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ABSTRACT

This paper presents a new method for geometrical PolSAR
clustering based on two fundamental concepts: the polar de-
composition of scattering matrices and the Riemannian geom-
etry of their Hermitian factors. The method is applied in a co-
hesive manner for both coherent and incoherent scatterers. A
qualitative comparison is performed with two clustering algo-
rithms based on the covariance framework and two different
evaluation metrics: one stochastic – Wishart and one geomet-
ric – cosine geodesic. Results on a real dataset show that the
final classification better preserves small details and the orig-
inal texture information in the PolSAR image. In this regard,
an improved separation is observed, for example, for certain
vegetation fields.

Index Terms— PolSAR, polar decomposition, scattering
matrix, Hermitian, unitary, Riemannian manifold, AIRM,
clustering, classification, k-means.

1. INTRODUCTION

Polarimetric Synthetic Aperture Radar (PolSAR) is based on
the coherent measurement of microwave scattering diversity
in two orthogonal polarization bases. As in any data analysis
field, both supervised and unsupervised classification meth-
ods have been used with this complex multidimensional data.
Whereas supervised algorithms use a wide variety of input
features, the unsupervised ones are consistent in this regard.
Coherent methods use the scattering matrix/vector and the in-
coherent ones, by far the largest and befitting category in prac-
tical applications, use the covariance/coherency matrices.

Within unsupervised methods, the clustering-based sub-
field is undeniably popular, amidst which the unsupervised
Wishart [1] (and derivations) have reached cross-domain ap-
plicability (with the best results when used for homogeneous,
complex-Gaussian distributed data). Because of its versatility
and algorithmic similarity to the proposed technique, we use
the method as benchmark.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly introduces the main theoretical aspects and of-
fers details on the proposed algorithm and Section 3 presents
results of real data evaluation. Conclusions are given in Sec-
tion 4.

2. POLAR DECOMPOSITION, HERMITIAN
FACTORS AND THE RIEMANNIAN MANIFOLD

2.1. Polar decomposition

The polar decomposition can be used to decompose the Pol-
SAR scattering matrix into a product of two factors [2]:

S = UH (1)

The first term is unitary (U, UUH = I, U ∈ C2×2) and the
second is Hermitian (H, HH = H, H ∈ C2×2). By con-
vention, (1) is known as the right polar decomposition and is
the form used in this paper. This decomposition is the matrix
equivalent of the well-known polar form, which writes every
non-zero complex number s = s1+js2, s ∈ C, as the product
of a modulus and a phase element: s = |s| · ejθ, θ ∈ [−π, π].
Analogously, the H and U factors of the decomposition rep-
resents a linear ”boost” and a rotation, respectively [2].

The unitary matrices are the complex counterpart of or-
thogonal matrices. They preserve lengths and many distance
functions are unitary-invariant. It is more common to refer
to the orthogonal matrices as to (real) rotations 1. However, a
2×2 unitary matrix can be expressed as the product between a
diagonal phase matrix and a special SU(2) matrix, or equiva-
lently, as the product of two phase matrices and one real rota-
tion [3]. That is, the action of a unitary matrix is that of both a
rotation and of phase changes. As the modulus of a complex
number allows to obtain a quantity’s phase-invariant ampli-
tude and the discharge of a real rotation in PolSAR gives a
rotation-invariant element, we argue that the H-factor from
the polar decomposition can be seen as both phase and rota-
tion invariant. Based on this desirable property of the Hermi-
tian H-factors, we propose a geometric unsupervised cluster-
ing which exploits their Riemannian geometry.

2.2. Hermitian factors and Riemannian manifold

The positive definite matrices, as the H-factors, are naturally
embedded in a non-linear, smooth, differentiable, Rieman-
nian manifold. In this space, the shortest path connecting any

1

real rotation complex rotation[
cos θ − sin θ
sin θ cos θ

] [
cos θ − sin θe−jφ

sin θejφ cos θ

]



two points is no longer a straight line (as in the Euclidean
space), but a path which follows the curvature of the space and
known as a geodesic. The most commonly employed metrics
in the Riemannian manifold of positive Hermitian matrices
are the affine invariant Riemann metric (AIRM) and the Log-
Euclidean metric. They both allow the definition of a distance
function in closed-form.

These two geometric metrics have been used in previous
PolSAR applications operating in the Riemannian embedding
of coherency/covariance matrices [4, 5]. Another metric used
in PolSAR is the angular geodesic, which can be seen as an
approximation of the true geodesic, but only when restricting
the shape of the Riemannian manifold to that of a unit sphere
[6].

For any two positive definite matrices H1 and H2, AIRM
gives the minimum distance along the Riemannian geodesic2

d(H1,H2) = ||Log(H1
−1/2H2H1

−1/2)||F . (2)

For m positive definite matrices {H1, H2, . . . , Hm},
m > 2, the Riemannian barycenter, i.e., the geometric center
of mass (known also as the geometric mean) [7], is a point
H0 which attains the minimum dispersion, i.e.,

argmin
H0

m∑
i=1

d(H0,Hi)
2. (3)

While there is no closed-form solution for the minimiza-
tion problem in (3), it was shown that the minimum always
exists and is unique [8]. Moreover, when the dispersion is not
excessive the minimizer can be attained with probability 1 by
a simple gradient descent algorithm [4].

2.3. Proposed method

The proposed method is presented in pseudo-code (Algorithm
1).

3. EXPERIMENTAL RESULTS

3.1. PolSAR Dataset

The experimental study uses a PolSAR dataset acquired by
the SAR ElectroMagnetic Institute Synthetic Aperture Radar
(EMISAR) instrument over the Foulum test site [10]. It shows
a mixture of vegetation areas (different crop fields, forest),
small urban areas and a lake/water reservoir (Pauli composite
in Fig. 1a).

2Notations: Log = matrix logarithm.∥·∥F = Frobenius norm.
3Note: From a computer science perspective, the better name to be used

is k-medoids. It refers to a clustering technique, similar to k-means, apart
from the centroid computation. While in k-means the class centroid may be
different from the existing elements of a class (as a result of averaging), the
metric criteria for k-medoids selects the center/centroid from inside a class’
elements. Nonetheless, we stick to the more common name in PolSAR.

Algorithm 1: Riemannian k-means using polar H-
factors.

Input: Full-polarimetric data in scattering matrix
format, S.

1 Decompose S via the polar decomposition and obtain
the H-factors.

2 Evaluate the presence of coherent scatterers (method:
98th percentile criterion by Lee et al. [9],
evaluation: 3×3 boxcar). Compose binary map of
incoherent/coherent scattering positions.

3 Mask-out positions of coherent scatterers and
compute for each remaining position the H-factor
barycenter. (Evaluation method: square, sliding
neighbourhood).

4 Apply the geometrical k-means clustering method 3.
For positions of coherent scatterers, their Hermitian
H-factor is used. Random initialization is applied
for class centres and the intra/inter-cluster
evaluation is based on the AIRM metric.

5 Stop algorithm when the predefined threshold
(accuracy/nr. of runs) is reached.

The EMISAR Foulum full-polarimetric dataset is well-
known in the PolSAR community and a number of publi-
cations show incomplete descriptions of the area’s peren-
nial/permanent vegetation content, as for example [11–13].
Due to its richness of natural elements it has been used for
vegetation studies [12], statistical assessments in homoge-
neous/inhomogeneous regions [11] and others. Recently,
incomplete ground truth representations have been proposed
for evaluation of machine learning architectures and we dis-
play one such example in Fig. 1(b) [14].

3.2. Clustering comparison

For illustration purposes, Fig. 1(c) shows the amplitude in the
h1,1 channel of the Hermitian barycenters. A gray scale dis-
play of the span in the original image will give similar results,
which can even be motivated mathematically.

The remaining subfigures display three clustering re-
sults. Fig. 1(d) is obtained applying the proposed, Rie-
mannian k-means method, while Fig. 1(e) is the result of
the classical Wishart method. For Fig. 1(f), a different
implementation is proposed, based on the same k-means
framework/initialization as with Wishart, but using the cosine
geodesic distance as inter/intra-cluster metric. The main dif-
ferences between the three implementations are summarized
in Table 1.

Comparing the three results, the large scale features seem
to be well identified by all methods, while the texture infor-
mation is better preserved when using the two geometrical
distances (Figs. 1d & f). However, the proposed Rieman-
nian k-means seems to exhibits better accuracy, as it is able to



Table 1: Differences in clustering algorithms implementation.

Method Input matrices Initialization Metric (intra/inter-class)

Riemannian k-means3 S random AIRM (2)
Wishart C H-α d(C1,C2) = ln|C2|+ tr(C2

−1C1), [1]

Cosine GD k-means3 C H-α d(C1,C2) = cos−1

(
tr(C1

HC2)√
tr(C1

HC1)
√

tr(C2
HC2)

)
, [6]

discriminate crop fields which are not retrieved by the other
two methods. For example, the beet and winter wheat fields,
from the ground truth (yellow and dark blue, respectively),
are correctly separated as distinct classes, both when in close
proximity and farther apart in the image.

4. CONCLUSION

This paper focuses on the use of the Riemannian framework
throughout all stages of a PolSAR clustering application. The
use of the polar decomposition allows both a reduction in di-
mensions and phase/rotation invariance of the input features.
Intrinsically, the proposed framework represents a shift in the
current PolSAR computation paradigm.

From an algebraic perspective, the true informational
space for polarimetric measurements through the 2×2 scat-
tering matrix is C2×2, while the extension to covariance
Hermitian C3×3 is only through second order statistics. That
is why, instead of statistically averaging the scattering vectors
(as for covariance/coherency matrix estimation), a geomet-
rical local mean (i.e., barycenter) is computed based on a
geodesic distance associated to the manifold. In other words,
the algorithm does not modify the algebraic and geometric
structure of the input features, rather it takes advantage of
them.
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Fig. 1: Foulum Dataset. (a) Pauli decomposition (R:Shh+Svv

2 , G:Shv+Svh

2 , B:Shh−Svv

2 ). (b) Incomplete ground truth (as in [14]).
Legend: blue - water; green - forest; cyan - peas; magenta - winter rape; red - winter wheat; yellow - beet. (c) H barycenters
(h1,1, amplitude, [dB]). (d) H-factors Riemannian k-means clustering. (e) Wishart clustering. (f) k-means clustering with
cosine geodesic distance.


