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CLUSTERING AND ARNOUX-RAUZY WORDS1

SÉBASTIEN FERENCZI AND LUCA Q. ZAMBONI2

ABSTRACT. We characterize the clustering of a word under the Burrows-Wheeler transform in
terms of the resolution of a bounded number of bispecial factors belonging to the language gen-
erated by all its powers. We use this criterion to compute, in every given Arnoux-Rauzy language
on three letters, an explicit bound K such that each word of length at least K is not clustering;
this bound is sharp for a set of Arnoux-Rauzy languages including the Tribonacci one. In the other
direction, we characterize all standard Arnoux-Rauzy clustering words, and all perfectly clustering
Arnoux-Rauzy words. We extend some results to episturmian languages, characterizing those which
produce infinitely many clustering words, and to larger alphabets.

In [14], the authors give a characterization of the clustering phenomenon for the Burrows-3

Wheeler transform, using a class of dynamical systems, the interval exchange transformations.4

This gives a way to build examples of clustering words, but is not very operative in deciding5

whether a given word clusters. Here, inspired by [11] but independently and with purely combi-6

natorial methods, we give, in Theorem 1, a characterization of the clustering of a primitive word7

w in terms of the resolution of a finite number of bispecial words of the language generated by all8

the wn, n > 0.9

A very popular family of languages consists in the Sturmian languages; these are known since10

[17] to be good producers of clustering words, though not all of their factors are clustering. As11

is proved in [14], their natural generalizations, the interval exchange languages, can also produce12

infinitely many clustering words. In both cases, our Theorem 1 gives a new criterion to identify13

those factors which cluster. Another well-known generalization of the Sturmian languages consists14

in the Arnoux-Rauzy languages on three letters, and the question of clustering of their factors was15

asked by Francesco Dolce at the Journées Montoises 2022: in contrast with the previous cases, we16

are able to answer it by a broad negative, the Arnoux-Rauzy words are in general not clustering.17

More precisely, for every given Arnoux-Rauzy language, we compute, in Theorem 10, an ex-18

plicit bound K such that each word of length at least K is not clustering; by Corollary 16 this19

bound is indeed sharp for a family of Arnoux-Rauzy languages including the Tribonacci language,20

but we can build counter-examples for which this bound is not optimal. In the other direction, in21

each Arnoux-Rauzy language we want to find primitive clustering words v: it turns out that this22

is easier for standard Arnoux-Rauzy words, as we prove in Proposition 7 that an Arnoux-Rauzy23

word v is cyclically conjugate to a standard one if and only if vv is an Arnoux-Rauzy word. in24

Proposition 12, and Corollary 13, we are able to characterize those which are clustering. As a25

consequence, there exist arbitrarily long primitive perfectly clustering Arnoux-Rauzy words, and26

every Arnoux-Rauzy language contains a primitive perfectly clustering word of length at least 22.27

As for clustering Arnoux-Rauzy words not conjugate to standard ones, in Propositions 17 and 1828
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2 S. FERENCZI AND L.Q. ZAMBONI

we characterize, using methods and results of [19], those which cluster perfectly, but there are also29

infinitely many of them which cluster but not perfectly.30

Finally, we turn to generalizations of Arnoux-Rauzy languages: these include Arnoux-Rauzy31

languages on more than three letters, for which we give a (non-optimal) bound on the possi-32

ble length of a clustering word, and episturmian languages, which include Sturmian languages,33

Arnoux-Rauzy languages, some periodic languages, and some intermediate cases which behave34

essentially like Sturmian words. Among episturmian languages on three letters we give in Theo-35

rem 22 a full characterization of those which produce only finitely many clustering words: rather36

unexpectedly, these include not only Arnoux-Rauzy languages, but also some (not all) of the peri-37

odic and intermediate cases.38

1. USUAL DEFINITIONS39

Let A be a finite set called the alphabet, its elements being letters. A word w of length n = |w|40

is a1a2 · · · an, with ai ∈ A. The concatenation of two words w and w′ is denoted by ww′.41

A word is primitive if it is not a power of another word.42

The reverse of a word w = w1...wn is the word w̄ = wn...w1.43

44

By a language Λ over A we mean a factorial extendable language: a collection of sets (Λn)n≥045

where the only element of Λ0 is the empty word, and where each Λn for n ≥ 1 consists of words of46

length n, such that for each v ∈ Λn there exists a, b ∈ A with av, vb ∈ Λn+1, and each v ∈ Λn+147

can be written in the form v = au = u′b with a, b ∈ A and u, u′ ∈ Λn.48

A word v = v1...vr occurs at index i in a word w = w1...ws if v1 = wi, ...vr = wi+r−1, we say also49

that w contains v and v is a factor of w.50

51

The complexity function of a language Λ is p(n) = #Λn, n ≥ 0.52

The Rauzy graph of length n of a language Λ is a directed graph whose vertex set consists of all53

words of length n of Λ, with an edge from w to w′ whenever w = av, w′ = vb for letters a and b,54

and the word avb is in Λ; this edge is then labelled by b.55

56

A word w in Λ is right special (resp. left special) if it has more than one right extension wx57

(resp. left extension xw) in Λ, with x in A. If w is both right special and left special, then w is58

bispecial. If #Λ1 > 1, the empty word ε is bispecial. To resolve a bispecial word w is to find all59

words in Λ of the form xwy for letters x and y.60

A singular word is w = xvy for letters x, y, such that some x′vy, x′ 6= x, and xvy′, y′ 6= y, exist61

in Λ.62

63

For a word w, we denote by wω the one-sided infinite word www..., and by Λw the language64

consisting of all the factors of wω. A language Λ is closed under reversal if w ∈ Λ⇔ w̄ ∈ Λ.65

A language Λ is uniformly recurrent if for every word w in Λ, there exists a constant K such that66

w occurs in every word in Λ of length at least K.67

2. BURROWS-WHEELER AND CLUSTERING68

Let A = {a1 < a2 < · · · < ar} be an ordered alphabet.69

Definition 1. The (cyclic) conjugates of w are the words wi · · ·wnw1 · · ·wi−1, 1 ≤ i ≤ n. If w is70

primitive, w has precisely n conjugates. Let wi,1 · · ·wi,n denote the i-th conjugate of w where the71
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n conjugates of w are ordered by ascending lexicographical order.72

Then the Burrows-Wheeler transform of w, defined in [5] and denoted by B(w), is the word73

w1,nw2,n · · ·wn,n. In other words, B(w) is obtained from w by first ordering its conjugates in74

ascending order in a rectangular array, and then reading off the last column.75

We say w is clustering for the permutation π if B(w) = (πa1)nπa1 · · · (πar)nπar , where π is a per-76

mutation on A and na is the number of occurrences of a in w (we allow some of the na to be 0,77

thus, given the order and w, there may be several possible π). We say w is perfectly clustering if it78

is clustering for the symmetric permutation πai = ar+1−i, 1 ≤ i ≤ r.79

Non-primitive words. As remarked in [17], the Burrows-Wheeler transform can be extended80

to a non-primitive word w1 · · ·wn, by ordering its n (non necessarily distinct) cyclic conjugates by81

non-strictly increasing lexicographical order and taking the word made by their last letters. Then82

B(vm) is deduced from B(v) by replacing each of its letters xi by xmi , and vm is clustering for π83

iff v is clustering for π.84

85

We shall now relate clustering to an order condition. This condition can be traced to [13], but86

was first mentioned explicitly in [8] in the particular case of symmetric permutations, and [11] in87

the general case, where it is studied extensively.88

Theorem 1. For a given order< on the alphabetA, a primitive wordw overA is clustering for the89

permutation π if and only if every bispecial word v in the language Λw satisfies the following order90

condition: whenever xvy and x′vy′ are in Λw with letters x 6= x′ and y 6= y′, then π−1x < π−1x′91

if and only if y < y′.92

Any bispecial word in Λw is a factor of ww and is of length at most |w| − 2.93

Proof94

We begin by proving the last assertion. Suppose v is a bispecial of Λw. Then v must occur at95

two different positions in some word wk. If |w| = n and |v| ≥ |w| − 1, this implies in particular96

wi...wnw1...wi−2 = wj...wnw1...wj−2 for 1 < j − i < n, and we notice that each wl is in at least97

one member of the equality, thus we get that w is a power of a word whose length is the GCD of n98

and j − i, which contradicts the primitivity. Thus the length of v is at most |w| − 2, and it occurs99

in ww.100

101

We prove now that our order condition is equivalent to the following modified order condition:102

whenever z = z1...zn and z′ = z′1...z
′
n are two different cyclic conjugates of w, z < z′ (lexico-103

graphically) if and only if π−1zk < π−1z′k for the largest k ≤ n such that zk 6= z′k.104

Indeed, by definition z < z′ if and only if zj < z′j for the smallest j ≥ 1 such that zj 6= z′j . If105

w satisfies the order condition, we apply it to the bispecial word zk+1...znz1...zj−1, with k and j as106

defined, and get the modified order condition.107

108

Let v be a bispecial word in Λw; by the first paragraph of this proof it can be written as z1...zk−1109

for some 1 ≤ k ≤ n, with the convention that k = 1 whenever v is empty, for at least two different110

cyclic conjugates z of w.111

Then its possible extensions are the corresponding znz1...zk, thus, if the modified order condi-112

tion is satisfied, v does satisfy the requirement of the order condition.113

114

The modified order condition implies clustering, as then if two cyclic conjugates of w satisfy115

z < z′, their last letters zn and z′n satisfy either zn = z′n or π−1zn < π−1z′n.116
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Suppose w = w1 · · ·wn is clustering for π. Suppose two cyclic conjugates of w are such that117

zk 6= z′k, zj = z′j for k + 1 ≤ j ≤ n. Then z < z′ is (by definition of the lexicographical order)118

equivalent to zk+1...znz1..zk < z′k+1...z
′
nz
′
1..z

′
k, and, as these two words have different last letters,119

because of the clustering this is equivalent to π−1zk < π−1z′k, thus the modified order condition is120

satisfied. �121

122

Theorem 1 remains valid if w = vm is non-primitive (it can be slightly improved as there are123

less bispecial words to be considered, it is enough to look at factors of vv of length at most |v|−2).124

125

The following consequences of Theorem 1 or of [14] seem to be new.126

Proposition 2. If w clusters for the order < and the permutation π, its reverse clusters for the127

π-order, defined by x <π y whenever π−1x < π−1y, and the permutation π−1.128

Proof129

This follows immediately from Theorem 1. �130

131

Proposition 3. Let w be a word on A, ordered by <.132

If w is perfectly clustering, Λw is closed under reversal.133

Proof134

By Theorem 4 of [14], every perfectly clustering word w is such that ww is in the language Λ135

generated by a minimal discrete interval exchange with the symmetric permutation (we refer the136

reader to [14] for the definitions), and Λw = Λ. It is known from [13] that such a Λ is stable under137

reversal, thus we get our first assertion. This could also be deduced from Corollary 4.4 of [19]. �138

139

Proposition 4. Let w be a word on A, ordered by <.140

If Λw is closed under reversal, the following conditions are equivalent141

(1) w is clustering.142

(2) w is perfectly clustering.143

(3) For all words u and v with u 6= ū and v 6= v̄, if uv is conjugate to w, then u < ū if and144

only if v < v̄.145

Proof146

We begin by showing the equivalence between (1) and (2) then we show that (2) ⇔ (3). Clearly147

(2)⇒ (1). To see that (1)⇒ (2), assume that w is clustering for some permutation π onA. LetA′148

be the set of all letters a ∈ A which occur in w. To show that w is perfectly clustering, it suffices149

to show that π−1a < π−1b⇔ b < a for each pair of distinct letters a, b ∈ A′. To this end, we will150

show that the following set151

E = {(a, b) ∈ A′ ×A′ : a 6= b and a < b⇔ π−1a < π−1b}
is empty. We begin by establishing two claims:152

Claim 1 : Assume xvy, x′vy′ ∈ Λw with v a word, letters x 6= x′ and y 6= y′. Then (x, x′) ∈ E153

if and only if (y, y′) ∈ E .154

Proof : As Λw is closed under reversal, we also have yv̄x, y′v̄x′ ∈ Λw. By Theorem 1 we obtain155

y < y′ ⇔ π−1x < π−1x′ ⇔ x < x′ ⇔ π−1y < π−1y′.156

Claim 2 : Assume xvy, x′vy′ ∈ Λw with v a word, letters x 6= x′ and y 6= y′. If (x, x′) ∈ E ,157

then x < x′ ⇔ y < y′.158
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Proof : Again by Theorem 1 we have x < x′ ⇔ π−1x < π−1x′ ⇔ y < y′.159

160

Now assume to the contrary that E 6= ∅ and let (x1, y1) ∈ E . Without loss of generality we may161

assume that x1 < y1. Let u and v be conjugates of w with u beginning in x1 and v beginning in162

y1. Then we may write u = x1v1x2v2 · · ·xnvn and v = y1v1y2v2 · · · ynvn for some n ≥ 2 with163

words vi and letters xi 6= yi for each i = 1, 2, . . . , n. By application of Claims 1 and 2 we have that164

(xi, yi) ∈ E and xi < yi for i = 1, 2, . . . , n. As u and v are conjugate to one another, in particular165

they have the same number of occurrences of each letter, and hence the same is true of the words166

x = x1x2 · · ·xn and y = y1y2 · · · yn. Pick a permutation σ of {1, 2, . . . , n} such that yi = xσ(i) for167

each i = 1, 2, . . . , n. It follows that xi < xσ(i) for each i = 1, 2, . . . , n. Putting i equal to σj(1) we168

obtain xσj(1) < xσj+1(1) for each j ≥ 0. Thus x1 < xσ(1) < xσ2(1) < · · · . Since σn!(1) = 1 we169

eventually get x1 < x1, a contradiction.170

171

We next show that (2) ⇒ (3). So assume that w is perfectly clustering. Then by Theorem 1172

we have that Λw satisfies the following order condition : whenever xzy and x′zy′ are in Λw with173

x 6= x′ and y 6= y′, we have y < y′ ⇔ x′ < x. Assume uv is conjugate to w with u 6= ū and v 6= v̄.174

Write u = rxtx′r̄ and v = sy′t′ys̄ with words r, s, t, t′, letters x, x′, y, y′, x 6= x′ and y 6= y′. Thus175

x′r̄sy′, ys̄rx ∈ Λw and hence also xr̄sy ∈ Λw. Applying the order condition to the words xr̄sy176

and x′r̄sy′ we obtain y′ < y ⇔ x < x′ or equivalently u < ū⇔ v < v̄ as required.177

178

Finally we show that (3) ⇒ (2). Again by application of Theorem 1 it suffices to show that179

Λw satisfies the following order condition : whenever xzy and x′zy′ are in Λw with |xzy| ≤ |w|,z180

a word, x, x′, y, y′ ∈ A, x 6= x′ and y 6= y′, we have y < y′ ⇔ x′ < x. So assume that181

xzy, x′zy′ ∈ Λw with |xzy| ≤ |w|, x 6= x′ and y 6= y′. Then y′z̄x′ ∈ Λw since Λw is closed under182

reversal. Let w′ be a conjugate of w beginning in xzy. If the words xzy and y′z̄x′ are equal, then183

in particular x = y′ and y = x′, and therefore y < y′ iff x′ < x, which is what we want.184

If the words xzy and y′z̄x′ are not equal, then we claim that these two words cannot overlap185

one another, i.e., no non-empty prefix of one is equal to a suffix of the other. In fact, let u be a186

non-empty prefix of xzy and let u′ be a suffix of y′z̄x′, then we will show u 6= u′. This is clear if187

|u| 6= |u′|. So let’s suppose |u| = |u′|. Now if u = xzy then u′ = y′z̄x′ and hence u 6= u′. On the188

other hand if u is a proper prefix of xzy, then we can write u = xv and u′ = v̄x′ for some prefix v189

(possibly empty) of z. As x 6= x′, it follows that u and u′ are not abelian equivalent (u having one190

additional occurrence of x than u′) and hence in particular u 6= u′. A similar argument holds if u191

is a non-empty suffix of xzy and u′ a prefix of y′z̄x′.192

Thus, if xzy 6= y′z̄x′, as these words do not overlap one another we can write w′ = xzyry′z̄x′s193

for some choice of words r, s. Put u = zyry′z̄ and v = x′sx. Then as uv is conjugate to w and194

u 6= ū and v 6= v̄, we deduce y < y′ ⇔ u < ū⇔ v < v̄ ⇔ x′ < x as required. �195

196

We use now Theorem 1 to give a simple criterion which will be useful to avoid clustering.197

Lemma 5. Let x, y, z be three different letters in an alphabet A, and w be a word on A. Suppose198

w is clustering for the order < and the permutation π. Let v be a bispecial word in Λw:199

• if the four words xvy, xvz, yvx, zvx are in Λw, then x is not between y and z (or z and y)200

for the order <, x is not between y and z (or z and y) for the order <π, and x is not on the201

same side of y and z for the orders < and <π ;202
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• if three of the four words xvy, xvz, yvx, zvx are in Λw, then x is not between y and z (or203

z and y) for the order <, or x is not between y and z (or z and y) for the order <π.204

Proof205

By Theorem 1, we have to check the order condition, for any fixed < and π. To check the require-206

ment of the order condition for the bispecial word v, we write the extension graph of v, with x207

y z in the order < on a line, x y z in the order <π on a line below, and an edge from x′ below208

to y′ above whenever x′vy′ is in Λw. If two of these edges have an intersection not reduced to an209

endpoint, the order condition is not satisfied.210

In the first case, suppose y < x < z. if the π order is x, y, z, or x, z, y, or y, x, z, the edges xz211

and zx intersect; if it is y, z, x or z, y, x, xy and yx intersect; if it is z, x, y, xy and zx intersect.212

This takes all possible π-orders into account, and no clustering is possible. The same is true if213

z < x < y by left/right symmetry. Thus x cannot be in the middle for the order <, nor for the214

π-order by up/down symmetry.215

If x < y and x <π y, or y < x and y <π x, xy and yx intersect whatever the position of z, thus216

we get the remaining assertions of the first case.217

Suppose now for example xvy, yvx and xvz are in Λw, we have to test all orders where x is218

twice in the middle. As above, if x < y and x <π y, or y < x and y <π x, xy and yx intersect.219

There remain z < x < y and y <π x <π z, and y < x < z and z <π x <π y, and in both cases xz220

intersects yx. And similarly for other sets of three words. �221

222

3. ARNOUX-RAUZY223

3.1. Definitions. Throughout Section 3, we use the alphabet {a, b, c}, which can be equipped with224

any one of the six possible orders.225

Definition 2. An AR language is a language on {a, b, c} generated by three families of words Ak,226

Bk, Ck, build recursively from A0 = a, B0 = b, C0 = c, by using a sequence of combinatorial227

rules (a), (b), (c), such that each one of the three rules is used infinitely many times, where228

• by rule (a) at stage k, Ak+1 = Ak, Bk+1 = BkAk, Ck+1 = CkAk;229

• by rule (b) at stage k, Ak+1 = AkBk, Bk+1 = Bk, Ck+1 = CkBk;230

• by rule (c) at stage k, Ak+1 = AkCk, Bk+1 = BkCk, Ck+1 = Ck.231

By an AR word we shall mean a factor of an AR language.232

A standard AR word is an Ak, Bk, or Ck, in an AR language233

If the rules at stage k is (xk), k ≥ 0, the word D = x0x1.... is called the directive word of Λ.234

The Tribonacci language is the AR language defined by the directive word (abc)ω.235

Every AR language is uniformly recurrent and closed under reversal, and has one right special236

and one left special of each length [1], thus AR languages are in the slightly more general class of237

episturmian languages, see Section 4.2 below.238

An equivalent way to define an AR language is through AR morphisms. For x, y in {a, b, c}, we239

define σxx = x, σxy = yx if x 6= y. For a word w, σxw is defined by making σx a morphism for240

the concatenation, and the morphism σw is defined to be σw1 ◦ · · · ◦ σwn if w = w1...wn. We do241

the same with the morphisms τx defined by τxy = σxy for each x, y ∈ A. If the directive word242

of Λ is D = x0x1..., we put Dk = x0...xk−1, and we have Ak = σDka, Bk = σDkb, Ck = σDkc,243

Āk = τDka, B̄k = τDkb, C̄k = τDkc. Being closed under reversal, Λ can be generated either by244
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σDkx, x ∈ A, k ≥ 0, or by τDkx, x ∈ A, k ≥ 0.245

246

For an AR language Λ, note first that for all k Ak begins with a, Bk with b, Ck with c. As247

explained in [1], the three rules correspond to the building of the successive bispecials wk in Λ,248

with rules (a), (b), (c) corresponding respectively to wk+1 = wkAk, wk+1 = wkBk, wk+1 = wkCk,249

starting with w0 being the empty word. From this and the closure under reversal, we deduce250

that AR rule (x), x = a, b, c, is used at stage k if and only if the bispecial wk is resolved by251

{awkx, bwkx, cwkx, xwka, xwkb, xwkc}, two of these six words being equal. Moreover, the words252

Ak, Bk, Ck are the (suffix) return words of wk i.e. wkZk contains wk as a prefix and suffix and at253

no other place, for Z = A,B,C.254

255

An AR word w belonging to an AR language whose first rule is (x) will be such that each letter256

of w which is not x is preceded (except if it is the first letter of w), and followed (except if it is the257

last letter of w) by x, and x is the only letter with this property. We call x the separating letter of258

w.259

We recall the description of the Rauzy graphs for AR languages from [1]: there are a left special260

factor G with three left extensions, a right special factor R with three right extensions, a central261

branch (with at least one vertex) from G to R, and three branches from R to G. The three elemen-262

tary circuits in the Rauzy graphs of length n begin at R and follow one of the three branches from263

R to G then the central branch. Their labels are Ak, Bk, Ck for |wk−1|+ 1 ≤ n ≤ |wk|.264

265

We shall always use the obvious notation that if x, y or z is a, b or c, X , Y and Z are the corre-266

sponding A, B or C.267

268

Let (Rabc) be the following assumption: the rule at stage 0 is (a), and the first rule different269

from (a) is (b). If it is not satisfied, we can make a permutation on the letters. When (Rabc) holds,270

we define λ1 > 0 as the stage of the first rule (b), λ2 > λ1 as the stage of the first rule (c).271

272

The following LMS notation is defined in [6]; it is equivalent to the ABC notation, and will be273

useful to express and show some of our results.274

Lemma 6. Assuming (Rabc), for all k > λ1, Ak, Bk, and Ck have three different lengths, and275

we rename them such that |Sk| < |Mk| < |Lk|. We put Sk = Ak, Mk = Ck, Lk = Bk for all276

1 ≤ k ≤ λ1, S0 = c, M0 = b, L0 = a. The AR rules can be written as277

• if wk+1 = wkSk, Sk+1 = Sk, Mk+1 = MkSk, Lk+1 = MkLk;278

• if wk+1 = wkMk,, Sk+1 = Mk, Mk+1 = SkMk, Lk+1 = LkMk;279

• if wk+1 = wkLk, Sk+1 = Lk, Mk+1 = SkLk, Lk+1 = MkLk.280

We have wp+1 = wpLp whenever p = 0, p = λ1, p = λ2, or at stage p we have a rule (x1)281

preceded by a string of rules (x2) and a string of rules (x3), for {x1, x2, x3} = {a, b, c}, thus this282

happens for infinitely many p. We have wp+1 = wpSp whenever the rules at stages p− 1 and p are283

the same, and wp+1 = wpMp for the remaining p.284

Proof285

We have wk = ak, Ak = a, Bk = bak, Ck = cak for all 1 ≤ k ≤ λ1, then wλ1+1 = aλ1baλ1 ,286

and Aλ1+1 = abaλ1 = Mλ1+1, Bλ1+1 = baλ1 = Sλ1+1 Cλ1+1 = caλ1baλ1 = Lλ1+1 have three287

different lengths; this is preserved by further rules. The other assertions are straightforward, see288
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[6] for more details. �289

290

3.2. Lengths, squares, conjugates.291

Lemma 7. Assuming (Rabc),292

Ap is a suffix of wp iff |Ap| ≤ |wp| or equivalently iff p ≥ 1,293

Bp is a suffix of wp iff |Bp| ≤ |wp| or equivalently iff p ≥ λ1 + 1,294

Cp is a suffix of wp iff |Cp| ≤ |wp| or equivalently iff p ≥ λ2 + 1,295

|Mp|+ |Sp| > |Lp| for all p > 0,296

|Lp| < |Mp+1| for all p > 0.297

Proof298

By the analysis of Lemma 5, Ap is a suffix of wp for p = 1 and strictly longer than wp for p = 0,299

Bp is a suffix of wp for p = λ1 + 1 and strictly longer than Bp for p ≤ λ1. Cp is strictly longer300

than wp for p = λ1 + 1. If Cp is strictly longer than wp for some p ≤ λ2 − 1, then wp+1 = wpYp301

and Cp+1 = CpYp for Y = A,B, thus Cp+1 is strictly longer than wp+1. Then wλ2+1 = wλ2Cλ2302

and Cλ2+1 = Cλ2 is a suffix of wλ2+1. Suppose now Zp is a suffix of wp, for Z = A,B,C. Then303

either wp+1 = wpZp and Zp+1 = Zp, or wp+1 = wpYp and Zp+1 = ZpYp, thus in both cases Zp+1 is304

a suffix of wp+1, and thus shorter.305

The fourth assertion is proved in [7], although with non-strict inequalities, but the proof, using306

the AR rules, does give the strict ones.307

The last one comes from the fourth one and the fact that |Mp+1| is either |Mp| + |Sp| or308

|Mp|+ |Lp|. �309

310

Proposition 8. In an AR language Λ satisfying (Rabc), the primitive words v such that vv is in Λ311

are all the Ap for p ≥ 0, the Bp for p ≥ λ1, the Cp for p ≥ λ2, and some (possibly none) of their312

(cyclic) conjugates.313

Proof314

Let Zp = Ap for p ≥ 1, Bp for p ≥ λ1 + 1, or Cp for p ≥ λ2 + 1. Then wpZp is in Λ while by315

Lemma 6 Zp is a suffix of wp, thus Z2
p is in Λ. This is true also for A0 = a as aa is a suffix of316

w1A1, for Bλ1 as wλ1+1Bλ1+1 = wλ1B
2
λ1

is in Λ, and for Cλ2 as wλ2+1Cλ2+1 = wλ2C
2
λ2

is in Λ.317

Note that some conjugates of the Zp may have the same property, but for the Tribonacci language318

and v = A2 = aba, vv is in Λ but no v′v′ for v′ = baa or v′ = aab.319

As remarked in [4], for a primitive v, if vv is in Λ, then v is the label of a circuit in the Rauzy320

graph of length |v| where no vertex is used more than once; thus v can only be some conjugate of321

some Ap, Bp, or Cp, for a p such that |wp−1| + 1 ≤ |v| ≤ |wp|. This will not be the case for the322

conjugates of Bp, p < λ1, as then Bp is strictly longer than wp and Bp+1 6= Bp because the rule at323

stage p is not (b), nor for the conjugates of Cp, p < λ2, as then Cp is strictly longer than wp and324

Cp+1 6= Cp because the rule at stage p is not (c). �325

326

For non-primitive words Proposition ?? fails: in an AR language Λ where there are five consec-327

utive rules (a) at stages p to p + 4, A4
p is in Λ while A2

p is not any Ak, Bk or Ck in Λ. If we take328

p = 0, we see that A2
0 = aa is not an Ak, Bk or Ck in any AR language.329

Proposition 9. For a primitive word v, the following assertions are equivalent330

(1) v is conjugate to a standard AR word,331
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(2) vv is an AR word,332

(3) v′v′ is an AR word for some conjugate v′ of v,333

(4) all the conjugates of v are in some AR language Λ,334

(5) x can be de-substituted down (using the six AR morphisms τx and σx, x ∈ A) to a single335

letter.336

Proof337

Suppose v satisfies (1); to show that vv is always an AR word, by Proposition ?? what remains338

to prove is that when v is one of the initial Ap, Bp, Cp, or is conjugate to any Ap, Bp, Cp in an339

AR language Λ satisfying (Rabc), then vv is in an AR language Λ′. This is true for B0, C0 by340

exchanging a with b or c. For Bp, 1 ≤ p ≤ λ1, this will be true for Λ′ defined by the same rules as341

Λ up to stage p − 1, then rule (b) at stage p, and any admissible sequence of rules beyond: in this342

language our Bp is B′λ′1 . For Cp, 1 ≤ p ≤ λ1, this will be true for Λ” deduced from the previous Λ′343

by exchanging b and c. For Cp, λ1 + 1 ≤ p ≤ λ2 − 1, this will be true for Λ′ defined by the same344

rules as Λ up to stage p− 1, then rule (c) at stage p, and any admissible sequence of rule beyond:345

in this language our Cp is C ′λ′1 . Let now u be a conjugate to some Zp which is a suffix of wp; then346

we define Λ′ by the same rules as Λ up to stage p− 1, then rule (z) at stage p, and any admissible347

sequence of rules beyond: then wpZ2
p , thus Z3

p , thus uu is in Λ. This will still be true for Zp = Bλ1348

or Zp = Cλ2 if we define Λ′ by the same rules as Λ up to stage p, then rule (z) at stage p + 1, and349

any admissible sequence of rules beyond. Thus we get (2).350

If v satisfies (2) with vv in Λ, then v′v′ is in Λ for the conjugate v′ = v, which gives (3), and if351

v satisfies (3) with v′v′ in Λ, all the conjugates of v′, thus of v, are in Λ, thus we get (4).352

Suppose v satisfies (4), with all the conjugates of v in an AR language Λ. In the Rauzy graph353

of length |v| of Λ, we see each conjugate v(i); there is an edge between v(i) and the next one in354

the circular order, because either v(i) has only one right extension or v(i) has all the possible right355

extensions. Thus there is a circular path whose vertices are all the v(i), each one occurring only356

once as v is primitive; at least one vertex v′ in this path is on the central branch, and if we start357

from this point the circular path is an allowed path. Thus v′v′ is in Λ, as remarked in [4], thus v′358

is conjugate to a standard AR word by the reasoning above, thus v is conjugate to a standard AR359

word. Thus we have proved the equivalence of (1), (2), (3) and (4).360

361

To deal with (5), let us show first that a standard AR word Z is conjugate to its reverse. This362

is true if Z has one letter. Other Z are of the form Z = σxZ
′, for a shorter standard AR word Z ′.363

Then, if we suppose Z ′ is conjugate to Z̄ ′, we get that Z = σxZ
′ is conjugate to σxZ̄ ′, and the364

latter is conjugate to Z̄ = τxZ̄ ′ as these two words are of the form yw and wy for some letter y.365

Let v be a standard AR word, with separating letter a, and v′ a conjugate of v. Then v′ must366

either begin or end in a, otherwise v′ = xv”y with each of x and y different from a; then every367

conjugate of v′ which begins in a must contain yx as a factor, and in particular v contains yx368

which contradicts the fact that a is the separating letter of w. If v′ starts in a, then v′ = τau
′, by369

the properties of the separating letter, and if v′ ends in a then v′ = σau
′. If v′ = σau

′, then u′ is370

conjugate to the standard AR word u such that v = σau. If v′ = τau
′, then v′ is also conjugate to371

v̄, where v̄ = τaū for a standard AR word u, and u′ is conjugate to u. Then we apply the same372

process to u′ as long as u′ has at least two letters, and end when we get to a single letter.373

Finally, to get that (5) implies (1), it is enough to prove that if u′ is conjugate to a standard AR374

word u, then, for any letter x, σxu′ or τxu′ is also conjugate to a standard AR word, and this is true375
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as both these words are conjugate to σxu. �376

377

For v to be conjugate to v′ such that v′v′ is an AR word, it is not enough that all the conjugates of378

v are AR words, take abc for example. Also, a conjugate of a standard AR word is not necessarily379

a standard AR word, for example caba is standard in the Tribonacci language, but abac is not380

standard in any AR language, otherwise it could be written as the concatenation of two words with381

the same last letter.382

To emphasize the part played by the cyclic conjugates, we notice the following fact.383

Proposition 10. Let Λ be any language on an alphabet A such that for every w in Λ and a in A,384

there exists v in Λ such that wva is in Λ. Then the closure of Λ for the cyclic conjugacy is made of385

all the possible words on A.386

Proof387

Let x1x2. . . xn be any word. We will show x1x2. . . xn is in this closure, denoted by Λ′. Let388

xnwxn−1 be in Λ such that w contains each letter sufficiently many times. So xn−1xnw is in Λ′.389

Now write w = uxn−2v where u contains each letter sufficiently many times. So xn−1xnuxn−2390

is in Λ′ (factorial property of languages), hence xn−2xn−1xnu is in Λ′ (closed under cyclic conju-391

gates). And so on for xn−3, xn−4, ... �392

393

3.3. Non-clustering AR words.394

Lemma 11. Let Λ be an AR language satisfying (Rabc). If u ∈ Λ contains at least three of the395

non-singular words xwλ2y, x, y in {a, b, c}, (x, y) 6= (c, c), u cannot cluster for any permutation396

π and any order on {a, b, c}, nor can v if u = vv.397

Proof398

Suppose u contains at least three of cwλ2a, cwλ2b , bwλ2c, awλ2c. As wλ1 is both a prefix and a399

suffix of wλ2 , u contains also cwλ1 , wλ1c and at least three of awλ1 , wλ1a, bwλ1 , wλ1b. As u is in Λ400

and the rule at stage λ1 is (b), u contains cwλ1b, bwλ1c and at least either awλ1b or bwλ1a. As wλ1401

begins and ends with a, u contains ca, ac, ab, ba, aa.402

Suppose u clusters, then we apply Lemma 4. By its first assertion applied to the empty bispe-403

cial, we must assign a to an end of the < order and the opposite one of <π. Then, by the second404

assertion applied to wλ1 and wλ2 , as we cannot give two ends to both b and c, we must assign b to405

the middle of one order, and c to the middle of the other one. Thus, up to left/right and up/down406

symmetries in the pictures in the proof of Lemma 4, we have a < b < c and b <π c <π a. But407

we know that cwλ1b and bwλ1c are factors of u, which gives two intersecting lines bc and cb in the408

picture for wλ1 , and this contradicts Theorem 1. �409

410

Together with uniform recurrence, Lemma 9 provides our main answer to Dolce’s question: in411

a given AR language, there are only finitely many clustering words. This is noticed in [3] in the412

particular case of an infinite sequence of words in the Tribonacci language called the Tribonacci413

standard words, for which the Burrows-Wheeler transform is explicitly computed, and this is gen-414

eralized to r-Bonacci, see Section 4.3 below. Note also that both AR words and clustering are415

mentioned in [19], but no relation between these notions is established.416

The following theorem gives an estimate for the maximal length of a clustering word, for which417

some claims to optimality will be given In Corollary 16 below. It relies on a method used in [18]418

for Sturmian languages and [6] for AR languages.419
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Theorem 12. We recall that, assuming (Rabc), λ2 is the stage of the first rule (c); Let λa be the420

stage of the last rule (a) before λ2, λb the stage of the last rule (b) before λ2, µa the stage of the421

first rule (a) after λ2, µb the stage of the first rule (b) after λ2. Let x and y be the elements of {a, b}422

such that µx < µy.423

Then no word of length at least |wλy |+ max(|Cµy+1|, |Xµy+1|) + 1 can cluster for any permutation424

and any order.425

Proof426

We want to estimate the minimal length of a word containing at least three xwλ2y, (x, y) 6= (c, c),427

so that we can apply Lemma 9. As is noticed in [18], a word w occurs in any word of Λ whose428

length is at least |w| − 1 + t(w), where t(w) is the maximal return time of w, i.e. the maximal429

possible difference between the indexes of two consecutive occurrences ofw. And t(w) is the same430

as t(u), where u is the longest singular word contained in w, or u is a single letter if w contains no431

singular word.432

We reprove, with other notations, Lemma 2.3 of [6]. Let v = zwp−1z be a singular word. We433

define four assertions:434

(OAq) v occurs once in wqAq, v does not occur in wqBq or wqCq,435

(OBq) v occurs once in wqBq, v does not occur in wqAq or wqCq,436

(OCq) v occurs once in wqCq, v does not occur in wqAq or wqBq,437

(OTq) v occurs at least once in wqAq, wqBq and wqCq, the maximal return time of v is |Lq| =438

max(|Aq|, |Bq|, |Cq|).439

If wp = wp−1Zp−1, z is the first letter of Zp−1 and Zp = Zp−1, thus (OZp) holds. Then the440

AR rules imply that if the rule at stage q is (a), (OAq) implies (OTq+1), (OBq) implies (OBq+1),441

(OCq) implies (OCq+1), and mutatis mutandis for rules (b) and (c).442

443

We need to know the maximal return times of u = ywλyy and u′ = xwλxx. The analysis above444

implies that t(u) is known as soon as we see a rule (y) after λ2, which happens at stage µy, and445

that t(u) = |Lµy+1|, and similarly t(u′) = |Lµx+1|.446

447

The rule at stage λ2 is (c). There are only rules (c) (or none) (strictly) between λ2 and µx, there448

are only rules (x) or (c) (or none) (strictly) between µx and µy. By Lemma 5, for p = λ2, and449

p = µy, we have wp+1 = wpLp. This is true also for p = µx if λx < λy, and in any case this450

happens for no other λ2 ≤ p ≤ µy. In particular, we get that Lµy = Yµy and Lµy+1 is the longest451

of Xµy+1 and Cµy+1.452

453

First case, λx < λy.454

Then λy = λ2 − 1. We know that xwλ2c and cwλ2x, which contain u′ as maximal singular word,455

occur in any word in Λ of length at least |wλ2 |+ |Lµx+1|+ 1, and this is smaller than the required456

bound as |wλ2| − |wλ2−1| = |Yλ2−1| < |Lλ2| < |Mµy | ≤ |Lµy+1| − |Lµx+1|.457

We know also that ywλ2c and cwλ2y, which contain u as maximal singular word, occur in any458

word in Λ of length at least |wλ2| + |Lµy+1| + 1. But we can improve this bound a little if we459

want only to see ywλ2c or cwλ2y. Indeed, u occurs in any word Z in Λ of length |Lµy | + |u| − 1.460

Also, u is a prefix of ywλ2c and there is only one way to extend u to the right to length |wλ2 | + 2,461

giving ywλ2c, u is a suffix of cwλ2y, and there is only one way to extend u to the left to length462

|wλ2| + 2, giving cwλ2y. Thus ywλ2c or cwλ2y is in Z, provided Z is long enough to ensure that463

we can extend u to the right or left as far as that length while remaining in Z; in the worst case, we464
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can extend it by a length |Z|−|u|
2

, so we have to check this is at least |wλ2 |+ 2− |u|. Thus we have465

to prove that |Lµy+1| > 2(|wλ2 | − |wλ2−1|): the right side is 2|Yλ2−1| while the left side is at least466

|Lλ2+1| = |Xλ2−1|+ |Cλ2−1|+ 2|Yλ2−1|. And we conclude by Lemma 9.467

468

Second case, λy < λx.469

Then λx = λ2−1. Again, we have to check that xwλ2c and cwλ2x occur in any word of the required470

length, and ywλ2c or cwλ2y occur in any word of the required length. Using the same methods as471

in the previous paragraph, this is done by checking that |wλ2| − |wλy | < |Lµy+1| − |Lµx+1| and472

|Lµx+1| > 2(|wλ2 | − |wλy |). We have |wλ2| − |wλy | = t(|Yλy | + |Xλy |), for some positive in-473

teger t. Knowing the rules between stages λ2 and µx, we get that both |Lµx+1| and |Mµx+1| are474

at least 2t(|Xλy | + |Yλy |). Then we can conclude, using also that |Lµy+1| − |Lµx+1| is at least475

|Mµy | ≥ |Mµx+1|. �476

477

The sharpness of the bound in Theorem 10 will be studied in Corollary 16 and Examples 1, 2478

and 3 below.479

3.4. AR words conjugate to standard.480

Lemma 13. If a bispecial v in a language Λw is resolved by a subset of {avb, avc, ava, bva, cva},481

v satisfies the requirement of the order condition for any order < such that a is at an end, and the482

symmetric permutation. If in Λw a bispecial v′ is resolved by a subset of {av′b, cv′b, bv′b, bv′a, bv′c},483

both v and v′ satisfy the requirement of the order condition for the orders a < c < b or b < c < a,484

and the symmetric permutation.485

Proof486

We draw the extension graphs as in the proof of Lemma 4 and check that any two edges do not487

intersect except at their endpoints. �488

489

Lemma 11 provides a partial converse to Lemma 9, as it allows us to build clustering AR words490

in the absence of the obstructions in its hypothesis, but it does not give a necessary condition for491

clustering, as we shall see in Section 3.5 below.492

Proposition 14. With the assumption (Rabc) and the notations of Theorem 10 above, Yp clusters493

if and only if p ≤ µx, Cp and Xp cluster if and only if p ≤ µy.494

Proof495

We begin by the negative direction. Let Zp be Ap, Bp or Cp for the values in the hypotheses. Then,496

using the rules between λ2 and µy as determined in the proof of Theorem 10, we check that Aλ2 ,497

Bλ2 and Cλ2 all appear in the decomposition of Zp by the AR rules. As each Aλ2 and Bλ2 in this498

decomposition is preceded by wλ2 , if |Zp| ≥ |wλ2 | then wλ2Aλ2 and wλ2Bλ2 , thus wλ2a and wλ2b,499

occur in Z2
p . Indeed, for these values of p, we have |Zp| ≥ |wλ2| + 1 by Lemma 6, thus cwλ2a500

and cwλ2b occur in Z2
p . A symmetric reasoning holds for awλ2c and bwλ2c, as wλ2Aλ2 = A′λ2wλ2 ,501

wλ2Bλ2 = B′λ2wλ2 , where A′λ2 ends with a and B′λ2 ends with b. This contradicts the clustering by502

Lemma 9.503

504

In the positive direction, let Zp be an Ap for p ≥ 0, or a Bp for p ≥ λ1, or a Cp for p ≥ λ2. By505

the reasoning of Proposition ??, Z2
p is a suffix of wpZp, or wp+1Zp+1 if Zp = A0, Zp = Bλ1 or506

Zp = Cλ2 , and the bispecials in the language ΛZp are resolved by AR rules. By Lemma 11, those507
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which are resolved by rule (a) or (b) satisfy the order condition ; as for bispecials wt resolved508

by rule (c), they do satisfy the order condition if they are resolved in ΛZp by {cwc, awc, cwa} or509

{cwc, bwc, cwb}. This will happen if the longest singular word awq′a occurring in awc and cwa,510

or the longest singular word bwqb occurring in cwb and bwc, does not occur in Z2
p .511

Using the rules between λ2 and µy as determined in the proof of Theorem 10, we track bwλbb512

and awλaa as in Theorem 10, and get that one of them, namely u = ywλyy, does not occur in513

wpZp, nor in wp+1Zp+1 when needed, hence in Z2
p , and thus wλ2 satisfies the order condition in514

ΛZp . We look now at any longer bispecial wt resolved by rule (c): as there are only rules (c) and515

(x) (strictly) between λ2 and µy, the ywq′y defined above is u as long as λ2 ≤ t ≤ µy, and we516

know that u does not occur in Z2
p . Thus all these bispecials satisfy the order condition in ΛZp; as517

for still longer bispecial words of Λ, they are too long to occur in Z2
p , as wµy+1 = wµyLµy has a518

length greater than 2|Lµy |.519

There remain to consider the Ap, Bp or Cp for initial values of p. It is immediate that those of520

the form cak or bak do cluster, while the Cp, λ1 + 1 ≤ p ≤ λ2 − 1, are dealt with as in the proof521

of Proposition 7, by changing the language and checking that p ≤ µ′y in the new language, and all522

these cluster. �523

524

The following statements give an equivalent criterion for Ap, Bp and Cp to cluster, which gives525

more information and does not particularize any order of apparition of the rules.526

Corollary 15. With or without the assumption (Rabc), Zp clusters if and only if at least one of the527

three following assertions holds:528

(1) neither the letters a, b, c nor the letters a, c, b occur in the word Dpz at any increasing529

sequence of indices,530

(2) neither the letters b, a, c nor the letters b, c, a occur in the word Dpz at any increasing531

sequence of indices,532

(3) neither the letters c, a, b nor the letters c, b, a occur in the word Dpz at any increasing533

sequence of indices.534

Moreover, in the cases where Zp clusters, when assertion (1), resp. (2), resp. (3) is satisfied, it535

does cluster perfectly for any order for which a, resp. b, resp. c, is in the middle of {a, b, c}, and536

does not cluster for any order and permutation other than those mentioned.537

Proof538

Suppose first (Rabc) holds. Then the fisrt result is deduced directly from Proposition 12. As for539

the second one, it is a consequence of Proposition 12 in the case of assertion (3), with orders dic-540

tated by Lemmas 9 and 11, and is proved in the same way in the case of assertion (1) or (2). The541

other cases for the order of apparition of the rules are deduced by a permutation of the letters, after542

which we get the same conclusions. �543

544

Thus, as clustering is invariant by conjugacy, we know all the clustering AR words satisfying545

the assertions of Proposition 7. We know also all the clustering AR words which are conjugate to546

a power of a standard AR word, or equivalently can be de-substituted to a power of one letter by547

way of the six AR morphisms, they are the powers of the standard clustering words of Proposition548

12 or Corollary 13 and all their conjugates. But this does not tell which ones are in a fixed language.549

550

In a given AR language Λ, we find now a clustering word, conjugate to a standard AR word,551

which is longer than all the ones in Proposition 12.552
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Proposition 16. Let Λ be an AR language satisfying (Rabc). With the notations of Theorem 10,553

let also µ be the stage of the first rule in the string of rules (z), z = x or z = c, just before stage554

µy. The word v = S
µy−µ+1
µy Mµy is a primitive perfectly clustering (for the order a < c < b or its555

symmetric) word of Λ conjugate to a standard AR word. .556

Proof557

We have Sµy = Zµy and, by Lemma 5, Lµy = Yµy . We define another AR language Λ̂ by the558

same rules as Λ up to (and including) stage µy − 1, then µy − µ + 1 rules (z), and any acceptable559

sequence of rules beyond. Then Λ̂ has the same x and y as Λ, and v is conjugate to X̂2µy+µ−1 ( (of560

Λ̂) if z = c, to Ĉ2µy+µ−1 if z = x, and 2µy + µ − 1 < µ̂y (of Λ̂), thus by Proposition 12 v is a561

primitive perfectly clustering word.562

563

It remains to prove that v is in Λ. We know that wµy+1Lµy+1 = wµyLµyMµyLµy is in Λ. We have564

µ ≥ µx; suppose first that either µ > µx, or µ = µx and λy < λx. Then by Lemma 5 Zµ = Mµ.565

Thus Sµy = Zµ while Lµy = LµZ
µy−µ
µ , Mµy = MµZ

µy−µ
µ . Then v = M

µy−µ+1
µ SµM

µy−µ
µ , while566

LµyMµy = LµM
µy−µ
µ SµM

µy−µ
µ is in Λ, and all we have to prove is that Mµ is a suffix of Lµ, which567

is true by Lemma 6 as µ ≥ λ2 + 1.568

569

Suppose now that µ = µx and λx < λy. Then z = x, Zµ = Xµ = Lµ, v = L
µy−µ+1
µ SµL

µy−µ
µ ,570

while wµyLµyMµy = wµyMµL
µy−µ
µ SµL

µy−µ
µ is in Λ. Thus what we have to prove is that Lµu = Xµ571

is a suffix of wµyMµ = wµyYµ, which will be true if Xµ is a suffix of wµYµ, as wµy ends with wµ.572

Going backward through rules (c), what we have to prove is that Xλ2 is a suffix of wµYλ2 . Then573

the rule at stage λ2− 1 is (y), thus we have to prove that Xλ2−1 is a suffix of wµ, and this is true as574

wλ2−1 is a suffix of wµ, and by Lemma 6 Xλ2−1 is a suffix of wλ2−1, except possibly if x = b and575

λ2 − 1 = λ1, which cannot happen as then the rule at stage λ1 = λ2 − 1 should be both (b) and576

(y) = (a). �577

578

Corollary 17. For every n, there exist arbitrarily long primitive (perfectly) clustering Arnoux-579

Rauzy words with at least n occurrences of each letter.580

Every Arnoux-Rauzy language contains a primitive (perfectly) clustering word of length at least581

22.582

Proof583

Take an AR language where D begins with abcn. Then we get Bp = ba(caba)n for some p ≤ µx.584

For a general AR language, the smallest possible value of the length of the word in Proposition585

14 is |SµaSµaMµa | where D begins with abcba, which gives 22. �586

587

Corollary 18. When the directive word D begins with abn1cn2an3b for any integers ni ≥ 1, i =588

1, 2, 3, the word of Proposition 14 has maximal length among clustering words of Λ, and the bound589

in Theorem 10 is optimal. Assuming (Rabc), in all other cases, there is a gap between the length590

of the word in Proposition 14 and the bound in Theorem 10.591

Proof592

We look at the proof of Proposition 14. In the case where either µ > µx, or µ = µx and λy < λx,593

there is always a difference of at least 2 between the best bound in Theorem 10 and the length of594

the word in Proposition 14. In the case where µ = µx and λx < λy, this difference is reduced to 1595
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whenever Xλ2 = wλ2−1Yλ2 , which is equivalent to D being as in the assertion above. �596

597

Example 1. Take the Tribonacci language or any AR language where the directive word D begins598

with abcab. The Ap, Bp or Cp which cluster (perfectly) for the order a < c < b (or its symmetric)599

are A0 to A4, B0 to B3, C0 to C4 = cabaabacaba, of length 11, the longest standard word which600

clusters, while B4 = bacabaabacaba, of length 13, is the shortest standard one which does not601

cluster. Also, A0 to A2, B0 to, B3, C0 to C3 cluster (perfectly) for the order a < b < c (or its602

symmetric), A0 to A2, B0 to B2, C0 and C1 cluster (perfectly) for the order b < a < c (or its603

symmetric).604

In the notations of Theorem 10 λa < λb, x = a, y = b, and the bound is 26. The word in605

Proposition 14 is v1 = aB4C4 = aL4M4 = (abacaba)2cabaabacaba, of length 25, which thus is606

conjugate to a standard AR word. It is a palindrome, and we check that it is the only clustering607

word of maximal length in Λ. We are in one of the cases where the bound is sharp.608

Anther clustering word is the non-primitive v2 = A3
3 = (abacaba)3, of length 21, which is609

conjugate to a power of standard. For v = v1, or v = v2, vv is not in the Tribonacci language.610

Example 2. Take any AR language Λ whereD begins with abacba. In the notations of Theorem10611

we have λb < λa, x = b, y = a and we are in the first case of the proof.612

The bound in Theorem 10 is 45, and we look at words of length 44. By the reasoning of613

Theorem 10 bwλ2c and cwλ2b must occur in all words of this length; the assertion OTµa+1 above614

holds for the singular word awλ2−1a, and, by looking precisely at its occurrences, we check that615

the only word in Λ of length 44 without awλ2c and without cwλ2a is v = wλaLµaMµa , namely v =616

abaaba(cabaababaabacabaaba)2 . We check that v cannot cluster for any order and permutation,617

by hand or by noticing that the four extensions awλ2c, bwλ2c, cwλ2a, cwλ2b appear in vv as do618

indeed cwλ2c and awλ2a, thus v does not cluster and v is not conjugate to a standard AR word.619

Thus no word of length 44 can cluster and the bound in Theorem 10 is not optimal in the first case620

of the proof.621

The word in Proposition 14 has length 43. It is indeed v deprived of its first letter, and is a622

clustering word of maximal length in Λ; it is not the only one, as its reverse is also clustering.623

Example 3. Take any AR language Λ where D begins with abcba. The bound in Theorem 10 is624

24, and we are in the second case of the proof. By the same reasoning as in Example 2 the only625

word of length 23 which might cluster is v′ = a(bacaba)2cababacaba, and we check that v′ cannot626

cluster for any order and permutation, nor can any word of length 23, and the bound in Theorem627

10 is not optimal in the second case of the proof.628

Indeed v′ is LµaMµa thus is conjugate to Lµa+1, hence by Proposition 7 v′ is conjugate to a629

standard AR word, but does not cluster. Thus the word in Proposition 14, which is v deprived of630

its first letter and has length 22, is a clustering word of maximal length in Λ; it is not the only one,631

as its reverse is also clustering.632

Conjecture 1. In a given AR language Λ satisfying (Rabc), the word in Proposition 14 is the633

longest clustering word, or, if this fails, the longest clustering word conjugate to a standard AR634

word.635

3.5. Clustering AR words non conjugate to standard. We turn now to words which are not636

conjugate to standard AR words.637

Example 4. For all n, ba(ca)nb is an AR word not conjugate to a standard AR word, and it is638

perfectly clustering.639
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The following propositions characterize, in two steps, all the words having this property, by640

identifying the particular way they are generated in the general construction of [19].641

Proposition 19. Let w on the alphabet A = {a, b, c} be a perfectly clustering AR word which642

is not in the range of any of the six AR morphisms τx and σx for x ∈ {a, b, c}. Then, up to a643

permutation of the letters a, b and c, there exists a word v on the alphabet {a, c} containing both644

a and c such that the conjugate w′ = b−1wb is obtained from τv(b) by inserting a single b between645

each pair of consecutive occurrences of a or between each pair of consecutive occurrences of c in646

τv(b) (where at most one of aa and cc can occur) plus a b at the very beginning. Furthermore, w is647

a palindrome beginning and ending in b containing both a and c but no a2 nor c2, is primitive, and648

any order for which w is perfectly clustering has b as the middle letter.649

Conversely, any word w built as above is a perfectly clustering AR word for the order a < b < c,650

not in the range of any of the six AR morphisms.651

Proof652

Let w be as in the first sentence. Then w is not a power of a single letter and |w| ≥ 5. Let a denote653

the separating letter of w. Since w is not in the range of τa nor σa, w begins and ends in some letter654

different from a. Let b denote the first letter of w. Then w also ends in b, because otherwise cb is in655

Λw but not bc, while Λw is closed under reversal by Proposition ??. Also, since a is the separating656

letter of w, bb does not occur in w, although it occurs in Λw. Thus w is a palindrome, as w̄ must657

be conjugate to w, but the only conjugate of w which does not contain bb is w itself. Also, w is658

primitive: if w = vn for some n ≥ 2, then as v must begin and end in b, bb is a factor of w, a659

contradiction.660

661

Claim 1 : Each letter of A must occur in w.662

By assumption each of a and b occurs in w. If c does not occur in w, then w is a perfectly clus-663

tering binary palindrome of the form w = bub where u begins and ends in the letter a. Furthermore664

w cannot contain a factor of the form banb with n > 1, for otherwise Λw contains both aa and665

bb, which contradicts Theorem 1. Moreover, as bb does not occur in w, it follows that any two666

consecutive occurrences of b in w must be separated by a single a. Thus w = ba(ba)nb for some667

n ≥ 0 and hence w = τb(a
n+1b) contradicting that w is not in the range of τb.668

669

As w is perfectly clustering and bb ∈ Λw, by Theorem 1 b must be the middle letter under any670

(perfectly) clustering order on A, and furthermore aa does not occur in w. Let us consider the671

conjugate w′ = b−1wb. Note that w′ begins in a and ends in abb.672

673

Claim 2 : w′ = ψ(τv(b)) for some word v on the alphabet {a, c} beginning in a and containing674

c and where the mapping ψ, defined in Section 3 of [19], amounts to inserting a single b in the675

middle of each occurrence of aa and ab in τv(b). τu(w) is a perfectly clustering AR word for676

the order a < b < c. Furthermore, every conjugate of τu(w) different from τu(w) is not an AR677

word and hence in particular, τu(w) is not conjugate to a standard AR word. We note that w′ is678

a perfectly clustering word (for the order a < b < c) and no conjugate of w′ is in the range of679

τa nor τc. In fact, every conjugate of w′ (other than w) contains bb as a factor, hence is not in the680

range of τa nor τc, and by assumption the same is true for w. By application of Lemmas 3.7 and681

3.8 of [19], w′ = ψ(ub) where u is a word on the alphabet {a, c} and ub is also perfectly clustering682

relative to the order a < b < c. Note that if b occurred in u, then w would admit an occurrence683

of bb contrary to our assumption that a is the separating letter of w. Thus ub contains both a and c684
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and Λub contains each of ab, ba, ac, ca. It follows from Lemma 3.1 of [19] that cc is not in Λub and685

hence each occurrence of c in ub must be directly preceded and followed by the letter a. In other686

words, a is a separating letter of ub and w′ is obtained from ub by inserting a single b in the middle687

of each aa occurring in u, plus an additional b at the end. Also u is a palindrome.688

By an iterated application of Lemma 3.4 in [19], we can write ub = τ ra (u′b) for some r ≥ 1 and689

u′ on the alphabet {a, c} beginning in c and furthermore u′b is perfectly clustering for a < b < c.690

Thus u′ is also a palindrome and hence bc and cb are both in Λu′b. If the letter a does not occur in691

u′, then we can write u′b = csb = τcs(b) for some s ≥ 1 and hence692

w′ = ψ(ub) = ψ(τar(u
′b)) = ψ(τar ◦ τcs(b) = ψ(τarcs(b))

as required. On the other hand, if a occurs in u′, then it follows from Lemma 3.1 in [19] that each693

a in u′ must be preceded and followed by the letter c and thus c is a separating letter of u′b. Thus694

similarly we can write u′b = τc(u
′′b) where u′′b is perfectly clustering for the order a < b < c and695

u′′ is a palindrome beginning and ending in a or c. Continuing in this way, we eventually obtain696

that ub = τv(b) for some word v on the alphabet {a, c} containing each of a and c.697

698

In the other direction, let v be a word on the alphabet {a, c} containing each of a and c. Without699

loss of generality, we may assume that v begins in the letter a. It follows from Lemmas 3.3 and 3.4700

of [19] that τv(b) is perfectly clustering for the order a < b < c. Also clearly τv(b) is an AR word.701

By definition, w′ = ψ(τv(b)) where ψ is the mapping defined in Section 3 of [19]. It follows from702

Lemma 3.7 of [19] that w′, and hence w, is perfectly clustering for the order a < b < c. It remains703

to show that w is an AR word which is not in the range of any of the six AR morphisms. We first704

note that by definition w begins and ends in b and hence can only be in the range of τb or σb. But705

as w contains ac neither is possible. Finally it is easily verified that b−1wb−1 = τav′(a) where v′ is706

obtained from a−1v by exchanging the letters a and b and keeping c fixed. It follows that b−1wb−1707

is a bispecial AR word from which it follows that w is an AR word as required. �708

709

We note that the shortest w verifying the assumptions of Proposition 17 is (up to a permutation710

of the letters) bacab, built from τacb.711

Proposition 20. Assume v is a perfectly clustering AR word which is not conjugate to a standard712

AR word, nor to any power of a standard AR word. Then up to a permutation of the letters, v713

is conjugate to a word of the form τu(w) where u (possibly empty) is on the alphabet {a, c} and714

where w is as in Proposition 17.715

Conversely, let v be as in the previous sentence; then it is an AR word perfectly clustering for716

the order a < b < c. Furthermore, every conjugate of v different from v is not an AR word and717

hence v is not conjugate to any power of a standard AR word.718

Proof719

By Proposition 7, an AR word is conjugate to a power of a standard if and only if it can be de-720

substituted to a power of one letter by way of the six AR morphisms. This means that otherwise721

we can write v = f(w) where f (possibly the identity) is some concatenation of AR morphisms,722

and where v is not in the range of any of the six AR morphisms. Assume w is perfectly clustering723

for the order a < b < c, then f cannot involve τb nor σb and hence is a concatenation of {τa, τc,724

σa, σc}; replacing v by a conjugate, we can get that f is a concatenation of τa, τc. By Lemmas 3.3725

and 3.4 in [19], we have that v is also perfectly clustering for a < b < c.726

727
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In the other direction, we begin by considering the case when u is empty. It follows from728

Proposition 17 that v is perfectly clustering AR word for the order a < b < c. Furthermore v729

contains each of a, b and c, begins and ends in b and has either a or c as a separating letter.Now let730

v′ be a conjugate of v with v′ 6= v. Then v′ contains bb and either ac or ca or both and hence v′ is731

not an AR word.732

Now assume that u is a non-empty word on the alphabet {a, c}. The properties of v being an733

AR word containing each letter, and no conjugate v′ 6= v being an AR word, are clearly stable734

under application of τu. By Lemmas 3.3 and 3.4 in [19], the clustering property is also stable by735

application of τu. �736

737

However, there are also infinitely many primitive AR words which cluster but not perfectly, and738

hence are not conjugate to a standard AR word.739

Example 5. The word w = abaca, which belongs to the Tribonacci language, does cluster for740

the order a < c < b (and no other one), for the permutation πa = c, πb = a, πc = b (thus not741

perfectly), and in the language Λw the bispecial a is resolved by caa, aab, bac, thus the bispecials742

of Λw are not in any AR language, though they all satisfy the order condition. Thus abaca is743

not conjugate to a standard AR word, and it is clustering but not perfectly clustering. The same744

properties are shared by abancan for all n.745

Question 1. What are the primitive AR words which cluster but not perfectly?746

As for general clustering words on three letters, they are characterized in [19] for the symmetric747

permutation, and in [14] for all permutations, and are not always AR words.748

Proposition 21. For any order and any permutation π different from the identity, there are infinitely749

many π-clustering words on three letters which are not AR words.750

Proof751

We fix an order and a permutation. By [14], any word w such that ww is in the language Λ cor-752

responding to an interval exchange transformation built with this order and this permutation, and753

satisfying the i.d.o.c. condition, is clustering for this order and this permutation. Such a Λ is uni-754

formly recurrent, and contains infinitely many squares, by [12] if π is the symmetric permutation,755

[10] in general, thus there are infinitely many such clustering words w. If a word w in Λ contains756

all the extensions xvy of all bispecial words v in Λ longer than some constant, w cannot be an AR757

word. And this will be true for any long enough clustering word w in Λ. �758

4. RELATED LANGUAGES759

4.1. Sturmians. On two letters a and b, as is shown in [1], the Sturmian languages of [18] can be760

generated by words Ak and Bk, which are called standard Sturmian words, using AR-type rules761

on two letters. Each Sturmian language contains infinitely many clustering words, and all these are762

known since [17] and [16]. For sake of completeness, we reprove this result by the methods of the763

present paper.764

Proposition 22. The primitive clustering Sturmian words, as well as the primitive clustering words765

on {a, b}, are all the standard Sturmian words and all their conjugates.766

Proof767

Note first that the only clustering words with the identity as permutation are the am and bm, thus768
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we can restrict ourself to perfectly clustering words, for the order a < b. The Sturmian languages769

are identified in [18] with 2-interval exchange languages, thus we deduce from [14] that a primi-770

tive Sturmian word v, or a primitive word v on {a, b}, is clustering iff vv is a factor of a Sturmian771

language. This, by the same proof as Proposition ??, is equivalent to v conjugate to some Ap or772

Bp in some Sturmian language. �773

774

Note that, for Sturmian languages or more generally for interval exchange languages, the neces-775

sary and sufficient condition for v to cluster in Theorem 1 is, by [11], equivalent to the one given776

in [14], namely that vv be a factor of such a language.777

However, to determine if a given word clusters, our Theorem 1 is more explicit. Take for ex-778

ample the two Sturmian words v = abaa and v′ = baab, v and v′ are factors of the Fibonacci779

language, while vv and v′v′ are not in this language. It is easy to check by hand that v clusters (for780

a < b and the symmetric permutation) and v′ does not cluster for any order and permutation; thus781

we know that vv must be in some Sturmian language and v′v′ cannot be in any Sturmian language,782

but it is easier, and quicker in general than computing the Burrows-Wheeler transform, to check783

directly that the bispecials in vv satisfy the order condition and those in v′v′ do not; in this last784

case, it is immediate that no order condition can be satisfied by the empty bispecial, as aa, bb, ab,785

ba occur in v′v′.786

4.2. Episturmians on three letters. In the literature, for which we refer the reader to the two787

surveys [2] and [15], we found only the definition of episturmian infinite words, one-sided in788

general though two-sided words are briefly considered in [15]. To make the present paper coherent,789

we define here the corresponding languages, our definition having been chosen to correspond to790

what is used in practice.791

Definition 3. A language is episturmian if it is uniformly recurrent, closed under reversal, and792

admits at most one right special factor of each length.793

An episturmian language on three letters can be generated by AR rules or by AR morphisms,794

as is proved in the founding paper [9]. Indeed, these episturmian languages can be defined by795

a modification of Definition 2 above, where the assumption “each one of the three rules is used796

infinitely many times” is replaced by “each one of the three rules is used at least once”.797

The description of the bispecial words is deduced from the one given after Definition 2 by798

the following modifications: the possible bispecials are among the wk, and wk has at most three799

suffix return words which are among Ak, Bk and Ck. More precisely, Ak is a return word of wk,800

or equivalently the label of an elementary circuit in the Rauzy graphs, if and only if wkAk, or801

equivalently wka, is in Λ, and similarly for Bk and Ck.802

Lemma 23. The word wpAp is in an episturmian language Λ on three letters if and only if the803

directive word of Λ is such that there exist rules (a) at or after stage p, and similarly for Bp and804

rules (b), Cp and rules (c).805

Proof806

Suppose for example there is a rule (a) at or after stage p. Then, for some q ≥ p, wq+1 = wqAq,807

thus wqAq is in Λ, and so is wpAp as wp is a suffix of wq and Ap is a prefix of Aq.808

Suppose there is no rule (a) at or after stage p. Then wpAp cannot be in Br or Cr as Br and Cr809

do not have Ap in their decomposition by AR rules. As there are infinitely many rules (b) or (c),810

the length of Br or Cr tends to infinity with r, thus this contradicts uniform recurrence. �811

812
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The assertion (Rabc) is defined as for AR languages.813

Theorem 24. An episturmian language Λ on three letters, satisfying (Rabc), contains infinitely814

many clustering words if and only if its directive word is D′D”, where D′ is a finite word on the815

alphabet {a, b} and D” is a one-sided infinite word on the alphabet {a, c} or {b, c}.816

When this is not the case, with the notations of Theorem 10, no word of length at least817

|wλ2|+ maxZ∈{A,B,C},wµy+1Zµy+1∈Λ |Zµy+1|+ 1818

can cluster for any permutation and any order.819

Proof820

Suppose D is D′D” as in the hypothesis. Let v be any word such that vv is in Λ. The bispecials821

in the language Λv are some of the wp of Λ, and are resolved as in the AR rules, possibly with822

some extensions missing. By Lemma 11, those which are resolved as in rule (a) or (b) satisfy the823

order condition for a < c < b. For those wp which are resolved as in rule (c), there is no rule (z)824

on or after stage p for z = a or z = b, thus by Lemma 21 wpz is not in Λ, and wp is resolved by825

a subset of {awpc, cwpa, cwpc} or {bwpc, cwpb, cwpc}, thus satisfies the order condition. Thus by826

Lemma 9 v clusters perfectly. To find such v, we follow the reasoning of Proposition ??: any Zp in827

{Ap, Bp, Cp} will have its square in Λ provided p is large enough and wpZp is in Λ. If each letter828

in D” occurs infinitely many times, we get arbitrarily long primitive clustering words; otherwise829

all the Zn
p will be clustering for one value of Z.830

Suppose D is not D′D” as in the hypothesis. Then after the first rule (c) there is at least one831

rule (a) and one rule (a). Thus all the quantities in Theorem 10 can be defined, and we can follow832

the reasoning of this theorem, with the following modifications: the assertion (OAq) is now that v833

occurs once in wqAq, does not occur in wqCq or wqBq, and wqAq is in Λ, and similarly for (OBq)834

and (OCq); the assertion (OTq) is now that v occurs at least once in each wqZq which is in Λ, Z835

in {A,B,C}, and the maximal return time of v is the maximal length of these Zq. Then, we get836

the maximal return times of the two special words, and conclude immediately as, in contrast with837

Theorem 10, we keep the quantity |wλ2| in the bound. �838

839

Example 6. Let D = abc(ab)ω. This gives an episturmian language which contains only finitely840

many clustering words, but is not an AR language. Its complexity function is p(n) = 2n + 1 for841

1 ≤ n ≤ 4, p(n) = n+ 5 for n ≥ 5.842

Note that these properties are shared by all episturmian languages where D = abcD” where843

D” is a one-sided infinite word on {a, b} in which both a and b occur infinitely many times. By844

Theorem 22, any episturmian language whose complexity is at least n + 1 for all n but is strictly845

smaller than the p(n) of Example 6 produces infinitely many clustering words. One can wonder846

whether this is still true for any language, or at least for any uniformly recurrent language, of847

complexity at least n+ 1 for all n but strictly smaller than this p(n). For sake of completeness, we848

give a (non episturmian) counter-example.849

Example 7. We build a language Λ on {a, b, c} in the following way: the empty bispecial word is850

resolved by {ab, ac, ba, ca}; the bispecial a is resolved by {bab, bac, cab, cac}; the bispecial aba is851

resolved by {babab, babac, cabab}; the bispecial aca is resolved by {bacac, cacab}; every further852

bispecial w is resolved either by {bwb, bwc, cwb} or by {bwc, cwb, cwc}, each possibility being853

used infinitely many times. Its complexity function is p(1) = 3, p(2) = 4, p(3) = 6, p(n) = n+ 4854

for n ≥ 4. Its Rauzy graphs of length 4 and more have the same shape as the Rauzy graphs of855

Sturmian languages, thus the alternating of resolution rules ensures that Λ is uniformly recurrent.856
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But the bispecial word a does not satisfy the requirement of the order condition, for any order and857

permutation, and its four extensions bab, bac, cab, cac occur in every long enough factor of Λ. Thus858

by Theorem 1 Λ contains only finitely many clustering words.859

4.3. Larger alphabets. AR languages can be generalized to any alphabet A = {a1, a2, · · · , ar}860

(note that here the order will not necessarily be a1 < a2 < · · · < ar).861

Definition 4. An AR language is generated by words A(i)
k , 1 ≤ i ≤ r, starting from A

(i)
0 = ai,862

1 ≤ i ≤ r, and by rule (ai) at stage k, A(i)
k+1 = A

(i)
k , A(j)

k+1 = A
(j)
k A

(i)
k for all i 6= j.863

Each rule is used infinitely many times. The directive word is defined in the usual way. The864

A
(i)
k are again the labels of the elementary circuits in the Rauzy graphs. The r-Bonacci language,865

r ≥ 3, is defined by D = (a1...ar)
ω.866

There the methods of Section 3 apply mutatis mutandis, but the number of cases to be consid-867

ered grows very quickly, and a lot of space would be required to generalize all the above study.868

Thus we shall just generalize Theorem 10, with some loss of optimality.869

870

Proposition 25. We denote by (a), (b), (c) the first three rules by order of appearance, and define871

all quantities in Theorem 10 above in the same way. Let v be an AR word on an r-letter alphabet872

of length at least |wλ2| + max1≤i≤r(|A(i)
µy+1|) + 1. Then v cannot cluster for any permutation and873

any order on the alphabet.874

For 4-Bonacci, this bound is not optimal; the better bound |wλy | + max1≤i≤r(|A(i)
µy+1|) + 1 holds875

but is not optimal either.876

Proof877

In this case Lemma 9 is still valid, by restricting the orders on A to the set {a, b, c}, and again we878

need to know the maximal return times of u′ = xwλxx and u = ywλyy. These are computed exactly879

as in Theorem 10, mutatis mutandis: the assertions are now (O
(j)
q ), that v occurs once inwqA

(j)
q and880

does not occur in any wqA
(i)
q , i 6= j (a, b, c being denoted also by a1, a2, a3), and OTq, that v occurs881

at least once in each wqA
(i)
q and the maximal return time of v is max1≤i≤r(|A(i)

q |). These evolve882

like in the proof of Theorem 10, and thus the maximal return time of u is max1≤i≤r(|A(i)
µy |), the883

maximal return time of u′ is max1≤i≤r(|A(i)
µx)|. We conclude immediately as we keep the quantity884

|wλ2 | in the bound.885

For 4-Bonacci, if we denote the letters by a, b, c, d, we have λ2 = 2, w3 = abacaba, w2 = aba,886

w1 = a, w0 is the empty word. The bound in the conclusion is |C6| + 4 = 60, but in this sim-887

ple case we can mimic the end of the proof of Theorem 10 and replace the |wλ2 | in the bound888

by |wλy |, thus getting |C6| + 2 = 58. As C6 = C5B5, by the usual reasoning the only word of889

length |C6| + 1 which does not contain bwλ2c nor cwλ2b is, up to cyclic conjugacy, u = aB5C5.890

In the language Λu, we check that w0 is resolved by {aa, ab, ac, ad, ba, ca, da}, w2 is resolved by891

{cw2c, aw2c, cw2a, dw2c, cw2d}, w3 is resolved by {aw3d, dw3a, dw3c, cw3d}, thus, if u clusters,892

by Lemma 4 each one of a, c, d must be at an end of the order between them, thus no word of893

length 57 can cluster for any order and permutation. �894

895

In the general case, we do not try to replace the |wλ2| in the bound by |wλy | as the proof would896

be complicated by the presence of rules (ai), i ≥ 4, between stages λ2 and µy, and the improved897

bound is not optimal even for 4-Bonacci.898

899
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Similarly, the main result of Section 4.3 can be generalized to episturmian languages on larger900

alphabets: an episturmian language Λ on r letters contains infinitely many clustering words if and901

only if, up to a permutation of letters, its directive word is D(1)D(2) · · ·D(r−1), where D(1) is a902

finite word on the alphabet {a1, a2}, D(2) is a finite word on the alphabet {a3, x3} with x3 = a1 or903

x3 = a2, D(3) is a finite word on the alphabet {a4, x4} with x4 = a3 or x4 = x3, ..., D(r−2) is a904

finite word on the alphabet {ar−1, xr−1} with xr−1 = ar−2 or xr−1 = xr−2, D(r−1) is a one-sided905

infinite word on the alphabet {ar, xr} with xr = ar−1 or xr = xr−1. This can be proved in the906

same way as Theorem 22.907
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