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3 AP-HP, Hôpital Pitié-Salpêtrière, DMU DIAMENT, Dep. of Neuroradiology,
Paris, France

sophie.loizillon@gmail.com

Abstract. Domain adaptation is a very useful approach to exploit the
potential of clinical data warehouses, which gather a vast amount of
medical imaging encompassing various modalities, sequences, manufac-
turers and machines. In this study, we propose a semi-supervised domain
adaptation (SSDA) framework for automatically detecting poor qual-
ity FLAIR MRIs within a clinical data warehouse. Leveraging a limited
number of labelled FLAIR and a large number of labelled T1-weighted
MRIs, we introduce a novel architecture based on the well known Domain
Adversarial Neural Network (DANN) that incorporates a specific classi-
fier for the target domain. Our method effectively addresses the covariate
shift and class distribution shift between T1-weighted and FLAIR MRIs,
surpassing existing SSDA approaches by more than 10 percent points.

Keywords: Domain Adaptation · Deep Learning · Magnetic Resonance
Imaging · Clinical Data Warehouse.

1 Introduction

Machine learning algorithms aim to learn a model from training samples by
minimising a cost function. However, for these models to work optimally, it
is crucial that the training data and the test data share similar distributions.
When the distribution of the training dataset differs from that of the test data,
the performance of the model degrades. This would be the case when training an
algorithm to rate the quality of T1-weighted (T1w) magnetic resonance (MR)
images but applying it to another MRI sequence, e.g. fluid attenuated inversion
recovery (FLAIR). To overcome this problem, various approaches have been
proposed in the field of domain adaptation [1,2,3,4]. These approaches aim to
develop robust models that can effectively adapt to various data distributions
that differ from those on which they have been trained.
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Domain adaptation has first been tackled in the literature in an unsuper-
vised manner [1,5], with the objective of reducing the discrepancy between the
source (e.g., T1w) and target (e.g., FLAIR) domains relying on labelled data
from the source domain only. This is commonly referred to as unsupervised do-
main adaptation (UDA) Adversarial learning has achieved promising results by
extracting domain invariant features. Adversarial learning attempts to extract
relevant features to fool the domain classifier which aims to differentiate the
source and target domains [5]. An effective adversarial learning approach is that
of the Domain Adversarial Neural Network (DANN), which is composed of a
shared feature extractor and a domain discriminator [1]. The domain discrimi-
nator aims to distinguish the source and target samples. At the same time, the
feature extractor is trained to fool the domain discriminator in order to learn
domain invariant features. While this method has proved its worth in recent
years, Zhao et al. [6] warned that learning domain-independent features does
not guarantee good generalisation to the target domain, particularly when the
class distribution between domains differs.

In some cases, a few labelled samples are available from the target domain,
which can help in improving the performance of the model. Saito et al. [2] in-
troduced the notion of semi-supervised domain adaptation (SSDA), a variant of
UDA where a limited number of labelled target samples is available. Specifically,
they proposed a method called minimax entropy (MME). With the use of the
mini-max paradigm, the presence of a small number of labelled target samples
can considerably improve the performance of CNN models. The method consists
of first estimating domain-invariant prototypes by maximising the entropy, and
then clustering the features around the estimated prototypes, this time by min-
imising the same entropy. Several approaches focus on reducing the intra-domain
divergence in the target domain [3,4]. Jiang et al. [3] designed an effective Bidirec-
tional Adversarial Training (BiAT) to attract unaligned sub-distributions from
the target domain to the corresponding source sub-distributions. While many ex-
isting SSDA approaches rely on adversarial techniques, there has been a recent
interest in the use of contrastive learning. These methods, that show impressive
success in self-supervised learning, aim to acquire an embedding space where
similar pairs of samples are grouped together, while dissimilar pairs are pushed
apart. In the context of domain adaptation, a common approach is to consider as
similar pairs unlabelled target images and their corresponding augmented ver-
sions. On the other hand, dissimilar pairs are formed by combining unlabelled
target images with labelled source images [7,8].

Due to the large variety of modalities and sequences, the field of medical
imaging has turned its attention to the question of UDA and SSDA. Adversarial
learning has been applied to various medical image classification and segmenta-
tion tasks [9,10,11]. An extension of the DANN to an encoder-decoder architec-
ture is proposed in [9] and used for segmentation purposes in volume electron
microscopy imaging. The network was initially trained using UDA techniques
and subsequently fine-tuned on the target domain. A comparative study of the
original DANN, a semi-supervised DANN, and fine-tuning techniques for white
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matter lesion segmentation is presented in [10]. Best results were obtained with
the semi-supervised DANN. However, it was trained by passing all source and
target samples through the same label classifier, which does not seem ideal espe-
cially when there is a distribution shift between source and target. Contrastive
learning has also been used for domain adaptation in medical image analysis, for
instance to reduce the gap between adult (source domain) and children (target
domain) chest X-rays for automatic pneumonia diagnosis [11].

A sub-field of medical imaging where domain adaptation would be particu-
larly necessary is that focusing on clinical routine data, such as those gathered
in clinical data warehouses (CDWs). Having access to extensive and diverse clin-
ical imaging data from multiple centres present an exceptional opportunity for
the development of computational tools. To efficiently exploit CDWs, a model
initially developed for a specific modality or sequence should have the ability
to generalise to other modalities or sequences without the need to manually re-
annotate large amounts of data. For example, recent studies have emphasised
the importance of conducting automatic quality control (QC) on imaging data
before deploying machine learning algorithms on CDWs [12]. To address this
need, a framework was previously developed for the automatic QC of T1w brain
MRIs. However, this framework, specific to the T1w sequence, required signifi-
cant manual annotation efforts involving 5500 image annotations [13]. Our aim
is to expand this framework to encompass FLAIR MRIs, while minimising the
need for extensive new manual annotations using domain adaptation.

In this paper, we introduce a novel SSDA method for the automatic detec-
tion of poor quality FLAIR MRIs in a CDW while using a limited amount of
labelled target data. In particular, we propose to incorporate a specific classifier
for the target data into the well-known DANN [1]. We conduct a comparative
analysis between our proposed method and the state-of-the-art SSDA architec-
tures [2,10,14].

2 Methods

2.1 Dataset description

This work is built upon a large clinical routine dataset containing 3D T1w and
FLAIR brain MR images of adult patients scanned in hospitals of the Greater
Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]). The dataset is
composed of 5500 T1w and 5858 FLAIR MRIs acquired on respectively 30 and 22
different scanners from four manufacturers (Siemens, GE, Philips, and Toshiba)
which had been randomly selected from the CDW [13].

5500 T1w and 858 FLAIR MRIs were manually annotated with respect to
the MRI quality. A score was given by two annotators to evaluate the noise,
contrast and motion within the image on a three-point scale (0: no artefact, 1:
moderate artefact, 2: severe artefact) [13]. In case of disagreement, the consensus
score was chosen as the most severe of the two for T1w MRIs [13], while for the
FLAIR images, both annotators reviewed the problematic images and agreed on
a consensus, given that the number of manually annotated images was limited.
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Based on the scores assigned to the motion, contrast and noise characteristics,
we defined different tiers: tier 1 represents good quality images (score of 0 for
all characteristics), tier 2 stands for medium quality images (score 1 for at least
one characteristic and no score 2), and tier 3 for bad quality images (score 2 for
at least one characteristic). If the images did not contain full 3D T1w or FLAIR
MRI of the whole brain, such as segmented tissue images or truncated images,
they were classified as straight reject (SR). Figure 1 shows the distribution of
the different tiers according to the modality in the form of a Sankey plot.

Fig. 1. Sankey plot analysis of labelled T1w and FLAIR MRIs highlighting the tier
distribution for both sequences and the distribution of manufacturers across tiers.

2.2 Image pre-processing

The T1w and FLAIR MRIs were pre-processed using Clinica and its {t1|flair}
-linear pipeline [15] that relies on ANTs [16]. First, bias field correction was
applied using the N4ITK method. Next, an affine registration to the MNI space
was performed using a specific template for each of the T1w and FLAIR se-
quences. The images were then cropped to remove the background, resulting in
169×208×179 images and 1 mm isotropic voxels.

2.3 Proposed approach

We developed a semi-supervised approach based on the unsupervised DANN
method to detect poor quality (i.e. tier 3 ) FLAIR in a clinical data warehouse.

The DANN [1], which aims to learn domain invariant features, was originally
designed for unsupervised learning. The network is composed of a shared fea-
ture extractor (F ) and two classifiers: a domain classifier (Cdom) and a label
predictor classifier. The goal of this architecture is to minimise the label pre-
diction loss for accurate label prediction on the source domain and maximise
the domain confusion loss to align the feature distributions of the source and
target domains. Zhao et al. [6] showed that learning domain invariant features
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does not necessarily guarantee the generalisation of the model to the target do-
main, in particular when the class distributions change between the source and
target domains. We adapted the DANN architecture to the context of SSDA by
adding a target label predictor classifier CT, as shown in Fig 2. Compared with
the approach of Sundaresan et al. [10], where all source and target data pass
through the same label classifier, the addition of a specific classifier to the target
data aims at handling the class distribution shift between the tier 1/2 and tier
3 classes for the T1w and FLAIR MRIs. While for the T1w sequence, the two
classes are slightly unbalanced (tier 1/2 : 59% and tier 3 : 41%), the imbalance
is much larger for the FLAIR (tier 1/2 : 84% and tier 3 : 16%).

Fig. 2. Semi Supervised adapted DANN architecture composed of a domain invariant
feature extractor (F), a source label classifier (CS), a target label classifier (CT ) and a
domain classifier (Cdom). A gradient reverse layer (GRL) multiplies the gradient by a
negative value when backpropagating to maximise the loss of the domain discriminator.

We denote the source dataset, consisting of labelled T1w MRIs, as Ds =

(xS
i , y

S
i )

NS

i=1. For the target domain, we have two datasets: the labelled target sam-

ples DTL
= (xTL

i , yTL
i )

NTL

i=1 and the unlabelled target samples DTU
= (xTU

i )
NTU

i=1 .
We will refer to the labelled data from the two domains using the following
notation DL = DS ∪DTL

. The overall loss for the semi supervised DANN is

L = Lpred(F,CS , CT , DL)︸ ︷︷ ︸
Label Prediction Loss

−λ · Ldom(F,Cdom, DL, DTU
, d)︸ ︷︷ ︸

Domain Confusion Loss

(1a)

where

Lpred = −
K∑

k=1

(ySi )k log(CS(F (xS
i ))k︸ ︷︷ ︸

Source Label Prediction

−
K∑

k=1

(yTL
i )k log(CT (F (xTL

i ))k︸ ︷︷ ︸
Target Label Prediction

(1b)

Ldom = di log
1

Cdom(F (xi))
+ (1− di) log

1

1− Cdom(F (xi))
(1c)
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with di the domain label of the i-th sample, which indicates whether it is a
T1w (source domain) or a FLAIR (target domain), and K = 2 is the number of
classes for the source and target label classifier (i.e., task tier1/2 vs tier3 ).

As in the classical DANN [1], the model is initialised using a pre-trained
model without the domain classifier. This model is usually trained on the source
domain that has been labelled. Here we pre-trained the network using all the
labelled data from the source and target domains. The training procedure is
detailed in Algorithm 1. We structured each iteration to include three mini-
batches. A first mini-batch contained labelled samples from the source domain
(bS), another consisted of labelled samples from the target domain (bTL

), and
the final mini-batch comprised unlabelled samples from the target domain (bTU

).
This arrangement ensured that a target labelled data sample was present in every
batch, effectively influencing the training process.

Algorithm 1 Proposed SSDA Algorithm

Require:
1: Source samples DS = {(xS

i , y
S
i )}NS

i=1

2: Target labelled samples DTL = {(xTL
i , yTL

i )}NTL
i=1

3: Target unlabelled samples DTU = {(xTU
i )}NTU

i=1

4: Hyperparameters : λ, learning rate η
5: Pre-trained model with all labelled samples (DS , DTL) and λ = 0
6: for each epoch do
7: for each bS, bTL , bTU do
8: # Forward pass
9: ŷS ← CS(F (bS, θF ), θCS)
10: ŷT ← CT(F (bTL , θF ), θCT )
11: d̂← Cdom(F (bS + bTL + bTU , θF ), θCdom)
12: # Loss computation
13: L← LS(ŷ

S , yS) + LTL(ŷ
TL , yTL) + λLdom(d̂, d)

14: # Backward pass & model weight update
15: θF ← θF − η ×∇θF L
16: θCS ← θCS − η ×∇θCS

L
17: θCT ← θCT − η ×∇θCT

L
18: end for
19: end for

2.4 Experiments

We aimed to assess the ability of the proposed and different existing SSDA ap-
proaches to detect bad quality FLAIR MRIs, which corresponds to the classifica-
tion task tier 1/2 vs tier 3. Before starting the experiments, we excluded all the
SR images that contained MRIs which were not full 3D MRIs of the whole brain
(1455 T1w and 75 FLAIR), e.g., truncated images or segmented brain tissue
images. We built the FLAIR MRIs test set by randomly selecting 480 manually
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annotated images while ensuring they shared the same distribution of tiers, man-
ufacturers, and field strengths as the images in the training/validation set. The
remaining 303 labelled FLAIR MRIs were split into training and validation using
a 5-fold cross validation. In a similar manner, the 5000 unlabelled FLAIR MRIs
were divided into training and validation sets, taking into account the same dis-
tribution of manufacturers and field strengths. As for the T1w dataset composed
of 3660 labelled samples, we employed the identical split as Bottani et al. [13],
where the images were split between training and validation using a 5-fold cross
validation respecting the same tiers distribution. We conducted a comparative
study between our proposed approach and three well-known SSDA methods that
use labelled data from the source and target domains to jointly train a network,
and unlabelled samples to regularise it: a semi-supervised DANN without tar-
get label classifier [10], mini-max entropy (MME) [2] and entropy minimisation
(ENT) [14].

MME [2] extracts discriminating and domain-invariant features using unla-
belled target data by estimating domain-invariant prototypes. Domain adap-
tation is performed by first maximising the entropy of unlabelled target data
according to the classifier to estimate prototypes that are invariant to the do-
main. Then, the entropy is minimised regarding to the feature extractor to make
target features well-clustered around the prototypes.

ENT [14] relies on entropy minimisation using labelled source and target
data, along with unlabelled target data. The entropy is computed on the unla-
belled target samples, and the network is trained to minimise this entropy. In
contrast to MME, ENT does not involve a maximisation process.

All the experiments were conducted using the ClinicaDL software, imple-
mented in PyTorch [17]. The Conv5FC3 network, consisting of five convolutional
neural network layers and three fully connected layers, was used for every ex-
periment as its performance was as good as that of more sophisticated CNN
architectures (Inception, ResNet) on the T1w MRI QC task [13].

3 Results

The main results for the detection of bad quality MRIs (tier 3 ) within the CDW
are shown in Table 1. For each method, we report the results on the independent
T1w and FLAIR test sets. We first trained the baseline for the source domain
(Baseline T1w) using the 3660 labelled T1w MRIs. The model exhibited excellent
balanced accuracy (BA) on the T1w test set (83.51%) but the performance on
the FLAIR test set dramatically dropped (50.06%). We performed the same
experiments training on the target domain using the 303 labelled FLAIR MRIs
(Baseline FLAIR). We obtained a low BA of 68.23% on the FLAIR test set.
Finally, the baseline trained with all the labelled data (Baseline T1 + FLAIR)
achieved an excellent BA on the T1w but a low BA on FLAIR. With regard
to the results obtained for the different SSDA methods, the approach we have
proposed outperforms the DANN, MME and ENT by 10, 13 and 14 percent
points respectively on FLAIR MRIs, reaching a BA of 76.81%. The evaluation
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of the different models, including specificity and sensitivity metrics, is presented
in Table 1 of the supplementary material.

Table 1. Results for the detection of bad quality images (tier 3 ) within the T1w and
FLAIR test sets from the CDW. We report the mean and empirical standard deviation
across the five folds of the balanced accuracy (BA), which is defined as the mean of the
specificity and sensitivity. For Manual Annotation, the BA corresponds to the average
BA of the two annotators with the consensus.

Approaches
N° of
Sl

N° of
Tl

N° of
Tu

T1w FLAIR
BA BA

Manual Annotation 3660 303 – 91.56 86.54
Baseline T1w 3660 0 0 83.51 ± 0.93 50.06 ± 1.71
Baseline FLAIR 0 303 0 48.20 ± 0.81 69.90 ± 2.38
Baseline T1w + FLAIR 3660 303 0 82.37 ± 0.85 58.05 ± 4.45
DANN [10] 3660 303 5000 81.97 ± 1.39 66.91 ± 2.37
ENT [14] 3660 303 5000 80.07 ± 1.99 62.21 ± 4.45
MME [2] 3660 303 5000 77.39 ± 3.82 63.31 ± 4.16
Proposed Approach 3660 303 5000 80.59 ± 1.62 76.81 ± 0.68

The observed results of the T1w baseline are in line with expectations, con-
sidering the training was conducted only on T1w images. These T1w images pos-
sess different intensity distributions when compared to the target distribution
of FLAIR MRIs (PS(X,Y ) ̸= PT (X,Y )), which consequently led to a decline
in performance when applied to FLAIR samples. Similarly, the FLAIR baseline
demonstrated poor results on T1w MRIs due to the covariate shift between the
two sequences. Furthermore, the limited amount of manually annotated FLAIR
images (303 samples) contributed to a low balanced accuracy (BA: 68%) on the
FLAIR test set. Finally, the T1w+FLAIR baseline exhibited satisfying results
on the T1w test set. However, since the training labels are highly dominated
by T1w images, it led to a low BA on the FLAIR test set. This underlines the
significance of employing SSDA techniques to develop models that are robust to
different MRI sequences.

The poor results obtained from the DANN, MME and ENT on the target
domain (BA< 67%) underline the fact that learning domain invariant features is
not sufficient in particular in the case of class distribution shift [6]. Indeed, while
the distribution between labels was slightly unbalanced (2406 vs 1639 images)
for the source domain, it was extremely unbalanced for the target domain (654
vs 129). This difference in class distributions between the T1w (source) and
FLAIR (target) MRIs explains the poor performance of these methods. With
our proposed approach of incorporating a second label classifier dedicated to
the target modality, we were able to overcome these limitations and achieved
an important improvement of more than 10 percent points. Thus, this model
will be applicable to filter and select good quality FLAIR MRIs from the AP-
HP CDW , enabling users to take advantage of these sequences for conducting
further studies.



.... 9

4 Conclusion

In this paper, we propose a new SSDA architecture based on the original DANN [1]
for the detection of bad quality FLAIR MRIs in a CDW. By adding a second
label classifier specifically for the target domain, we were able to overcome the
covariate shift and the class distributions shift between the source and target
domains. We achieved a balanced accuracy of 76.8% on the FLAIR test set
and outperforms the DANN, MME and ENT by 10, 13 and 14 percent points
respectively.
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