Communication Dans Un Congrès Année : 2023

Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse

Lydia Chougar

Résumé

Domain adaptation is a very useful approach to exploit the potential of clinical data warehouses, which gather a vast amount of medical imaging encompassing various modalities, sequences, manufacturers and machines. In this study, we propose a semi-supervised domain adaptation (SSDA) framework for automatically detecting poor quality FLAIR MRIs within a clinical data warehouse. Leveraging a limited number of labelled FLAIR and a large number of labelled T1-weighted MRIs, we introduce a novel architecture based on the well known Domain Adversarial Neural Network (DANN) that incorporates a specific classifier for the target domain. Our method effectively addresses the covariate shift and class distribution shift between T1-weighted and FLAIR MRIs, surpassing existing SSDA approaches by more than 10 percent points.
Fichier principal
Vignette du fichier
hal_loizillon_dart_miccai.pdf (666.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04273997 , version 1 (07-11-2023)

Identifiants

Citer

Sophie Loizillon, Olivier Colliot, Lydia Chougar, Sebastian Stroer, Yannick Jacob, et al.. Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse. DART 2023 - 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, Oct 2023, Vancouver (BC), Canada. pp.84-93, ⟨10.1007/978-3-031-45857-6_9⟩. ⟨hal-04273997⟩
229 Consultations
140 Téléchargements

Altmetric

Partager

More