The weakness of the Erd\H{o}s-Moser theorem under arithmetic reductions - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Logic Année : 2024

The weakness of the Erd\H{o}s-Moser theorem under arithmetic reductions

Résumé

The Erd\H{o}s-Moser theorem $(\mathsf{EM})$ says that every infinite tournament admits an infinite transitive subtournament. We study the computational behavior of the Erd\H{o}s-Moser theorem with respect to the arithmetic hierarchy, and prove that $\Delta^0_n$ instances of $\mathsf{EM}$ admit low${}_{n+1}$ solutions for every $n \geq 1$, and that if a set $B$ is not arithmetical, then every instance of $\mathsf{EM}$ admits a solution relative to which $B$ is still not arithmetical. We also provide a level-wise refinement of this theorem. These results are part of a larger program of computational study of combinatorial theorems in Reverse Mathematics.
Fichier principal
Vignette du fichier
em-general.pdf (501.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04265681 , version 1 (31-10-2023)

Identifiants

Citer

Ludovic Levy Patey, Ahmed Mimouni. The weakness of the Erd\H{o}s-Moser theorem under arithmetic reductions. Journal of Mathematical Logic, In press. ⟨hal-04265681⟩
19 Consultations
17 Téléchargements

Altmetric

Partager

More