Clustering and Arnoux-Rauzy words - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Mathematics Année : 2023

Clustering and Arnoux-Rauzy words

Résumé

We characterize the clustering of a word under the Burrows-Wheeler transform in terms of the resolution of a bounded number of bispecial factors belonging to the language generated by all its powers. We use this criterion to compute, in every given Arnoux-Rauzy language on three letters, an explicit bound K such that each word of length at least K is not clustering; this bound is sharp for a set of Arnoux-Rauzy languages including the Tribonacci one. In the other direction, we characterize all standard Arnoux-Rauzy clustering words, and all perfectly clustering Arnoux-Rauzy words. We extend some results to episturmian languages, characterizing those which produce infinitely many clustering words, and to larger alphabets.
Fichier principal
Vignette du fichier
fz5soumrev.pdf (287.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04276825 , version 1 (10-11-2023)

Identifiants

Citer

Sébastien Ferenczi, Luca Q Zamboni. Clustering and Arnoux-Rauzy words. Advances in Applied Mathematics, 2023, 153, pp.102621. ⟨10.1016/j.aam.2023.102621⟩. ⟨hal-04276825⟩
89 Consultations
35 Téléchargements

Altmetric

Partager

More