Communication Dans Un Congrès Année : 2023

Geometric Clustering of Polsar Data Using the Polar Decomposition

Résumé

This paper presents a new method for geometrical PolSAR clustering based on two fundamental concepts: the polar decomposition of scattering matrices and the Riemannian geometry of their Hermitian factors. The method is applied in a cohesive manner for both coherent and incoherent scatterers. A qualitative comparison is performed with two clustering algorithms based on the covariance framework and two different evaluation metrics: one stochastic – Wishart and one geometric – cosine geodesic. Results on a real dataset show that the final classification better preserves small details and the original texture information in the PolSAR image. In this regard, an improved separation is observed, for example, for certain vegetation fields.
Fichier principal
Vignette du fichier
IGARSS2023_polarRiemannian.pdf (7.72 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04279007 , version 1 (10-11-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04279007 , version 1

Citer

Madalina Ciuca, Gabriel Vasile, Marco Congedo. Geometric Clustering of Polsar Data Using the Polar Decomposition. IGARSS 2023 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2023, Pasadena, United States. pp.4. ⟨hal-04279007⟩
147 Consultations
71 Téléchargements

Partager

More