y ∈ C2 \ C1;

• g−f
2 ⩽ min{d(x, a),d(x, b)} ⩽ max{d(x, a),d(x, b)} ⩽ g+f

2 ;

• d(x, y) = g+h
2 .

By symmetry, we may further assume d(x, a) ⩽ d(x, b). Then, g−f
2 ⩽ d(x, a) ⩽ g

2 .
There are at most three shortest xy-paths, namely: one going by a and not by b, one going by b but not

by a, and one going by both a and b. Furthermore, the shortest xy-path that goes by a, b exists if and only
if d(x, b) = g − d(x, a) = f + d(x, a) (the other two shortest paths always exist, because a, b ∈ I(x, y),
and they cover C3).

Assume for what follows d(x, a) >
⌈
g−f
2

⌉
. Then, there are two shortest xy-paths. Let k be such that

0 < k < d(x, y) and diam(Sk(x, y)) is maximized. We have that Sk(x, y) = {u, v}, with u, a and
v, b being on a same shortest xy-path respectively. Let us pick x′ ∈ S1(x, a), y′ ∈ S1(y, b). Note that
x′, y′ are unique. Furthermore, we still have g−f

2 ⩽ d(x′, a) ⩽ g
2 and d(x′, y′) = g+h

2 . Observe that
u′, v′ ∈ Sk(x

′, y′) where u′ ∈ S1(u, y), v′ ∈ S1(v, x). Since all induced u′v′-paths in G are at least as
long as the corresponding induced uv-paths, λ(x′, y′) ⩾ d(u′, v′) ⩾ d(u, v) = λ(x, y). ⋄

The remainder of the proof consists in computing λ(xlim, ylim). For that, let Pa be the shortest xlimylim-
path that goes by a and does not go by b. Let Pb be defined similarly. For every k such that 0 < k < g+h

2 ,
let uk ∈ Pa, vk ∈ Pb be at distance k to xlim, and let dk = d(uk, vk).

Claim 4. λ(xlim, ylim) ≤ max{λ(C1)} ∪ {dk : 0 < k < (g + h)/2}.

The claim is trivial if there are only two shortest xlimylim-paths. So, assume d(xlim, a) =
g−f
2 , and let

Pab be the shortest xlimylim-path that goes by a, b. For k such that g−f
2 < k < g+f

2 , let wk ∈ Pab be at
distance k to xlim. Observe that vk, wk ∈ Sk(xlim, b), so, d(vk, wk) ⩽ λ(xlim, b) ⩽ λ(C1). Furthermore,
d(uk, vk) ⩾ d(uk, wk) because all induced ukvk-paths are at least as long as the corresponding ukwk-
paths. Hence, diam(Sk(xlim, ylim)) ⩽ max{λ(C1), dk}. ⋄

In order to compute dk, we need to consider the ab-paths that contain uk, vk.

• Assume k ⩽ d(xlim, a). Then, uk, vk both lie on the second ab-path, of length g. We have dk =
min{2k, f + g− 2k}. Since the function t 7→ min{2t, f + g− 2t} is maximized at t = (f + g)/4,
we get

dk ⩽ ℓ1 =

2 d(xlim, a) = 2
⌈
g−f
2

⌉
if d(xlim, a) ⩽

⌊
g+f
4

⌋
max

(
2
⌊
f+g
4

⌋
, f + g − 2

⌈
f+g
4

⌉)
else.

• Assume d(xlim, a) < k ⩽ d(xlim, b). Now, uk is on the third ab-path, of length h. We have
dk = min{2k, g+ h− 2k, f + g− 2 d(xlim, a)} = min{2k, g+ h− 2k, f + g− 2

⌈
g−f
2

⌉
}. Since
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the function t 7→ min{2t, g + h− 2t} is maximized at t = g+h
4 , we get

dk ⩽ ℓ2 =


min

{
2 d(xlim, b), f + g − 2

⌈
g − f

2

⌉}
= min

{
2

⌊
g + f

2

⌋
, f + g − 2

⌈
g − f

2

⌉} if d(xlim, b) ⩽
⌊
g+h
4

⌋
min

{
max

(
2
⌊
g+h
4

⌋
, g + h− 2

⌈
g+h
4

⌉)
, f + g − 2

⌈
g−f
2

⌉}
else.

• Otherwise, k > d(xlim, b). Now, vk is also on the third ab-path. We have dk = min{2k − g +
f, g+ h− 2k}. Since the function t 7→ min{2t− g+ f, g+ h− 2t} is maximized at t = 2g+h−f

4 ,
we get

dk ⩽ ℓ3 =

g + h− 2 d(xlim, b) = g + h− 2
⌊
g+f
2

⌋
if d(xlim, b) ⩾

⌈
2g+h−f

4

⌉
max

(
2
⌊
2g+h−f

4

⌋
− g + f, g + h− 2

⌈
2g+h−f

4

⌉)
else.

Finally, λ(xlim, ylim) = max{ℓ1, ℓ2, ℓ3}.

Corollary 16. The leanness of a bicyclic graph can be computed in linear time.

6 Other classes
In this last section, we consider some nonplanar graph classes. Unlike the graphs in Sec. 4 & 5, all graphs
considered in what follows have bounded leanness. We obtain linear-time algorithms for computing their
leanness, for all graph classes considered except for bisplit graphs. For the latter class, a conditional
quadratic lower bound, up to sub-polynomial factors, is proved assuming the SETH (see Sec. 6.4).

6.1 Chordal graphs
Recall that a graph is chordal if and only if every induced cycle has length three. A block graph is a graph
whose biconnected components are cliques. Note that block graphs are a subclass of both chordal graphs
and geodetic graphs.

Proposition 17. For a chordal graph G = (V,E), we have

λ(G) =

{
0 if G is a block graph
1 else.

In particular, the leanness of a chordal graph can be computed in linear time.

Proof: It has been proved in Chang and Nemhauser (1984) that every slice in a chordal graph G is a
clique. Hence, λ(G) ⩽ 1. Furthermore, a necessary condition for having λ(G) = 0 is that G must be
diamond-free. Diamond-free chordal graphs are exactly the block graphs Bandelt and Mulder (1986), so,
they are geodetic graphs.
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6.2 Cographs
Cographs can be recursively defined as follows:

• the one-vertex graph is a cograph;

• the disjoint union of two cographs is also a cograph;

• and the complement of a cograph is also a cograph.

The join of two graphs G1, G2, denoted G1⊕G2, is obtained by adding all possible edges between V (G1)
and V (G2). Notice that the join of two cographs is also a cograph. In fact, every connected cograph with
n > 1 vertices must be the join of two cographs.

An equivalent definition of cographs is that they are exactly the P4-free graphs Corneil et al. (1981).
Therefore, λ(G) ⩽ diam(G) ⩽ 2 for every cograph G. Next, we present a characterization of the
leanness on cographs, that can be verified in linear time.

Proposition 18. For a cograph G = (V,E), we have{
λ(G) ⩽ 1 if G is chordal
λ(G) = 2 otherwise.

Proof: Since G is P4-free, every induced cycle in G has length at most four. So, if G is C4-free, then G
is chordal, so λ(G) ⩽ 1. Otherwise, λ(G) ⩾ λ(C4) = 2. Since we also have λ(G) ⩽ diam(G) ⩽ 2, we
obtain λ(G) = 2.

Recall that chordal graphs can be recognized in linear time Tarjan and Yannakakis (1984). Therefore:

Corollary 19. The leanness of a cograph can be computed in linear time.

6.3 Distance-hereditary graphs
A graph is called distance-hereditary if every induced subgraph is also isometric (i.e., distance-preserving).
Our next result shows that the leanness of distance-hereditary graphs can be characterized in the exact
same way as for cographs.

Proposition 20. For a distance-hereditary graph G = (V,E), we have{
λ(G) ⩽ 1 if G is chordal
λ(G) = 2 otherwise.

In particular, the leanness of G can be computed in linear time.

Proof: For every k ⩾ 5, we have diam(Pk−1) = k − 2 >
⌊
k
2

⌋
= diam(Ck). This implies that every

induced cycle in a distance-hereditary graph G must have length at most four. In particular, if G is C4-
free, then it is chordal, so, λ(G) ⩽ 1. Otherwise, λ(G) ⩾ 2. In order to complete the proof, we show that
λ(G) ⩽ 2 for every distance-hereditary graph G. By contradiction, let G = (V,E) be a minimum-size
distance-hereditary graph such that λ(G) ⩾ 3. There is no degree-one vertex v ∈ V because otherwise
λ(G) = λ(G \ v), thus contradicting the minimality of G. By (Bandelt and Mulder, 1986, Theorem 1),
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there exist twin vertices u, v in G, i.e., we have N(u) \ {v} = N(v) \ {u}. However, in this situation
λ(G) ⩽ max{λ(G \ v),d(u, v)} ≤ max{λ(G \ v), 2}. The latter either contradicts the minimality of G,
or that λ(G) ⩾ 3.

We stress that distance-hereditary graphs are a superclass of cographs. Hence, our result for distance-
hereditary graphs subsumes the one for cographs. Nevertheless, the proof for cographs is, in our opinion,
slightly simpler.

6.4 Lower bound on bisplit graphs
A split graph is a graph where the vertices can be bipartitioned in a clique and a stable set. A bisplit
graph is a graph where the vertices can be bipartitioned in a biclique (i.e., complete bipartite subgraph)
and an independent set. We stress that split graphs (bisplit graphs, resp.) have diameter at most three (at
most four, resp.). Hence, the leanness of split graphs and bisplit graphs is bounded. Furthermore, split
graphs are a special case of chordal graphs, so, their leanness can be computed in linear time. Perhaps
surprisingly, we prove next that the situation is different for bisplit graphs.

Recall the Strong Exponential-Time Hypothesis (SETH) and the DISJOINTSET problem were intro-
duced in Sec. 3.2.

Theorem 21. Under the SETH, deciding whether a bisplit graph G = (V,E) has leanness 2 or 4 requires
Ω(n2−o(1)) time. The result holds even if G has n1+o(1) edges.

Proof: Let A,B ⊂ P(C) be some instance of DISJOINTSET, where A,B are families of n sets over come
common universe C, |C| = no(1). Recall that our objective is to decide whether there exist a,∈ A, b ∈ B
such that a ∩ b = ∅.

The graph G = (V,E) is constructed as follows (see Fig. 9).

• V = A ∪ B ∪ C ∪ C ′ ∪ {u, v, x, y, z}, where C ′ is a disjoint copy of C and u, v, x, y, z are fresh
new vertices. For every c ∈ C, let us denote c′ the corresponding element in C ′;

• For every set a ∈ A and every element c ∈ C, we add the two edges ac, ac′ if and only if c ∈ a.
We proceed similarly for every set b ∈ B and every element c ∈ C;

• We add all possible edges between: u and A, v and B, x and C, y and C ′;

• Finally, vertex z is adjacent to u, v and to every vertex of C ∪ C ′.

z
u

v

x

y
A

BC

C ′

Fig. 9: Reduction from DISJOINTSET.
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Note that we can construct G from A,B,C in n1+o(1) time. Furthermore, G is a bisplit graph: {x, y}∪
A∪B is an independent set, and there is a complete bipartite subgraph with respective partite sets {z} and
{u, v} ∪C ∪C ′. The graph G is also bipartite: its partite sets are {x, y, z} ∪A∪B and {u, v} ∪C ∪C ′.
Therefore, λ(G) must be even. Furthermore, λ(G) ⩽ diam(G) ⩽ 2 ecc(z) = 4. Hence, we are left
deciding whether λ(G) = 2 or λ(G) = 4.

Assume there exist a ∈ A, b ∈ B such that a ∩ b = ∅. By construction of G, S2(x, y) = A ∪B ∪ {z}.
Therefore, λ(G) ⩾ λ(x, y) ⩾ d(a, b) = 4. Conversely, assume that a ∩ b ̸= ∅ for every a ∈ A, b ∈ B.
Then, x, y is the only pair of vertices such that d(x, y) = 4. Since we have λ(x, y) = diam(S2(x, y)) =
diam(A ∪B ∪ {z}) = 2, it follows that λ(G) = 2.
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