Semantic Segmentation using Foundation Models for Cultural Heritage: an Experimental Study on Notre-Dame de Paris - Archive ouverte HAL
Poster De Conférence Année : 2023

Semantic Segmentation using Foundation Models for Cultural Heritage: an Experimental Study on Notre-Dame de Paris

Résumé

Vision foundation models have already had a major impact on several computer vision tasks. This work aims to study their usefulness in the context of cultural heritage. By utilizing the Segment Anything Model (SAM) we could perform segmentation on Notre-Dame de Paris images. Additionally, we have developed a pipeline that combines various foundation models (GroundingDINO and CLIP) to demonstrate their abilities for semantic segmentation of cultural heritage data.
Fichier principal
Vignette du fichier
REBY_eHeritage_Poster.pdf (5.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04275454 , version 1 (08-11-2023)

Identifiants

  • HAL Id : hal-04275454 , version 1

Citer

Kévin Réby, Anaïs Guillem, Livio De Luca. Semantic Segmentation using Foundation Models for Cultural Heritage: an Experimental Study on Notre-Dame de Paris. 4th ICCV Workshop on Electronic Cultural Heritage, Oct 2023, Paris, France. ⟨hal-04275454⟩
124 Consultations
35 Téléchargements

Partager

More