On the self-similar stability of the parabolic-parabolic Keller-Segel equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

On the self-similar stability of the parabolic-parabolic Keller-Segel equation

Résumé

We consider the parabolic-parabolic Keller-Segel equation in the plane and prove the nonlinear exponential stability of the self-similar profile in a quasi parabolic-elliptic regime. We first perform a perturbation argument in order to obtain exponential stability for the semigroup associated to part of the first component of the linearized operator, by exploiting the exponential stability of the linearized operator for the parabolic-elliptic Keller-Segel equation. We finally employ a purely semigroup analysis to prove linear, and then nonlinear, exponential stability of the system in appropriated functional spaces with polynomial weights.
Fichier principal
Vignette du fichier
non_radial_14_arxiv.pdf (320.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04267741 , version 1 (02-11-2023)

Identifiants

Citer

Frank Alvarez Borges, Kleber Carrapatoso, Stéphane Mischler. On the self-similar stability of the parabolic-parabolic Keller-Segel equation. 2023. ⟨hal-04267741⟩
81 Consultations
37 Téléchargements

Altmetric

Partager

More