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Abstract

The Erdős-Moser theorem (EM) says that every infinite tournament
admits an infinite transitive subtournament. We study the computational
behavior of the Erdős-Moser theorem with respect to the arithmetic hierarchy,
and prove that ∆0

n instances of EM admit lown+1 solutions for every n ≥ 1,
and that if a set B is not arithmetical, then every instance of EM admits
a solution relative to which B is still not arithmetical. We also provide a
level-wise refinement of this theorem. These results are part of a larger
program of computational study of combinatorial theorems in Reverse
Mathematics.

1 Introduction

We conduct a computational study of the Erdős-Moser theorem, an infinitary
statement from graph theory. A tournament on a domainD ⊆ N is an irreflexive
binary relation R ⊆ D2 such that for every a, b ∈ D with a ̸= b, exactly one of
R(a, b) and R(b, a) holds. A tournament R is transitive if for every a, b, c ∈ D,
if R(a, b) and R(b, c) then R(a, c). A subtournament of R is the restriction of R
to a subdomain H ⊆ D2. We identify subtournaments with their domains. The
following statement is known as the Erdős-Moser theorem, and is an infinitary
version of some theorem by Erdős and Moser [6].

Statement 1.1 (Erdős-Moser theorem). EM is the statement “Every infinite
tournament admits an infinite transitive subtournament.”

The Erdős-Moser theorem easily follows from the celebrated Ramsey theorem
for pairs. Given a set X ⊆ N and some integer n ∈ N, we let [X]n denote the set
of all unordered n-tuples over X. Given a coloring f : [N]n → k, a set H ⊆ N is
f -homogeneous (for color i < k) if f(σ) = i for every σ ∈ [N]n.
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Statement 1.2 (Ramsey’s theorem). Given n, k ∈ N, RTn
k is the statement

“Every coloring f : [N]n → k admits an infinite f -homogeneous set”.

There exists a one-to-one correspondence between a tournament R and a
coloring f : [N]2 → 2, by letting f({x, y}) = 1 if (R(x, y) ↔ x <N y). EM
can the restated as “for every coloring f : [N]2 → 2, there exists an infinite
f -transitive subset H, that is, for every x, y, z ∈ H such that x < y < z and
every i < 2, then if f({x, y}) = f({y, z}) = i, we have f({x, z}) = i.” Since any
f -homogeneous set is f -transitive, the Erdős-Moser theorem can be considered
as a particular case of Ramsey’s theorem for pairs.

1.1 EM and RT2
2 in Reverse Mathematics

Both the Erdős-Moser theorem and Ramsey’s theorem for pairs have been
extensively studied in Reverse Mathematics, both from a computational and a
proof-theoretic viewpoint. See Hirschfeldt [5] for an introduction to the reverse
mathematics of combinatorial principles.

From many perspectives, EM is very close to RT2
2. The combinatorics are

very similar, and the Erdős-Mőser theorem can be considered as a disjunction-
free version of Ramsey’s theorem for pairs. These similarities in combinatorics
have many consequences in Reverse Mathematics. Jockusch [9] proved that
every computable instance of RT2

2 admits a Π0
2 solution, while there exists a

computable instance of RT2
2 with no Σ0

2 solution. These bounds are the same
for the Erdős-Moser theorem. On the proof-theoretic side, the first-order part
of Ramsey’s theorem for pairs and the Erdős-Moser theorem are known to
coincide [2]. More generally, most of the known statements implied by RT2

2

are already known to follow from EM over RCA0, the base theory of Reverse
Mathematics. Whether EM implies RT2

2 was open for a long time, before
Lerman, Solomon and Towsner [11] answered it negatively.

When considering non-computable instances, the behaviors of RT2
2 and EM

turn out to be very dramatically different. For every function g : N → N,
there exists a coloring f : [N]2 → 2 such that every infinite f -homogeneous
set computes a function h dominating g, that is, ∀x(h(x) ≥ g(x)). Indeed,
simply take f(x, y) = 1 iff g(x) < y. Thus, by a theorem of Slaman and
Groszek [7], there exists a (non-computable) instance of RT2

2 such that every
solution computes every hyperarithmetic (or equivalently ∆1

1) set. On the other
hand, Patey and Wang (both unpublished) independently proved that for every
non-computable set B and every instance of EM, there exists a solution which
does not compute B. This property of EM is shared with the infinite pigeonhole
principle (RT1

2). Indeed, Dzhafarov and Jockusch [4] proved that for every non-
computable set B and every set A, there is an infinite subset H of A or A which
does not compute B.

1.2 EM and RT1
2 under stronger reductions

As mentioned above, when considering non-computable instances, the Erdős-
Moser theorem seems to have closer behavior to the pigeonhole principle than
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to Ramsey’s theorem for pairs. In a series of papers, Monin and Patey [12, 15, 13]
developed a framework to control iterated jumps of solutions to the pigeonhole
principle. They proved in particular the following three facts (see [15]):

• If B is not arithmetic (resp. hyperarithmetic), then for every set A, there
is an infinite subset H of A or A such that B is not A-arithmetic (resp.
A-hyperarithmetic).

• If B is not Σ0
n (resp. ∆0

n), then for every set A, there is an infinite subset H
of A or A such that B is not Σ0

n(A) (resp. ∆
0
n(A)).

• For every ∆0
n set A, there is an infinite subset H of A or A of lown degree.

In this article, we prove the following three theorems:

Main Theorem 1.3. If B is not arithmetic, then for every tournament T , there
is an infinite transitive subtournament H such that B is not H-arithmetic.

The generalization to the hyperarithmetic hierarchy is not proven, but the
authors believe that it holds with the same proof mutatis mutandis. Like for
the pigeonhole principle, a layerwise version of the previous theorem holds:

Main Theorem 1.4. Fix n ≥ 1. If B is not Σ0
n, then for every tournament T ,

there is an infinite transitive subtournament H such that B is not Σ0
n(H).

The case n = 1 was already proven independently by the first author and
Wang (unpublished). The statement where Σ0

n is replaced by ∆0
n directly follows

from Theorem 1.4 and Post’s theorem. Indeed, if B is not ∆0
n, then by Post’s

theorem, either it or its complement is not Σ0
n. Then apply Theorem 1.4 to

conclude.

Main Theorem 1.5. Fix n ≥ 1. Every ∆0
n tournament T has an infinite

transitive subtournament of lown+1 degree.

The case n = 1 follows from the same statement for Ramsey’s theorem
for pairs, proven by Cholak, Jockusch and Slaman [1]. On the other hand, as
explained, the statement for Ramsey’s theorem for pairs fails for n > 1, since
there exists a ∆0

2 instance of RT2
2 such that every solution computes ∅′.

Besides the intrinsic interest of these theorems, they are also motivated by
the more general program of development of good iterated jump control of
combinatorial theorems, and in particular by the goal to prove the strictness of
the free set, thin set and rainbow ramsey hierarchies. See Monin and Patey [15,
Section 1.2] for a discussion on the subject. The Erdős-Moser is the first
statement about colorings of pairs which is known to admit a good iterated
jump control.

1.3 Definition and notation

A binary string is an ordered tuple of bits a0, . . . , an−1 ∈ {0, 1}. The empty
string is written ϵ. A binary sequence (or a real) is an infinite listing of bits
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a0, a1, . . . . Given s ∈ ω, 2s is the set of binary strings of length s and 2<s is
the set of binary strings of length < s. Accordingly, 2<ω is the set of binary
strings and 2ω is the set of binary sequences. Given a string σ ∈ 2<ω, we use
|σ| to denote its length. Given two strings σ, τ ∈ 2<ω, σ is a prefix of τ (written
σ ⪯ τ) if there exists a string ρ ∈ 2<ω such that σ⌢ρ = τ . Given a sequence
X, we write σ ≺ X if σ = X ↾ n for some n ∈ ω. A binary string σ can be
interpreted as a finite set Fσ = {x < |σ| : σ(x) = 1}. We write σ ⊆ τ for
Fσ ⊆ Fτ . We write #σ for the size of Fσ. Given two strings σ and τ , we let
σ ∪ τ be the unique string ρ of length max(|σ|, |τ |) such that Fρ = Fσ ∪ Fτ .

A binary tree is a set of binary strings T ⊆ 2<ω which is closed downward
under the prefix relation. A path through T is a binary sequence P ∈ 2ω such
that every initial segment belongs to T .

A Turing ideal I is a collection of sets which is closed downward under the
Turing reduction and closed under the effective join, that is, (∀X ∈ I)(∀Y ≤T

X)Y ∈ I and (∀X,Y ∈ I)X ⊕ Y ∈ I, where X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 :
n ∈ Y }. A Scott set is a Turing ideal I such that every infinite binary tree
T ∈ I has a path in I. In other words, a Scott set is the second-order part of
an ω-model of RCA0 +WKL. A Turing ideal M is countable coded by a set X
if M = {Xn : n ∈ ω} with X =

⊕
n∈ωXn. Given n ≥ 1, a formula is Σ0

n(M)
(resp. Π0

n(M)) if it is Σ0
n(X) (resp. Π0

n(X)) for some X ∈ M.
Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈

B)[x < y]. We write A ⊆∗ B to mean that A − B is finite, that is, (∃n)(∀a ∈
A)(a ̸∈ B → a < n). A k-cover of a set X is a sequence of sets Y0, . . . , Yk−1

such that X ⊆ Y0 ∪ · · · ∪ Yk−1.

1.4 Organization of this paper

In Section 2, we try to give an overview of the forcing construction, by explaining
in Section 2.1 the importance of the so-called “forcing question”, then diving in
Section 2.2 into the combinatorics of EM, especially explaining the role of the
infinite pigeonhole principle as a warrant of extendibility for the Erdős-Moser
theorem, and then explaining in Section 2.3 the issues raised when trying to
control iterated jumps of solutions with variants of Mathias forcing.

In Section 3, we restate the main properties of partition regular and large
classes, studied in Monin and Patey [12, 15]. In particular, we define the notions
of cohesive and minimal classes in Section 3.2, which play an essential role to
maintain the compatibility of large classes between different levels of the iterated
jump control. Last, we restate in Section 3.3 the existence of a hierarchy of Scott
sets and of cohesive classes, which play the role of a spine for the main notion
of forcing.

Section 4 is dedicated to the development of the main forcing framework,
by defining its conditions, the forcing relation, and a forcing question. This
framework is applied in various contexts, to prove strong cone avoidance of EM
for arithmetic reductions in Section 5, a layerwise version of this strong cone
avoidance for Σ0

n operators in Section 6, and prove the existence of lown solutions
through an effectivization of the construction in Section 7.
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2 The big picture

The techniques used in this article are rather sophisticated with many technical
subtleties, and it may be quite hard to have the big picture. In this section,
we describe the general forcing argument used to prove our main theorems, and
highlight a few technical difficulties justifying the design choice of our notion of
forcing.

2.1 Forcing question

The three main theorems are related, in that they involve very similar techniques
of iterated jump control. Indeed, in each case, it consists of constructing a
solution whose Σ0

n properties resemble the ones of the ground model. For this,
one tries to translate Σ0

n(G) formulas relative to the generic object constructedG
into absolute Σ0

n formulas. In set-theoretic forcing, this is achieved through
the forcing relation, whose definition must be sufficiently simple (in terms of
definitional complexity) to make the new model inherit properties of the ground
model. In computability theory, the situation is slightly different, and the
simplicity of the forcing relation is less important than the one of the so-called
forcing question.

In what follows, a notion of forcing is a partial order (P,≤) such that every
sufficiently generic filter F ⊆ P induces a set GF ⊆ N. Every notion of forcing
is equipped with a forcing relation, written ⊩, between the set of conditions P
and the set of arithmetic formulas Form[G] with a set parameter G denoting
the generic object constructed.

Definition 2.1. Fix a notion of forcing (P,≤). A forcing question is a relation
?⊢ over P× Form[G] such that, for every c ∈ P and φ(G) ∈ Form[G],

(1) If c ?⊢φ(G), then there is an extension d ≤ c such that d ⊩ φ(G);

(2) If c ?⊬φ(G), then there is an extension d ≤ c such that d ⊩ ¬φ(G);

The notion of forcing question is not canonical, and a single notion of
forcing might have many candidate forcing questions. On the other hand, many
computational properties of the generic object G might be directly derived from
the existence of a forcing question with sufficiently nice definitional properties.
Consider for example the following property:

Definition 2.2. Fix a notion of forcing (P,≤) and some n ∈ N. A forcing
question ?⊢ is uniformly Σ0

n-preserving if for every c ∈ P and every uniform
sequence of Σ0

n formulas φ0(G), φ1(G), . . . , the sequence c ?⊢φ0(G), c ?⊢φ1(G), . . .
is uniformly Σ0

n.

The following proposition is at the heart of our forcing construction. It
was used by Wang [19, Proposition 3.1, Proposition 3.4, Theorem 3.6], where
the author showed for each notion of forcing the existence of a uniformly Σ0

n-
preserving forcing question, without naming explicitly this concept.
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Proposition 2.3. Let (P,≤) be a notion of forcing with a uniformly Σ0
n-preserving

forcing question. Then for every non-Σ0
n set C and every sufficiently generic

set G for this notion of forcing, C is not Σ0
n(G).

Proof. Fix a Σ0
n formula φ(G, x) with one free first-order variable x. Let Dφ ⊆

P be the set of conditions c such that either c ⊩ φ(G, a) for some a ̸∈ C,
or c ⊩ ¬φ(G, a) for some a ∈ C. Let us show that Dφ is dense. Given a
condition c ∈ P, let W = {a ∈ N : c ?⊢φ(G, a)}. Since the forcing question is
uniformly Σ0

n-preserving, then the set W is Σ0
n, hence C ̸= W . Let a ∈ C∆W ,

the symmetric difference of C and W .

• If a ∈ W \ C, then by definition, c ?⊢φ(G, a), so by property (1) of the
forcing question, there is an extension d ≤ c such that d ⊩ φ(G, a).

• If a ∈ C \ W , then by definition, c ?⊬φ(G, a). By property (2) of the
forcing question, c ?⊢¬φ(G, a), and by property (1), there is an extension
d ≤ c such that d ⊩ ¬φ(G, a).

In both cases, d ∈ Dφ, so Dφ is dense. If F is a sufficiently generic filter, it will
intersect Dφ for every Σ0

n formula φ(G, x), hence, letting G be the set induced
by F , C will not be Σ0

n(G).

The construction of lown solutions are often effectivizations of the forcing
argument, either by constructing a ∅(n)-computable filter sufficiently generic for
deciding Σ0

n(G) formulas, or by constructing, with any PA degree P over ∅(n−1),
a P -computable filter GF sufficiently generic for deciding Σ0

n−1(G) formulas. In

the latter case, using the low basis theorem relativized to ∅(n−1), there exists
such a PA degree P over ∅(n−1) such that P ′ ≤T ∅(n), thus Σ0

n properties of GF
can be decided thanks to ∅(n).

2.2 Combinatorics of EM

In order to understand the design of the notion of forcing for this article, it is
important to get familiar with the combinatorics of the Erdős-Moser theorem.
Lerman, Solomon and Towsner [11] analyzed the basic combinatorial ideas
essential to the computable study of the theorem.

A transitive tournament T over a domain A can be seen as a linear order
(A,≤T ) defined by a ≤T b iff a = b or T (a, b). This interpretation should be
kept in mind throughout the article. For convenience, we shall always consider
that the tournament contains two end-points −∞ and +∞, that is, such that
T (−∞, x) and T (x,+∞) holds for every x.

Definition 2.4 ([11]). Fix a tournament T over a domain A.

(1) The interval (a, b) between a, b ∈ A∪{−∞,+∞} is the set of points x ∈ A
such that T (a, x) and T (x, b) holds.

(2) Given a finite T -transitive subset F ⊆ A and a, b ∈ F ∪ {−∞,+∞}, the
interval (a, b) is minimal in F if (a, b) ∩ F = ∅.
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Fix a tournament T over ω. Any finite T -transitive set F is not necessarily
extendible into an infinite solution. Indeed, maybe there exist some a, b ∈ F
such that T (a, b) holds, but T (b, x) and T (x, a) both hold for cofinitely many x.
We shall therefore work with Mathias conditions (σ,X) where σ is a T -transitive
finite set, with some extra structure which will guarantee that σ is extendible
into an infinite solution. This yields the following definition (due to Patey [17,
Definition 5.7]).

Definition 2.5 ([17]). An EM-condition for T is a Mathias condition (σ,X)
such that

1. for all y ∈ X, σ ∪ {y} is T -transitive

2. X is included in a minimal T -interval of σ

Actually, the second property can be obtained from the first one by a simple
application of the infinite pigeonhole principle. Indeed, there are only finitely
many minimal T -intervals in σ, and each element of X belongs to exactly one
of them. The notion of condition extension is the usual Mathias extension.

To simplify notation, given two disjoint sets F and E, we write F →T E
if for every a ∈ F and b ∈ E, T (a, b) holds. One essential feature in the
understanding of the computational content of a theorem is to understand the
combinatorics necessary to extend a partial solution with an arbitrarily large
number of elements in one block. In the case of the Erdős-Moser theorem, the
following lemma contains its core combinatorics.

Lemma 2.6 ([17]). Fix an EM-condition c = (σ,X) for a tournament T , an
infinite subset Y ⊆ X and a finite T -transitive set ρ ⊆ X such that max ρ <
minY and [ρ→T Y ∨ Y →T ρ]. Then (σ ∪ ρ, Y ) is a valid extension of c.

Suppose one wants to design a good forcing question for deciding Σ0
1 formulas

with this notion of forcing. To simplify the situation, assume first that the
tournament T is stable, that if, for every a, either (∀∞b)T (a, b) holds, or (∀∞b)T (b, a)
holds. In other words, each element admits a limit behavior with respect to T .
Let f : ω → 2 be the limit behavior of T , that is, f(a) = 0 iff ∀∞bT (a, b) and
f(a) = 1 otherwise. The following naive definition does not satisfy the desired
definitional properties:

Definition 2.7. Let c = (σ,X) be an EM-condition, n be an integer, and e
be a Turing index. Let c ?⊢ΦG

e (n) ↓ hold if there exists a finite f -homogeneous
T -transitive set τ ⊆ X such that Φσ∪τ

e (n) ↓.

By Lemma 2.6, this is a valid forcing condition, in that if it holds, then there
exists an extension forcing ΦG

e (n) ↓, and otherwise, there exists an extension
forcing ΦG

e (n) ↑. From a definitional viewpoint, the previous relation is Σ0
1(X⊕

T ⊕ f). However, the tournament T and its limit behavior f are strongly non-
computable, and may even compute the set B that we want to avoid. The
solution to get rid of these parameters is to make an over-approximation:
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Definition 2.8. Let c = (σ,X) be an EM-condition, n be an integer, and e
be a Turing index. Let c ?⊢ΦG

e (n) ↓ hold if for every tournament R and every
function g : N → 2, there is a finite g-homogeneous R-transitive set τ ⊆ X such
that Φσ∪τ

e (n) ↓.

At first sight, an overapproximation yields a forcing question with even worse
definitional properties since it contains a universal second-order quantification.
However, thanks to compactness, the forcing question is actually Σ0

1(X), as it
is equivalent to the following definition:

c ?⊢ΦG
e (n) ↓ if there exists some threshold t such that for every

tournament R over {0, . . . , t} and every function g : {0, . . . , t} → 2,
there is a finite g-homogeneous R-transitive set τ ⊆ X such that
Φσ∪τ

e (n) ↓.

If the forcing question holds, then by letting R = T and g = f , it is
clear that there exists an extension forcing ΦG

e (n) ↓. On the other hand, if
the forcing question does not hold, then the witness of failure might be some
tournaments R and some colorings f which are unrelated to T and g. This is
where the combinatorics of Ramsey theory comes into play.

Lemma 2.9. Let c = (σ,X) be an EM-condition, n be an integer and e be a
Turing index.

(1) If c ?⊢ΦG
e (n) ↓, then there exists d ≤ c such that d ⊩ ΦG

e (n) ↓.

(2) Else, if c ?⊬ΦG
e (n) ↓, then there exists d ≤ c such that d ⊩ ΦG

e (n) ↑.

Proof in the stable case. We prove each point :

(1) If c ?⊢ΦG
e (n) ↓, lettingR = T and g = f , there exists a finite f -homogeneous

T -transitive set τ ⊆ X such that Φσ∪τ
e (n) ↓. By choice of f , there exists

some t ∈ ω such that τ →T X \ {0, . . . , t} or X \ {0, . . . , t} →T τ . Thus,
by Lemma 2.6, the pair d := (σ ∪ τ,X \ {0, . . . , t}) is an EM-condition.
Note that d ≤ c and that d ⊩ ΦG

e (n) ↓.

(2) If c ?⊬ΦG
e (n) ↓, then there exists a coloring h : N → 2 and a tournament R

such that for all finite h-homogeneous andR-transitive set τ ⊆ X, Φσ∪τ
e (n) ↑.

By the pigeonhole principle and the Erdős-Moser theorem restricted to X,
there exists an infinite subset Y ⊆ X which is both h-homogeneous and
R-transitive. The pair d := (σ, Y ) is a valid EM-condition such that
d ⊩ ΦG

e (e) ↑.

Whenever the tournament is not stable, the situation seems more complicated
as there is no clear choice of f . Surprisingly, the previous forcing question still
holds, but with a more subtle proof in the first case. The idea is the following:
in the first case, by compactness, the finite extension candidate is bounded by
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a threshold. One can then restrict the reservoir, so that every element below
the threshold has a limit behavior with respect to the new reservoir, and then
act like in the stable case.

Proof in the general case. We only prove the first case, as the second case did
not involve stability of the tournament.

(1) If c ?⊢ΦG
e (n) ↓, by compactness, there exists some threshold t such that

for every tournament R over {0, . . . , t} and every function g : {0, . . . , t} →
2, there is a finite g-homogeneous R-transitive set τ ⊆ X such that
Φσ∪τ

e (n) ↓.
For every element y ∈ X \ {0, . . . , t}, one can associate a function gy :
{0, . . . , t} → 2 defined by gy(x) = 1 iff T (x, y) = 1. Since there are 2t many
such functions, then the function y 7→ gy is a finite coloring of the reservoir,
so by the infinite pigeonhole principle, there exists an infinite subset Y ⊆
X \ {0, . . . , t} which is homogeneous for some color g : {0, . . . , t} → 2. In
other words, for every g-homogeneous set τ ⊆ {0, . . . , t}, either τ →T Y ,
or Y →T τ .

Letting R = T , there is a finite g-homogeneous T -transitive set τ ⊆
X ∩ {0, . . . , t} such that Φσ∪τ

e (n) ↓. Thus, by Lemma 2.6, the pair d :=
(σ ∪ τ, Y ) is an EM-condition. Note that d ≤ c and that d ⊩ ΦG

e (n) ↓.

Together with the general discussion of Section 2.1 about forcing questions,
this section constitutes a proof that EM admits strong cone avoidance.

Remark 2.10. The bottom line of this section is the following: The combinatorics
of the Erdős-Moser theorem involve the pigeonhole principle, in that in order to
ensure the extendibility of a finite T -transitive set, one needs to ensure that it
is homogeneous for the appropriate instance of RT1

2. This 2-coloring represents
the limit behavior of the tournament. Whenever the tournament is not stable,
the choice of the 2-coloring is not clear ahead of time, and the colorings must
be universally quantified.

Last, note that the use of RT1
2 in the proof of EM is not overkill, in that

given a 2-coloring f : N → 2, one can define a tournament T by T (x, y) iff
[x < y ↔ f(x) = f(y)]. Then any infinite transitive subtournament is, up to
finite changes, f -homogeneous.

2.3 Iterated jump control of EM forcing

In computability-theoretic forcing, one usually forces a Σ0
1/Π

0
1 property in a

strong sense: if c ⊩ φ(G) for φ ∈ {Σ0
1,Π

0
1}, then φ(GF ) actually holds for every

filter F containing c. The situation becomes significantly more complicated
when considering Σ0

2/Π
0
2 formulas.

A Π0
2 formula (∀x)(∃y)φ(G, x, y) can be considered as a countable collection

of Σ0
1 formulas {(∃y)φ(G,n, y) : n ∈ N}. Such a formula cannot usually be
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forced in a strong sense. The relation c ⊩ (∀x)(∃y)φ(G, x, y) holds iff for
every x ∈ N, the set of conditions forcing (∃y)φ(G, x, y) is dense below c. This
way, every sufficiently generic filter containing c will also contain a condition
forcing (∃y)φ(G, x, y) for each x ∈ N, thus the property (∀x)(∃y)φ(GF , x, y)
holds for every sufficiently generic filter containing c.

Stating the density of a collection of conditions can be a definitionally
complex statement, depending on the complexity of the notion of forcing. In
some simple cases, such as Cohen forcing, the forcing relation for Π0

2(G) formulas
is Π0

2, yielding a good forcing question.
Variants of Mathias forcing do not behave that well. Indeed, the statement

of density requires universal and existential quantification on the conditions,
hence on the reservoirs, which are second-order objects. Actually, the approach
of Mathias forcing provably fails:

Lemma 2.11 (Folklore). The set ∅′′ is Π0
2(GF ) for every sufficiently generic

filter F for Mathias forcing with computable reservoirs.

Proof. By Martin’s domination theorem, a set is of high degree iff it computes
a function eventually dominating every total computable function. Given a
computable function f and a computable Mathias condition (σ,X), there exists
a computable Mathias extension (σ, Y ) such that the principal function of Y
(the function which to n associates the nth element of Y ) dominates f . Thus,
for every sufficiently generic filter F , the principal function of GF will eventually
dominate every total computable function, hence be of high degree.

The same argument holds for computable EM forcing. Intuitively, the reason
of failure of Mathias forcing and its variants, is because of the sparsity of its
reservoirs. One way to circumvent the problem is to restrict the class possible
reservoirs with a third-order object, which will play the role of a “reservoir
of reservoirs”: this meta-reservoir is a class of infinite sets L which cannot
contain arbitrarily sparse objects. Our goal is to work with EM conditions
(σ,X) such that X ∈ L. One however requires the class L to be closed under
certain operations which are needed for using the combinatorics of Section 2.2.
Analyzing the operations made over the reservoirs, they are of three kinds:

1. truncation of a reservoir from a finite number of elements (case 1 of the
forcing question)

2. splitting of a reservoir based on an instance of RT1
2 (case 2 of the forcing

question)

3. choice of an R-transitive subtournament for an instance R of EM (case 2
of the forcing question)

Assuming L contains only infinite sets, the truncation operation is a consequence
of finitely many applications of RT1

2. Unfortunately, contrary to the pigeonhole
principle, the classes which are closed under applications of EM do not have nice
combinatorial properties. Therefore, in Case 2 of Lemma 2.9, instead of applying

10



the Erdős-Moser theorem restricted to X to obtain an infinite R-transitive
subtournament Y ⊆ X, we shall simply add R to the list of tournaments
we commit to be transitive for. The benefit of it is that the only remaining
operation done on our reservoirs is the application of RT1

2. The counterpart
of postponing our application of EM is that our forcing conditions will now be
made of triples (R⃗, σ,X), where R⃗ is a finite sequence of tournaments, and such

that (σ,X) is an EM condition for every R ∈ R⃗. This list R⃗ can grow with
condition extension.

The reservoir X will therefore belong to a class L which is closed under
applications of RT1

2. This notion of closure is called partition regularity. We
shall introduce this concept and its main properties in Section 3. The restriction
of the reservoirs to those which belong to a partition regular class dramatically
decreases the definitional complexity of the forcing question, as instead of asking
whether for every infinite set Y ⊆ X, there is an infinite set Z ⊆ Y satisfying
some property, one can ask whether the collection of all Z satisfying the property
is partition regular. Based on the complexity of the property, the question will
not be definitionally too complex.

3 Partition regularity and largeness

The notion of partition regularity comes from combinatorics and is widely used
in Ramsey theory. It therefore naturally occurred in the computability-theoretic
analysis of combinatorial theorems.

Definition 3.1. A class L ⊆ 2ω is partition regular if :

• L is non-empty,

• for all X ∈ L, if X ⊆ Y , then Y ∈ L,

• for every integer k, for every X ∈ L, for every k-cover Y1, Y2, . . . Yk of X,
there exists i ≤ k such that Yi ∈ L.

Dorais [3] was the first to use variants of Mathias forcing in which the
reservoirs belong to partition regular classes, to produce generic sets of non-
high degree. Since then, Monin and Patey [12, 14, 15, 16] successfully used this
variant to control iterated jump of solutions to the infinite pigeonhole principle.
Monin and Patey [15, Section 2] contains all the computability-theoretic analysis
of partition regularity used in this article. In this section, we therefore simply
state the relevant definitions and theorems for the sake of completeness.

Partition regularity enjoys nice closure properties, but is not a notion of
largeness per se, in that a superclass of a partition regular class is not necessarily
partition regular itself. Throughout the article, given a property φ(X), we will
ask whether the class {X : φ(X)} is large, in the sense that it contains a
partition regular subclass. This yields the following definition, which is often
more convenient to manipulate than partition regularity.

Definition 3.2. A class L ⊆ 2ω is large if :

11



• for all X ∈ L, if X ⊆ Y , then Y ∈ L,

• for every integer k, for every k-cover Y1, Y2, . . . Yk of ω, there exists i ≤ k
such that Y ∈ L.

The large classes are exactly those which contain a partition regular subclass.
To avoid degenerate behaviors, in this article, we shall restrict ourselves to large
classes which contain only infinite sets.

Definition 3.3. A large class is non-trivial if it contains only infinite sets.

In particular, if a partition regular class P is non-trivial, then it is closed
under finite changes. Indeed, if X ∈ P and Y =∗ X as witnessed by a finite
set F , then Y, F form a 2-cover of X, so either Y or F must belong to P, and
by non-triviality, F ̸∈ P.

One of the core properties of large classes is the following lemma, which
plays an essential role in the computability-theoretic analysis of large classes.
For example, by contraposition, if an Fσ class is not large, then it is included
into a non-large open class.

Lemma 3.4 ([15]). Let (Pn)n∈ω be a decreasing sequence of large classes. Their
intersection

⋂
n∈ω Pn is again large.

The above lemma also holds if one replaces largeness by partition regularity.
Moreover, a union of partition regular classes is still partition regular. Therefore,
every large class contains a largest (for inclusion) partition regular subclass,
which justifies the following definition.

Definition 3.5. For every large class P, let L(P) denote the largest partition
regular subclass of P.

By the infinite pigeonhole principle, the class of all infinite sets is partition
regular. This naturally generalizes to a whole family of partition regular classes:

Definition 3.6. For every set X ⊆ ω, let LX := {E ⊆ ω : |E ∩X| = ∞}.

For every infinite set X, the class LX is partition regular. This class plays an
essential role in ensuring that a set belongs to all partition regular subclasses.
Indeed, if P is a partition regular subclass of LX , then X ∈ P, as otherwise,
since X,X forms a 2-cover of ω, we would have X ∈ P ⊆ LX , contradiction.

3.1 Π0
2 large classes

By Monin and Patey [16, Proposition 2.15], there are no non-trivial Σ0
2 large

classes. The first interesting example of such classes are Π0
2. Along this article,

we will only be interested in Fσ classes, and more precisely intersections of Σ0
1(M)

classes, for some Scott set M (recall that a formula is Σ0
1(M) if it is Σ0

1(P ) for
some P ∈ M). Fix a Scott set M encoded by a setM ⊆ ω, i.e., M =

⊕
n∈ωXn

and M = {Xn : n ∈ ω}. One can code such classes by sets C ⊆ ω2 as follows:

12



Definition 3.7. Fix a set P . For every e ∈ ω, let UP
e = {Z ∈ 2ω : ∃σ ∈ WP

e :
σ ⊆ Z}. For every C ⊆ ω2, let UM

C =
⋂

(e,i)∈C UXi
e .

The following lemma is a core lemma in the analysis of the definitional
complexity of the statement “UM

C is large”, thanks to Lemma 3.4.

Lemma 3.8 ([15]). Let A be a Σ0
1 class. The sentence “A is large” is Π0

2.

By Lemma 3.4, a class UM
C is large iff UM

F is large for every finite set F ⊆ C.
The class UM

F is Σ0
1(M) uniformly in F , hence by a relativization of Lemma 3.8,

the statement “UM
F is large” is Π0

2(M) uniformly in F . The overall statement
“UM

C is large” is therefore Π0
1(C ⊕M ′), where M is the set coding M.

The following lemma shows that instead of working with large classes of the
form UM

C , one can work with partition regular classes without extra definitional
complexity.

Lemma 3.9 ([15]). For every set C ⊆ ω2, there exists D ≤T C such that
UM
D = L(UM

C ).

3.2 M-minimal and M-cohesive classes

When two classes P and Q are large, their intersection P ∩Q is not necessarily
large. For example, letting X be a bi-infinite set, both the classes LX and
LX are large, but their intersection is not, as witnessed by the 2-cover X,X
of ω. During the forcing construction, one will consider multiple properties to
be forced, and therefore will need to ensure that not only the corresponding
classes are large, but so are their intersection. One natural approach consists in
creating a large class which will be minimal for inclusion, in the following sense:

Definition 3.10. A class A is M-minimal if for every X ∈ M and e ∈ ω,
either A ⊆ UX

e or A ∩ UX
e is not large.

Then, in order to decide whether two Σ0
1(M) properties P and Q are large,

one can ask independently whether A ∩ P and A ∩ Q are large. If both are,
then by M-minimality of A, A ⊆ P and A ⊆ Q, hence P ∩ Q is large as
well. Eventhough the notion of minimality was defined for largeness, partition
regularity comes for free for an M-minimal large class.

Lemma 3.11 ([15]). Every M-minimal large class UM
C is partition regular.

There exists M-minimal large classes of the form UM
C . However, the index

set C is computationally too complex, as it is only M ′′-computable. Indeed, in
order to create the set C by finite approximations C0 ⊆ C1 ⊆ . . . , one needs
to successively ask whether UM

Cs
∩ UX

e is large, which is a Π0
2(M) question.

Thankfully, one can consider a weaker notion with better computational properties,
which still satisfies the compatibility requirements.

Definition 3.12. A class A is M-cohesive if for every X ∈ M, either A ⊆ LX

or A ⊆ LX .
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Every M-minimal class is M-cohesive. Moreover, one can compute the
index set C of an M-cohesive class UM

C in any PA degree over M ′. Indeed,
instead of deciding whether UM

Cs
∩ LX is large or not, one needs to pick a true

statement among “UM
Cs

∩LX is large” and “UM
Cs

∩LX is large”. Choosing a true
Π0

2(M) sentence among two such sentences, known that one of them is true, can
be computed by any PA degree over M ′ (see Cholak, Jockusch and Slaman [1,
Lemma 4.2] for a proof).

Lemma 3.13 ([15]). Let UM
C be an M-cohesive class. Let UM

D and UM
E be such

that UM
C ∩ UM

D and UM
C ∩ UM

E are both large. Then so is UM
C ∩ UM

D ∩ UM
E .

In general, given a large class UM
C , the index set C can be completed into an

index set D ⊇ C in multiple ways to form an M-minimal large subclass UM
D ,

depending on the order in which the questions are asked. However, whenever
UM
C is M-cohesive, then by Lemma 3.13, the order of the questions does not

matter, thus it contains a unique M-minimal subclass, which can be explicitly
defined as follows:

Lemma 3.14. Given an M-cohesive large class UM
C , the collection of sets

⟨UM
C ⟩ :=

⋂
e∈ω,X∈M

{UX
e : UM

C ∩ UX
e is a large }

is an M-minimal large class contained in UM
C .

3.3 The (UMn
Cn

)n∈ω sequence

Monin and Patey [15, Section 2.5] defined an infinite hierarchy of Scott sets
together with a decreasing sequence of minimal classes for these Scott sets,
playing a central role in the definition of the notion of forcing. The nth level of
this hierarchy is responsible for having a good (n+ 1)st jump control.

The following first proposition is an easy consequence of the uniform low
basis theorem for Π0

1 classes, due to Lawton (see Hirschfeldt and al. [8, Theorem
4.1]):

Proposition 3.15 ([15]). There exists a sequence of sets (Mn)n∈ω such that :

• Mn codes for a countable Scott set Mn,

• ∅(n) is uniformly coded by an element of Mn,

• Each M ′
n is uniformly computable in ∅(n+1).

Then, the next proposition follows from our remark on the complexity of the
construction of an M-cohesive large class. Indeed, since Mn+1 contains M ′

n

and Mn+1 is a Scott set, then it contains a PA degre over M ′
n. Moreover, this

construction is uniform.

Proposition 3.16 ([15]). There exists a sequence of sets (Cn)n∈ω such that :
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• UMn

Cn
is an Mn-cohesive large class,

• UMn+1

Cn+1
⊆ ⟨UMn

Cn
⟩,

• Each Cn is coded by an element of Mn+1 uniformly in n and Mn+1.

4 Forcing framework

We now develop the general framework for iterated jump control of solutions to
the Erdős-Moser theorem through forcing. This framework will be applied in
sections 5, 6 and 7 to prove our three main theorems.

4.1 Forcing conditions

In order to obtain a layerwise version of strong cone avoidance of EM for Σ0
n

operators, our notion of forcing will be parameterized by a partition regular
class P. Assuming P ⊆ ⟨UMn

Cn
⟩, this notion of forcing will have a good (n+1)st

jump control. All along Section 4, one should think of P as the partition regular
class

⋂
n∈ω⟨U

Mn

Cn
⟩.

Definition 4.1. Given a partition regular class P ⊆ 2ω, let PP denote the set
of all 3-tuples (R⃗, σ,X) such that

1. R⃗ is a finite sequence of tournaments,

2. X ∩ {0, . . . , |σ|} = ∅,

3. X ∈ P.

4. for all y ∈ X, σ ∪ {y} is R⃗-transitive.

5. X is included in a minimal R⃗-interval of σ

In other words, PP is the set of all 3-tuples (R⃗, σ,X) such that (σ,X) forms

an EM condition for each tournament R ∈ R⃗, and such that X ∈ P. Note that
no effectiveness restriction is given on the reservoirX. Given a tournament T , in
order to produce an infinite T -transitive subset, one will work with sufficiently
generic filters containing the condition (T, ∅, ω). From now on, fix a partition
regular class P.

Definition 4.2. We define the partial order over PP as following : we say that
(τ, Y, S⃗) ≤ (σ,X, R⃗) if σ ⪯ τ, Y ⊆ X, τ \ σ ⊆ X, and R⃗ ⊆ S⃗.

Here again, the extension relation (τ, Y, S⃗) ≤ (σ,X, R⃗) is the usual Mathias
extension (τ, Y ) ≤ (σ,X), but in addition, one commits to be transitive for
more and more tournaments simultaneously. Given a collection F ⊆ PP , we let
GF :=

⋃
(R⃗,σ,X)∈F σ.
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Lemma 4.3. Let F be a PP -filter. For all c := (R⃗, σ,X), the set GF is R⃗-
transitive.

Proof. Suppose otherwise. Then, there exists x < y < z ∈ GF a R⃗-cycle.
By definition of GF , there exists d := (R⃗S⃗, τ, Y ) ∈ F , such that d ≤ c and

{x, y, z} ⊆ τ . Since τ is R⃗S⃗-transitive, and thus R⃗-transitive, (x, y, z) cannot

be a R⃗-cycle.

4.2 Forcing question

In this section, we design a forcing question as explained in Section 2.1. The
general idea is the following: given a Σ0

1 formula (∃x)φ(G, x) and a condition

(R⃗, σ,X), one would like to ask whether there exists some x ∈ ω and a finite
set τ ⊆ X satisfying some good combinatorial properties, such that φ(σ ∪ τ, x)
holds. This naive question is Σ0

1(R⃗ ⊕ X). As explained in Section 2.2, one

can get rid of the parameter R⃗ by universally quantifying over all m-tuples of
tournaments, where m = |R⃗|. By compactness, the question becomes Σ0

1(X),
which is not enough, since X can be computationally very complex. The same
overapproximation trick cannot be applied for X, since the class of all infinite
sets is closed, but not compact. One must therefore use a second trick: consider
the class L of all reservoirs Y such that this property holds, that is, of all Y
such that there exists some x ∈ ω and a finite set τ ⊆ X satisfying some good
combinatorial properties, such that φ(σ∪τ, x) holds. Then, ask whether L∩UM0

C0

is large. If it does, then by M0-minimality of P, P ⊆ L, and since X ∈ P, the
property holds for X in particular.

Before giving the actual definition of the forcing question, let us introduce
a very convenient piece of notation. As explained, given a condition (R⃗, σ,X),

since no effectiveness constraint is imposed on R⃗, one will often resort to an over-
approximation of R⃗. This over-approximation C has two essential properties:
(1) it must contain R⃗, and (2) it must be X-effectively compact. One can
exploit the Π0

1 constraints in the definition of a condition to obtain a finer
over-approximation: X is included in a minimal interval of σ and σ ∪ {y} is

R⃗-transitive for every y ∈ X. This yields the following definition:

Definition 4.4. Let (σ,X) be a Mathias condition. For every m ∈ ω, Cm(σ,X)

is the class of all m-tuples R⃗ of tournaments such that for all y ∈ X, σ ∪ {y} is

R⃗-transitive, and such that X is included in a minimal R⃗-interval of σ.

In particular, for every condition (R⃗, σ,X), letting m = |R⃗|, R⃗ ∈ Cm(σ,X).

Thus, the class Cm(σ,X) is an over-approximation of R⃗. On the other direction,
if (σ,X) is a Mathias condition such that X ∈ P, then for all m ∈ ω and for

all R⃗ ∈ Cm(σ,X), the 3-tuple (R⃗, σ,X) is a condition in PP . The following
lemma shows that the over-approximation Cm(σ,X) is X-effectively compact,
as desired.

Lemma 4.5. For every Mathias condition (σ,X) and every m ∈ ω, Cm(σ,X)
is Π0

1(X).
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Proof. Immediate. Both properties are Π0
1 formulas in X.

The following combinatorial lemma is essentially a reformulation of Lemma 2.6.
If one furthermore assumes that Y ∈ P, then (R⃗, σ∪τ, Y ) is a valid PP -condition.

Lemma 4.6. Let (R⃗, σ,X) be a condition, τ ⊆ X be a finite R⃗-transitive set

and Y ⊆ X be an infinite set such that for every R ∈ R⃗, τ →R Y or Y →R τ .
Then, R⃗ ∈ C|R⃗|(σ ∪ τ, Y ).

Proof. Since (R⃗, σ,X) is a condition, X is included in a minimal interval of σ

for all R ∈ R⃗. Furthermore, since τ ∪ Y ⊆ X, and τ →R Y or Y →R τ , then Y
is included in a minimal interval of σ ∪ τ for all R ∈ R⃗.

Let y ∈ Y . Suppose for the contradiction that there exists a 3-cycle x < y <
z in σ ∪ τ ∪ {y}.

• If x, y ∈ σ then since (R⃗, σ,X) is a condition, σ ∪ {z} is R-transitive, so
{x, y, z} is not a 3-cycle.

• If x ∈ σ and y, z ∈ τ ∪ {a}, then since X is included in a minimal interval
of σ, x→R {y, z} or {y, z} →R x, hence {x, y, z} is not a 3-cycle.

• If x, y, z ∈ τ , then {x, y, z} is not a 3-cycle by R-transitivity of τ

• If x, y ∈ τ and z = a, then since τ →R Y or Y →R τ , then {x, y, z} is not
a 3-cycle.

We are now ready to define the forcing question. Since R⃗ is only accessed
through an over-approximation, andX through largeness, the forcing question is
parameterized only by the initial segment σ and the number m of tournaments,
rather than by the condition (R⃗, σ,X).

Definition 4.7. Let c := (R⃗, σ,X) ∈ PP be a condition and m ≥ |R⃗|. Consider
(∃x)ψe(G, x) a Σ0

1 formula. We define the ?⊢ relation as follows:

σ ?⊢m(∃x) ψe(G, x)

holds if the class of all Y ∈ UM0

C0
such that for every m-tuple of 2-colorings h⃗ =

h0, . . . , hm−1 ∈ 2Y and every S⃗ ∈ Cm(σ, Y ), there is a finite τ ⊆ Y \ {0, . . . , |σ|}
which is S⃗-transitive and h⃗-homogeneous, and some x ∈ ω such that ψe(σ∪τ, x)
is large.

Inductively, for n ≥ 1, consider (∃x)ψe(G, x) a Σ0
n+1 formula. We define the

?⊢ relation as follows:

σ ?⊢m(∃x) ψe(G, x)

holds if the class of all Y ∈ UMn

Cn
such that for every m-tuple of 2-colorings h⃗ =

h0, . . . , hm−1 ∈ 2Y and every S⃗ ∈ Cm(σ, Y ), there is a finite τ ⊆ Y \ {0, . . . , |σ|}
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which is S⃗-transitive and h⃗-homogeneous, some x ∈ ω and ℓ ≥ m such that
σ ∪ τ ?⊬ℓ ¬ψe(G, x) is large.

The over-approximation of R⃗ comes at no extra cost from a definitional
complexity viewpoint. On the other hand, over-approximating the reservoir X
by a large class yields a Π0

1(Mn+1) forcing question for Σ0
n+1 formulas, which

is sufficient for arithmetic reductions, but not a layerwise cone avoidance.

Lemma 4.8. Let n ∈ ω and c := (R⃗, σ,X) ∈ PP . Consider (∃x)ψe(G, x) a
Σ0

n+1 formula. The formula (σ ?⊢m(∃x)ψe(G, x)) is Π0
1(Mn+1), for all m ∈ ω.

Proof. We prove this result inductively over n. The sentence is of the form
“L ∩ UMn

Cn
is large”, where L is the class of all Y such that for every m-tuple

of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Y and every S⃗ ∈ Cm(σ, Y ), there is a finite

τ ⊆ Y \ {0, . . . , |σ|} which is S⃗-transitive and h⃗-homogeneous, and some x ∈ ω
such that

• for n = 0, ψe(σ ∪ τ, x).

• for n > 0, there is some ℓ ≥ m such that σ ∪ τ ?⊬ℓ ¬ψe(G, x).

By a compactness argument, L is also the class of all Y such that there exists
t ∈ ω such that for everym-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2t and every

m-tuple S⃗ of tournaments over {0, . . . t} such that for all y ∈ {0, . . . , t}∩Y, σ∪{y}
is S⃗-transitive, there is a finite τ ⊆ {0, . . . , t} ∩ Y \ {0, . . . , |σ|} which is S⃗-

transitive and h⃗-homogeneous, and some x ∈ ω such that

• for n = 0, ψe(σ ∪ τ, x).

• for n > 0, there is some ℓ ≥ m such that σ ∪ τ ?⊬ℓ ¬ψe(G, x).

The first item is Σ0
1, and by induction hypothesis, the second item σ∪τ ?⊬¬ψe(G, x)

is Σ0
1(Mn), hence L is a Σ0

1(Mn) class.
By Lemma 3.4, the class L ∩ UMn

Cn
is large if and only if for all finite set

F ⊆ Cn, L∩UMn

F is also large. Since L∩UMn

F is Σ0
1(Mn) uniformly in F , then

by a relativized Lemma 3.8, the sentence “L∩UMn

F is large” is Π0
2(Mn) uniformly

in F , hence a Π0
1(M

′
n) sentence uniformly in F , and thus, by Proposition 3.15, a

Π0
1(∅(n+1)) sentence. This makes L∩UMn

Cn
largeness a Π0

1(Cn⊕∅(n+1)) sentence,

Moreover, by Proposition 3.16 and Proposition 3.15, (Cn ⊕ ∅(n+1)) ∈ Mn+1,
hence, the sentence “L ∩ UMn

Cn
is large” is a Π0

1(Mn+1) sentence.

We now define the forcing relation for arithmetic formulas. The base cases
for Σ0

1 and Π0
1 formulas, as well as the Σ0

n+1 case, are quite straightforward.
The interesting case is for Π0

n+1 formulas (∀x)¬ψe(G, x): it asserts that for

every x ∈ ω and extension d = (R⃗S⃗, σ ∪ τ, Y ) of c, the forcing question
σ ∪ τ ?⊢|R⃗S⃗| ¬ψe(G, x) will hold. Assuming that the forcing question meets its

specifications, that is, if the forcing question holds for a formula, then there
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exists an extension forcing this formula, then the forcing relation for Π0
n+1

formulas is a density statement: it asserts that for every x ∈ ω, the set of
conditions forcing ¬ψe(G, x) is dense below c. Thus, for every sufficiently
generic filter F containing c and every x ∈ ω, there will be a condition dx ∈ F
forcing ¬ψe(G, x).

Definition 4.9. Let c := (R⃗, σ,X) ∈ PP . Consider (∃x)ψe(G, x) a Σ0
1 formula.

We define the ⊩ relation as follows:

• c ⊩ (∃x)ψe(G, x) if (∃x)ψe(σ, x).

• c ⊩ (∀x)¬ψe(G, x) if (∀τ ⊆ X)(∀x)(τ is R⃗-transitive =⇒ ¬ψe(σ ∪ τ, x)).

Then, inductively, for n ≥ 1, let (∃x)ψe(G, x) be a Σ0
n+1 formula. Then,

• c ⊩ (∃x)ψe(G, x) if (∃x)(c ⊩ ψe(G, x)).

• c ⊩ (∀x)¬ψe(G, x) if (∀τ ⊆ X)(∀x)(∀ℓ ≥ |R⃗|)(τ is R⃗-transitive =⇒ σ ∪
τ ?⊢ℓ ¬ψe(G, x)).

Remark 4.10. Every Σ0
1(G) formula ψ(G) can be expressed without loss of

generality of the form ΦG
e (0) ↓. By the use property, the notion of Turing

functional can be extended to finite length oracles, which induces an extension
of the formula ψ(G) to finite strings, such that ψ(G) holds iff ψ(G ↾k) holds for
some k ∈ ω. Moreover, the formula ψ(σ) can be chosen so that if ψ(σ) holds,
then so does ψ(τ) for every τ ⪰ σ. Throughout this article, we will always
assume that Σ0

1 formulas are in this normal form.

The following lemma shows that the forcing relation is stable under condition
extension.

Lemma 4.11. Fix n ≥ 0. Let d, c ∈ PP be such that d ≤ c, and let (∃x)ψe(G, x)
be a Σ0

n+1 formula.

(1) If c ⊩ (∃x)ψe(G, x) then d ⊩ (∃x)ψe(G, x).

(2) If c ⊩ (∀x)¬ψe(G, x) then d ⊩ (∀x)¬ψe(G, x).

Proof. Let c := (R⃗, σ,X) and d := (R⃗S⃗, σ ∪ τ, Y ). Suppose n = 0.

• If c ⊩ (∃x)ψe(G, x), then (∃x)ψe(σ, x). Moreover, σ ∪ τ ⪰ σ, so by
monotonicity of ψe (see Remark 4.10), (∃x)ψe(σ∪τ, x), hence d ⊩ (∃x)ψe(G, x).

• If c ⊩ (∀x)¬ψe(G, x), then (∀ρ ⊆ X)(∀x)(ρ is R⃗-transitive =⇒ ¬ψe(σ ∪
ρ, x)). Then, pick x ∈ ω and ρ ⊆ Y . Then, τ ∪ ρ ⊆ τ ∪ Y ⊆ X. Moreover,

since d is a condition, if ρ is R⃗S⃗-transitive, σ ∪ τ ∪ ρ is R⃗S⃗-transitive,
and in particular, τ ∪ ρ is R⃗-transitive, hence ¬ψe(σ ∪ τ ∪ ρ, x). This

yields that (∀ρ ⊆ Y )(∀x)(ρ is R⃗S⃗-transitive =⇒ ¬ψe(σ ∪ τ ∪ ρ, x)), i.e.,
d ⊩ (∀x)¬ψe(G, x).
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Inductively, suppose n > 0.

• If c ⊩ (∃x)ψe(G, x), then (∃x)c ⊩ ψe(σ, x), hence, by induction hypothesis,
(∃x)d ⊩ ψe(σ, x), i.e., d ⊩ (∃x)ψe(G, x).

• If c ⊩ (∀x)¬ψe(G, x), then (∀ρ ⊆ X)(∀x)(∀ℓ ≥ |R⃗|)(ρ is R⃗-transitive =⇒
σ∪ρ ?⊢ℓ ¬ψe(G, x)). Then, pick x ∈ ω, ρ ⊆ Y and ℓ ≥ |R⃗S⃗|. Then, τ∪ρ ⊆
τ ∪Y ⊆ X. Moreover, since d is a condition, if ρ is R⃗S⃗-transitive, σ∪τ ∪ρ
is R⃗S⃗-transitive, and in particular, τ∪ρ is R⃗-transitive, thus, since ℓ ≥ |R⃗|,
σ ∪ ρ ?⊢ℓ ¬ψe(G, x) holds. This yields that (∀ρ ⊆ Y )(∀x)(∀ℓ ≥ R⃗S⃗)(ρ is

R⃗S⃗-transitive =⇒ σ ∪ τ ∪ ρ ?⊢ℓ ¬ψe(G, x)), i.e., d ⊩ (∀x)¬ψe(G, x).

We now prove the core lemma for this notion of forcing: the forcing question
meets its specifications. It implies in particular the density of the set of conditions
forcing a property or its complement. Until now, the only hypothesis on the
class P was its partition regularity. Here, since we over-approximate the reservoirX
by a class L such that L∩UMn

Cn
is large, one needs to assert some compatibility

between P and L to deduce that X ∈ L. Since L will be an intersection
of Σ0

1(Mn) classes, assuming Mn-minimality of P, that is, P ⊆ ⟨UMn

Cn
⟩, we will

have X ∈ P ⊆ L.

Lemma 4.12. Let n ∈ ω and c := (R⃗, σ,X) ∈ PP such that P ⊆ ⟨UMn

Cn
⟩.

Consider (∃x)ψe(G, x) a Σ0
n+1 formula. Let m ≥ |R⃗|.

• If σ ?⊢m(∃x)ψe(G, x) then ∃d ≤ c such that d ⊩ (∃x)ψe(G, x).

• If σ ?⊬m(∃x)ψe(G, x) then ∃d ≤ c such that d ⊩ (∀x)¬ψe(G, x).

Proof. First, suppose n = 0.

• Suppose σ ?⊢m(∃x)ψe(G, x). Let L denote the class of all Y such that

for every m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Y and every S⃗ ∈
Cm(σ, Y ), there is a finite τ ⊆ Y \ {0, . . . , |σ|} which is S⃗-transitive and

h⃗-homogeneous, and some x ∈ ω such that ψe(σ ∪ τ, x). Then, L ∩ UM0

C0

is large. Since UM0

C0
is M0-cohesive, ⟨UM0

C0
⟩ is M0-minimal. This yields

that ⟨UM0

C0
⟩ ⊆ L. Moreover, X ∈ P ⊆ ⟨UM0

C0
⟩ ⊆ L. By a compactness

argument, this yields that there exists t ∈ ω such that for every 2-colorings
h⃗ = h0, . . . , hm−1 ∈ 2t, there is a finite τ ⊆ X ∩ {0, . . . , t} which is R⃗-

transitive and h⃗-homogeneous and some x ∈ ω such that ψe(σ ∪ τ, x).

Let us build a specific h⃗ such that the τ we get gives us the extension
of c we look for. For every i < m, a ≤ t, and y ∈ X, y > t, let
gi,a(y) := 1 if aRiy, and 0 otherwise (if m > i ≥ |R⃗|, then let Ri be
a fixed dummy tournament). Since P is partition regular, then there is
some g⃗-homogeneous set H ⊆ X in P. For every i < m and a ≤ t, let
hi(a) = 1 if {a} →Ri

H, and 0 otherwise. Since X ∈ L, there exists a
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finite τ ⊆ X ∩ {0, . . . , t} which is R⃗-transitive and h⃗-homogeneous and
some x ∈ ω such that ψe(σ ∪ τ, x) holds. Moreover, by Lemma 4.6,

R⃗ ∈ C|R⃗|(σ ∪ τ,H). This makes d := (R⃗, σ ∪ τ,H) a valid condition

such that d ⊩ (∃x)ψe(G, x).

• Suppose σ ?⊬m(∃x)ψe(G, x). Then, there exists s ∈ ω and Y0, . . . Ys a
partition of ω such that for all i ≤ s, (†) either Yi ̸∈ UM0

C0
or there exists an

m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Yi and an S⃗ ∈ Cm(σ, Yi), such

that for all τ ⊆ Yi \ {0, . . . , |σ|} which is S⃗-transitive and h⃗-homogeneous,
and for all x ∈ ω, ¬ψe(σ ∪ τ, x).
Since P is partition regular, then there is some i ≤ s such that X ∩
Yi ∈ P. In particular, X ∩ Yi ∈ UM0

C0
, so by upward-closure of partition

regularity, Yi ∈ UM0

C0
. Let h⃗ and S⃗ ∈ Cm(σ, Y ) be witnesses of (†). By

partition regularity of P, there is a h⃗-homogeneous subset H ⊆ X ∩ Yi
in P. The condition d := (R⃗S⃗, σ,H) is a valid extension of c such that
d ⊩ (∀x)¬ψe(G, x).

Now, inductively, suppose n > 0.

• Suppose σ ?⊢m(∃x)ψe(G, x). Let L denote the class of all Y such that

for every m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Y and every S⃗ ∈
Cm(σ, Y ), there is a finite τ ⊆ Y \ {0, . . . , |σ|} which is S⃗-transitive and

h⃗-homogeneous, and some x, ℓ ∈ ω such that σ ∪ τ ?⊬ℓ ¬ψe(G, x). Then,
L ∩ UMn

Cn
is large. Since UMn

Cn
is Mn-cohesive, ⟨UMn

Cn
⟩ is Mn-minimal.

This yields that ⟨UMn

Cn
⟩ ⊆ L. Moreover, X ∈ P ⊆ ⟨UMn

Cn
⟩ ⊆ L. By

a compactness argument, this yields that there exists t ∈ ω such that
for every m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2t, there is a finite

τ ⊆ X ∩ {0, . . . , t} which is R⃗-transitive and h⃗-homogeneous and some

x, ℓ ∈ ω such that σ ∪ τ ?⊬ℓ ¬ψe(G, x). Let us build a specific h⃗ such that
the τ we get gives us the extension of c we look for.

For every i < m, a ≤ t, and y ∈ X, y > t, let gi,a(y) := 1 if aRiy, and 0
otherwise.

By partition regularity of P, there is some g⃗-homogeneous set H ⊆ X
in P.

For every i < m and a ≤ t, let hi(a) = 1 if {a} →Ri H, and 0 otherwise.

Now, there exists a finite τ ⊆ X ∩ {0, . . . , t} which is R⃗-transitive and h⃗-
homogeneous and some x, ℓ ∈ ω such that σ ∪ τ ?⊬ℓ ¬ψe(G, x). Moreover,

by Lemma 4.6, R⃗ ∈ Cm(σ ∪ τ,H). This makes d := (R⃗, σ ∪ τ,H) a
valid condition such that for some ℓ ≥ m, σ ∪ τ ?⊬ℓ ¬ψe(G, x), hence, by
induction hypothesis, there exists p ≤ d ≤ c such that p ⊩ ψe(G, x), hence,
p ⊩ (∃x)ψe(G, x).

• Suppose σ ?⊬m(∃x)ψe(G, x). Then, there exists s ∈ ω and Y0, . . . Ys a
partition of ω such that for all i ≤ s, (†) either Yi ̸∈ UMn

Cn
or there exists an
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m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Yi and an S⃗ ∈ Cm(σ, Yi), such

that for all τ ⊆ Yi \ {0, . . . , |σ|} which is S⃗-transitive and h⃗-homogeneous,
and for all x ∈ ω and ℓ ≥ m, σ ∪ τ ?⊢ℓ ¬ψe(G, x).

By partition regularity of P, there is some i ≤ s such that X ∩ Yi ∈ P.
In particular, X ∩Yi ∈ UMn

Cn
, so by upward-closure of partition regularity,

Yi ∈ UMn

Cn
. Let h⃗ and S⃗ ∈ Cm(σ, Y ) be witnesses of (†). By partition

regularity of P, there is a h⃗-homogeneous subset H ⊆ X ∩ Yi in P.
The condition d := (R⃗S, σ,H) is a valid extension of c such that d ⊩
(∀x)¬ψe(G, x).

Definition 4.13. Let n ∈ ω, and F ⊆ PP be a filter. The set F is said n-
generic if for all k < n, and every Σ0

k+1 formula (∃x)ψe(G, x), there exists a
condition c ∈ F such that c ⊩ (∃x)ψe(G, x) or c ⊩ (∀x)¬ψe(G, x)

Lemma 4.14. Fix n ∈ ω, and let F be a sufficiently generic PP -filter, where
P ⊆ ⟨UMn

Cn
⟩. Then F is n-generic.

Proof. Let k < n, and let (∃x)ψe(G, x) be a Σk+1 formula. Let D be the
collection of all conditions deciding (∃x)ψe(G, x). We claim that D is dense.

Let c := (R⃗, σ,X) ∈ F , and m := |R⃗|. Suppose σ ?⊢m(∃x)(ψe(G, x). Then,
by Lemma 4.12 there exists d ≤ c such that d ⊩ (∃x)(ψe(G, x). Otherwise,
σ ?⊬m(∃x)(ψe(G, x). Then, by Lemma 4.12 there exists d ≤ c such that d ⊩
(∀x)¬(ψe(G, x). Either way, there is some d ≤ c in D, so D is dense. Since F is
sufficiently generic, F ∩ D ̸= ∅.

Lemma 4.15. Let n ∈ ω, and let c := (R⃗, σ,X) ∈ PP such that if n > 0

then P ⊆ ⟨UMn−1

Cn−1
⟩. Consider (∃x)ψe(G, x) a Σ0

n+1 formula. Then, (c ⊩
(∃x)ψe(G, x)) ∧ (c ⊩ (∀x)¬ψe(G, x)) never holds.

Proof. We prove this inductively. Suppose otherwise.

• First, suppose n = 0. Then, (∃x)ψe(σ, x) holds, and (∀τ ⊆ X)(∀y)(τ is

R⃗-transitive =⇒ ¬ψe(σ∪τ, y)). In particular, for τ = ∅, τ is R⃗-transitive,
hence, ¬ψe(σ, x) holds, yielding a contradiction.

• Now, suppose n > 0. Then, (∃x)(c ⊩ ψe(G, x)), and (∀τ ⊆ X)(∀y)(∀ℓ ≥
|R⃗|)(τ is R⃗-transitive =⇒ σ ∪ τ ?⊢ℓ ¬ψe(G, y)). In particular, for τ =

∅, and ℓ = R⃗, τ is R⃗-transitive, hence, σ ?⊢ℓ ¬ψe(G, x)). Since P ⊆
⟨UMn−1

Cn−1
⟩, this yields by Lemma 4.12 that there exists d ≤ c such that

d ⊩ ¬ψe(G, x). However, by Lemma 4.11, d ⊩ ψe(G, x). This contradicts
induction hypothesis.

The following lemma is known as the “forcing implies truth” lemma: if a
condition forces a formula, then for every sufficiently generic filter containing
this condition, the formula will hold.
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Lemma 4.16. Let n ∈ ω, and F ⊆ PP be a filter such that if n > 0 then F
is (n− 1)-generic and P ⊆ ⟨UMn−1

Cn−1
⟩. Let (∃x)ψe(G, x) be a Σ0

n+1 formula. Let
c ∈ F .

• If c ⊩ (∃x)ψe(G, x), then (∃x)ψe(GF , x) holds.

• If c ⊩ (∀x)¬ψe(G, x), then (∀x)¬ψe(GF , x) holds.

Proof. Suppose n = 0.

• If c ⊩ (∃x)ψe(G, x), then (∃x)ψe(σ,X), and sinceGF ⪰ σ, (∃x)ψe(GF , X).

• If c ⊩ (∀x)¬ψe(G, x), then (∀τ ⊆ X)(∀x)(τ is R⃗-transitive =⇒ ¬ψe(σ ∪
τ, x)). Suppose for the contradiction that (∃x)ψe(GF , x). Then, by Remark 4.10,
there exists τ ⊆ GF ⊆ X such that ψe(σ ∪ τ, x). However, by Lemma 4.3,

GF is R⃗-transitive, hence τ is R⃗-transitive, contradicting hypothesis.

Inductively, suppose n > 0.

• If c ⊩ (∃x)ψe(G, x), then c ⊩ ψe(σ, x) for some x ∈ ω. By induction
hypothesis, (∃x)ψe(GF , x).

• If c ⊩ (∀x)¬ψe(G, x), then (∀τ ⊆ X)(∀x)(∀ℓ ≥ |R⃗|)(τ is R⃗-transitive =⇒
σ ∪ τ ?⊢ℓ ¬ψe(G, x)). Fix some x ∈ ω. By (n − 1)-genericity of F ,
there exists some d ∈ F such that d ⊩ ψe(G, x) or d ⊩ ¬ψe(G, x).
By compatibility of the conditions in a filter, and by Lemma 4.11, we
can suppose without loss of generality that d ≤ c. In particular, d :=
(R⃗S⃗, σ ∪ τ, Y ). Since τ ⊆ X and is R⃗-transitive and since |R⃗S⃗| ≥ |R⃗|,
σ ∪ τ ?⊢|R⃗S⃗| ¬ψe(G, x)).

By Lemma 4.12, there is some p ≤ d such that p ⊩ ¬ψe(G, x)). Since p ≤ d

and P ⊆ ⟨UMn−1

Cn−1
⟩, then by Lemma 4.15, d ⊩ ¬ψe(G, x). By induction

hypothesis, ψe(GF , x) holds, and this, for every x, so (∀x)ψe(GF , x).

Lemma 4.17. Let F ⊆ PP be a 1-generic filter. Then GF is infinite.

Proof. By 1-genericity of F , for all x, there exists c := (R⃗, σ,X) ∈ F such that
c ⊩ (∃y > x)(y ∈ G) or c ⊩ (∀y > x)(y ̸∈ G). Suppose the latter holds for
some x.

Unfolding the definition of the forcing relation for Π0
1 formulas, (∀τ ⊆

X)(∀y)(τ is R⃗-transitive =⇒ y ≤ x ∨ y ̸∈ σ ∪ τ). Since X is infinite, there is

some y ∈ X such that y > x. Letting τ = {y}, τ is R⃗-transitive, y > x and
y ∈ σ ∪ {y}. Contradiction.
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5 Strong cone avoidance for arithmetic reductions

We now use the framework developed in Section 4 to prove that EM admits
strong cone avoidance for arithmetic reductions. In other words, the goal of
this section is to prove our first main theorem:

Main Theorem 1.3. If B is not arithmetic, then for every tournament T , there
is an infinite transitive subtournament H such that B is not H-arithmetic.

Recall that in Section 3.3, we stated the existence of an infinite sequence
of Scott sets M0 ⊆ M1 ⊆ . . . respectively coded by some sets M0,M1, . . . ,
together with a sequence of sets C0, C1, . . . such that ∅(n+1) ⊕ Cn ∈ Mn+1,
M ′

n ≤T ∅(n+1) and
⟨UM0

C0
⟩ ⊇ ⟨UM1

C1
⟩ ⊇ . . .

are partition regular classes. By Lemma 3.4, the class Pω =
⋂

n⟨U
Mn

Cn
⟩ is again

partition regular.

Definition 5.1. Let Pω = PPω
.

Since Pω =
⋂

n⟨U
Mn

Cn
⟩, then all the hypothesis of the form P ⊆ ⟨UMn

Cn
⟩ hold

in Section 4. By Lemma 4.8, the forcing question to decide Σ0
n(G) formulas is

Π0
1(Mn), hence the definitional complexity of the forcing question is not at the

same level in the hierarchy as the formula we force. Thankfully, in the case of
arithmetic reductions, this difference is not relevant. Indeed, all the sets in Mn

are arithmetic, so if a set B is not arithmetic, it is in particular not Π0
2(Mn)

for any n.

Lemma 5.2. Suppose B is not arithmetic. Let F be a sufficiently generic Pω-
filter. Then for every n ∈ ω and every Σ0

n formula φ(G, x), there exists d ∈ F
such that

(∃x /∈ B)(d ⊩ φ(G, x)) ∨ (∃x ∈ B)(d ⊩ ¬φ(G, x)).

Proof. Fix some c = (R⃗, σ,X) ∈ F , and let φ(G, x) be a Σ0
n formula for

some n > 0. Say m = |R⃗|. Let W = {x : σ ?⊢m φ(G, x)}. By Lemma 4.8,
the set W is Π0

n(Mn). Since B is not arithmetic, W ̸= B. Let x ∈ W∆B =
(W \B) ∪ (B \W ). One of the two cases holds:

• x ∈W \B, then, by Lemma 4.12, there exists a condition d ≤ c such that
d ⊩ φ(G, x).

• x ∈ B \W , then, by Lemma 4.12, there exists a condition d ≤ c such that
d ⊩ ¬φ(G, x).

In both cases, by genericity of F , there is such a d in F .

We are now ready to prove our first main theorem.
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Proof of Theorem 1.3. Fix a non-arithmetic set B, a tournament T , and let F
be a sufficiently generic Pω-filter containing the condition (T, ∅, ω). By Lemma 4.14,
F is n-generic for every n ∈ ω. By Lemma 4.3, GF is T -transitive, and by
Lemma 4.17, GF is infinite.

We claim that B is not GF -arithmetic: Fix a Σ0
n formula φ(G, x). By

Lemma 5.2, there exists some c ∈ F such that

(∃x /∈ B)(c ⊩ φ(G, x)) ∨ (∃x ∈ B)(c ⊩ ¬φ(G, x)).

By Lemma 4.16, (∃x /∈ B)φ(GF , x) ∨ (∃x ∈ B)¬φ(GF , x), hence B is not GF -
arithmetic.

6 Layerwise strong cone avoidance

In this section, we are going to twist the previous notion of forcing to obtain a
layerwise version of Theorem 1.3. More precisely, the goal of this section is to
prove the following theorem:

Main Theorem 1.4. Fix n ≥ 1. If B is not Σ0
n, then for every tournament T ,

there is an infinite transitive subtournament H such that B is not Σ0
n(H).

As explained in Section 2.1, the proof of such theorems is closely related to
the existence of a uniformly Σ0

n-preserving forcing question, that is, a forcing
question for Σ0

n(G) formulas which is Σ0
n uniformly in its parameters.

Unfortunately, by Lemma 4.8, forcing a Σ0
n(G) formula is Π0

1(Mn), which is
not the desired definitional complexity. We are going to use the same trick as
Monin and Patey [15] and define a twisted notion of forcing “on the top”, that
is, leaving the lower levels unchanged, we are going to replace the Scott set Mn

by another Scott set Nn with more suited properties, and define a different
forcing question on the top level.

Intuitively, the bad complexity of the forcing question comes from the fact
that, since there is no effectiveness restriction on the reservoir X, the only way
to decide properties is to check whether the class of sets satisfying this property
is large. Largeness of a Σ0

n property is Π0
n+1. Therefore, at the top level, the

forcing question will have to directly involve the reservoir. The counterpart is
that the forcing conditions will need to impose effectiveness restrictions on the
reservoirs, which will raise a few technical difficulties.

6.1 Top Scott set

Suppose B is a non-Σ0
n+1 set. The forcing question on the top for Σ0

n+1 formulas
will be Σ0

1(Mn), so for Proposition 2.3 about diagonalization to work, one
needs B not to be Σ0

1(Mn). We will therefore replace the Scott set Mn with
another Scott set Nn coded by a set Nn with the following two properties:

• ∅(n) is coded by an element of Nn ;
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• B is not Σ0
1(Nn)

The second fact replaces the previous assumption thatN ′
n is computable in ∅(n+1).

The existence of such a Scott set follows from the following proposition by
Wang [19, Theorem 3.6]:

Proposition 6.1 (Wang [19]). Let Z,B such that B is not Σ0
1(Z). For every Z-

computable tree T ⊆ 2<N, there exists an infinite path P ∈ [T ] such that B is
not Σ0

1(Z ⊕ P ).

However, the two properties above are not sufficient to define Nn. Indeed,
there are still no effectiveness restrictions on the initial tournament T , and in
particular, T cannot be assumed to be in Nn, but in the proof of Lemma 4.12,
one needs to split the reservoir X based on a Z⊕T -computable finite partition,
for some Z ∈ Nn. The resulting reservoir must still belong to Nn and to the
partition regular class P. The Scott set Nn must therefore enjoy the following
property:

• For every X ∈ Nn ∩P, every Z ∈ Nn and every T ⊕Z-computable set A,
there exists an infinite set Y ⊆ X∩A or Y ⊆ X∩A such that Y ∈ Nn∩P.

For this, we will prove the following proposition, which is an adaptation of
an alternative proof by Hirschfeldt [5, Lemma 6.63] of a theorem by Dzhafarov
and Jockusch [4]. The statement of the proposition can be found in Monin and
Patey [16, Theorem 5.1] and [15, Theorem 4.11], but without the assumption
that H ∈ UZ

C . We therefore give a direct proof of it for the sake of simplicity.

Proposition 6.2. Let Z,B such that B is not Σ0
1(Z). Let UZ

C be a partition
regular class. For every set A, there exists an infinite subset H ⊆ A or H ⊆ A
such that B is not Σ0

1(Z ⊕H) and H ∈ UZ
C .

Fix Z,B,UZ
C and A. Say A0 = A and A1 = A. We are going to build two

sets G0, G1 by a variant of Mathias forcing whose conditions are tuples of the
form (σ0, σ1, X), where

• (σi, X) is a Mathias condition with σi ⊆ Ai

• X ∈ UZ
C and B is not Σ0

1(X ⊕ Z)

Consider the following two kind of requirements, for every e ∈ ω and k ∈ C:

RG
e : W

G⊕Z
e ̸= B SG

k : G ∈ UZ
k

We are going to constructG0, G1 such that they satisfy the following requirements
for every e0, e1 ∈ ω and k0, k1 ∈ C:

RG0
e0 ∨RG1

e1 ; SG0

k0
∨ SG1

k1
; RG0

e0 ∨ SG1

k1
; SG0

k0
∨RG1

e1

By a pairing argument, then there is some i < 2 such that Gi ∈ UZ
C and B

is not Σ0
1(Gi ⊕ Z). We will need the following three lemmas. The fourth case

follows by symmetry.
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Lemma 6.3. Let c be a condition and e0, e1 ∈ ω. There is an extension
forcing RG0

e0 ∨RG1
e1 .

Proof. Say c = (σ0, σ1, X). Let W be the Σ0
1(X ⊕ Z) set of all x ∈ ω such

that for every 2-partition R0 ⊔ R1 = X, there is some i < 2 and some ρ ⊆ Ri

such that x ∈ W
(σi∪ρ)⊕Z
ei . Since W is Σ0

1(X ⊕ Z) while B is not, there is
some x ∈W∆B = (W \B) ∪ (B \W ).

• If x ∈ W \ B, then, letting Ri = X ∩ Ai, there is some i < 2 and

some ρ ⊆ X∩Ai such that x ∈W
(σi∪ρ)⊕Z
ei . The condition (σi∪ρ, σ1−i, X\

{0, . . . ,max ρ}) is an extension of c forcing RGi
ei .

• If x ∈ B \W , then, let C be the Π0
1(X ⊕Z) class of all R0 ⊕R1 such that

R0 ⊔ R1 = X, for every i < 2 and every ρ ⊆ Ri, x ̸∈ W
(σi∪ρ)⊕Z
ei . The

class C is non-empty, so by Proposition 6.1, there is some R0 ⊕ R1 ∈ C
such that B is not Σ0

1(R0 ⊕ R1 ⊕X ⊕ Z). By partition regularity of UZ
C ,

there is some i < 2 such that Ri ∈ UZ
C . The condition (σ0, σ1, Ri) is an

extension of c forcing RGi
ei .

Lemma 6.4. Let c be a condition and k0, k1 ∈ C. There is an extension
forcing SG0

k0
∨ SG1

k1
.

Proof. Say c = (σ0, σ1, X). Since UZ
C is partition regular and X ∈ UZ

C , there is
some i < 2 such that X ∩Ai ∈ UZ

C . In particular, X ∩Ai ∈ UZ
ki
. Let ρ ⊆ X ∩Ai

be such that ρ ∈ UZ
ki
. Then the condition (σi ∪ ρ, σ1−i, X \ {0, . . . ,max ρ}) is an

extension of c forcing SGi

ki
.

Lemma 6.5. Let c be a condition, e0 ∈ ω and k1 ∈ C. There is an extension
forcing RG0

e0 ∨ SG1

k1
.

Proof. Say c = (σ0, σ1, X). Let W be the Σ0
1(X ⊕ Z) set of all x ∈ ω such

that for every 2-partition R0 ⊔ R1 = X, either there is some ρ ⊆ R0 such

that x ∈ W
(σ0∪ρ)⊕Z
e0 , or there is some ρ ⊆ R1 such that ρ ∈ UZ

k1
. Since W is

Σ0
1(X ⊕ Z) while B is not, there is some x ∈W∆B = (W \B) ∪ (B \W ).

• If x ∈W \B, then, letting Ri = X ∩Ai, either there is some ρ ⊆ X ∩A0

such that x ∈ W
(σ0∪ρ)⊕Z
e0 , or some ρ ⊆ X ∩ A1 such that ρ ∈ UZ

k1
. The

condition (σi∪ρ, σ1−i, X \{0, . . . ,max ρ}) is an extension of c forcing RG0
e0

in the first case, and SG1

k1
in the second case.

• If x ∈ B \W , then, let C be the Π0
1(X ⊕ Z) class of all R0 ⊕ R1 such

that for every ρ ⊆ R0, x ̸∈ W
(σi∪ρ)⊕Z
e0 , and R1 ̸∈ UZ

k1
. The class C is

non-empty, so by Proposition 6.1, there is some R0 ⊕ R1 ∈ C such that
B is not Σ0

1(R0 ⊕ R1 ⊕ X ⊕ Z). By partition regularity of UZ
C , there is

some i < 2 such that Ri ∈ UZ
C , and by choice of C, i = 0. The condition

(σ0, σ1, R0) is an extension of c forcing RG0
e0 .
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We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. Fix Z,B,UZ
C and A. Say A0 = A and A1 = A. Let F

be a sufficiently generic filter for this notion of forcing. For every i < 2, let
Gi =

⋃
(σ0,σ1,X)∈F σi. By definition of a condition, G0 ⊆ A and G1 ⊆ A.

By Lemma 6.3, Lemma 6.4, Lemma 6.5 and its symmetric version, there is
some i < 2 such that Gi ∈ UZ

C and B is not Σ0
1(Gi ⊕ Z). In particular,

assuming UZ
C contains only infinite sets, Gi is infinite. This completes the proof

of Proposition 6.2.

Thanks to Proposition 6.1 and Proposition 6.2, one can prove the existence
of a Scott set Nn satisfying the properties mentioned above:

Proposition 6.6. Fix n > 0. Let B be a non-Σ0
n+1 set and T be a tournament.

There exists a Scott set Nn such that

• ∅(n) ∈ Nn ; B is not Σ0
1(Nn) ;

• for every X ∈ Nn ∩ ⟨UMn−1

Cn−1
⟩, every Z ∈ Nn and every T ⊕Z-computable

set A, there exists an infinite set Y ⊆ X ∩ A or Y ⊆ X ∩ A such that

Y ∈ Nn ∩ ⟨UMn−1

Cn−1
⟩.

Proof. By Proposition 6.1 and Proposition 6.2, there exists an infinite sequence Z0, Z1, . . .
such that Z0 = ∅(n), and for every s ∈ ω:

(1) For every Z0 ⊕ · · · ⊕Zs-computable infinite binary tree T , there is some t
such that Zt ∈ [T ] ;

(2) For every Z0⊕· · ·⊕Zs-computable infinite setX ∈ ⟨UMn−1

Cn−1
⟩ and every T⊕

Z0 ⊕ · · ·⊕Zs-computable set A, there exists some t such that Zt ⊆ X ∩A
or Zt ⊆ X ∩A and Zt ∈ Nn ∩ ⟨UMn−1

Cn−1
⟩.

(3) B is not Σ0
1(Z0 ⊕ · · · ⊕ Zs)

Let Nn = {X : (∃s)X ≤T Z0 ⊕ · · · ⊕Zs}. By construction, Nn is a Turing ideal
containing ∅(n). Moreover, by (1), Nn |= WKL, by (2), Nn satisfies the second
item of the lemma, and by (3), B is not Σ0

1(Nn).

As explained in Section 3.2, given a Scott set M coded by a set M , one can
compute the index set C of an M-cohesive class UM

C in any PA degree over M ′

(see Monin and Patey [15, Lemma 2.17] for a full proof). Since M ′
n−1 ≤T ∅(n)

and ∅(n) ∈ Nn which is a Scott set, then one can find the index set Cn−1 of an

Mn−1-cohesive large class UMn−1

Cn−1
in Nn.
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6.2 Top forcing conditions

The notion of forcing for layerwise cone avoidance resembles the previous notion
of forcing, with a few distinctive features.

• First, since one needs to control only Σ0
n+1(G) properties, the partition

generic class P will only need to be included in a minimal class of a finite

level of the hierarchy of Scott sets. We will actually choose P = ⟨UMn−1

Cn−1
⟩.

• Second, since the forcing question on the top will depend on the reservoirX,
one must require that X ∈ Nn, in order to obtain a Σ0

1(Nn) forcing
question. Since B is not Σ0

1(Nn), the diagonalization lemma will hold.

• Last, as explained above, since the proof of Lemma 4.12 splits the reservoir
based on 2-partitions computable in the tournaments, one must require
that Nn is closed under this operation. By construction of Nn, the
closure is ensured for the original tournament T . However, in the proof of
Lemma 4.12, new tournaments will be added to the condition. Thankfully,
all the new tournaments can be chosen as members of Π0

1(Nn) classes, and

since Nn is a Scott set, one can require that R⃗ ∈ Nn. The new notion
of condition will therefore distinguish between the original tournament T
which can be of arbitrary strength, and the new tournaments R⃗ added
along the construction of a generic filter, and which will belong to Nn.

Definition 6.7. Fix a tournament T . Let n > 0. Let Pn denote the set of all
3-tuples (R⃗, σ,X) such that

1. R⃗ is a finite sequence of tournaments,

2. X ∩ {0, . . . , |σ|} = ∅,

3. X ∈ ⟨UMn−1

Cn−1
⟩,

4. R⃗,X ∈ Nn,

5. for all y ∈ X, σ ∪ {y} is R⃗-transitive and T -transitive,

6. X is included in a minimal R⃗-interval and T -interval of σ.

In other words, Pn is the set of all PP -conditions ((T, R⃗), σ,X) for P = ⟨UMn−1

Cn−1
⟩

such that R⃗,X ∈ Nn.

Remark 6.8. As an element of PP , a Pn condition inherits the definitions of the
forcing relation and the forcing question. The Scott set Nn has been designed
so that the proof of Lemma 4.12 still holds while ensuring that R⃗ and X belong
to Nn.
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6.3 Top forcing question

We now define a forcing question which is very similar to Definition 2.8.

Definition 6.9. Fix n > 0. Let c = (R⃗, σ,X) ∈ Pn and let (∃x)ψe(G, x) be a

Σ0
n+1 formula. Say m := |R⃗|+1. Define the relation c ?⊢(∃x)ψe(G, x) to hold if

for everym-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2X and every S⃗ ∈ Cm(σ,X),

there is an h⃗-homogeneous and S⃗-transitive τ ⊆ X and some x ∈ ω such that
σ ∪ τ ?⊬m ¬ψe(G, x).

Lemma 6.10. Fix n > 0. Let c = (R⃗, σ,X) ∈ Pn and let (∃x)ψe(G, x) be a
Σ0

n+1 formula. The sentence (c ?⊢(∃x)ψe(G, x)) is Σ0
1(Nn).

Proof. Letm := |R⃗|+1. By a compactness argument, (c ?⊢(∃x)ψe(G, x)) holds if

there exists t ∈ ω such that for every m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈
2t and every every m-tuple of tournaments S⃗ over {0, . . . , t} such that S⃗ ∈
Cm(σ,X ∩ {0, . . . , t}), there is an h⃗-homogeneous and S⃗-transitive τ ⊆ X ∩
{0, . . . , t} and some x ∈ ω such that σ∪τ ?⊬m ¬ψe(G, x). The formula ¬ψe(G, x)
is Σ0

n, so by Lemma 4.8, the formula (σ ∪ τ ?⊢m ¬ψe(G, x)) is Π
0
1(Cn−1 ⊕ ∅(n))

uniformly in its parameters, hence (σ∪τ ?⊬m ¬ψe(G, x)) is Σ
0
1(Mn). This yields

the expected result since Mn ⊆ Nn.

The following lemma states that the forcing question on the top meets its
specifications, that is, based on its answer, there is an extension forcing the
property or its complement.

Lemma 6.11. Let n ∈ ω and c := (R⃗, σ,X) ∈ Pn. Consider (∃x)ψe(G, x) a
Σ0

n+1 formula.

• If c ?⊢(∃x)ψe(G, x) then ∃d ≤ c such that d ⊩ (∃x)ψe(G, x).

• If c ?⊬(∃x)ψe(G, x) then ∃d ≤ c such that d ⊩ (∀x)¬ψe(G, x).

Proof. Let m = |R⃗|+ 1. For simplicity of notation, let Rm−1 = T .
First, suppose c ?⊢(∃x)ψe(G, x). Then, in particular, for every m-tuple of 2-

colorings h⃗ = h0, . . . , hm−1 ∈ 2X , there exists an h⃗-homogeneous, R⃗-transitive
and T -transitive τ ⊆ X and some x ∈ ω such that σ ∪ τ ?⊬¬ψe(G, x). By
a compactness argument, there exists t ∈ ω such that we can restrict the
considered set of m-tuples of 2-colorings of X to 2-colorings of {0, . . . , t}. We
again build the same m-tuple of 2-colorings as follows: for every i < m, a ≤ t,
and y ∈ X, y > t, let gi,a(y) := 1 if Ri(a, y) holds, and 0 otherwise. Note

that g⃗ is T ⊕ R⃗ ⊕ X-computable, hence T ⊕ Z-computable for some Z ∈ Nn

(since Rm−1 = T ).

By choice of Nn, with P = ⟨UMn−1

Cn−1
⟩, by Proposition 6.6, there exists H ⊆ X

a g⃗-homogeneous set in Nn ∩ ⟨UMn−1

Cn−1
⟩.

For every i < m and a ≤ t, let hi(a) = 1 if {a} →Ri
H, and 0 otherwise.

Now, there exists a finite τ ⊆ X ∩ {0, . . . , t} which is R⃗-transitive, T -transitive

30



and h⃗-homogeneous and some x ∈ ω such that σ ∪ τ ?⊬m ¬ψe(G, x). Moreover,

by Lemma 4.6, (R⃗, T ) ∈ Cm(σ ∪ τ,H). This makes d := (R⃗, σ ∪ τ,H) a valid
Pn condition under c such that d ?⊬m ¬ψe(G, x), hence, by Lemma 4.12, there
exists p ≤ d ≤ c such that p ⊩ ψe(G, x).

Now, suppose c ?⊬(∃x)ψe(G, x). Then, there exists an m-tuple of 2-colorings

h⃗ = h0, . . . , hm−1 ∈ 2X and an m-tuple of tournaments S⃗ ∈ Cm(σ,X) such

that for every h⃗-homogeneous and S⃗-transitive finite chain σ ⊆ X and every
x ∈ ω, σ ∪ τ ?⊢m ¬ψe(G, x). Let L be the class of such m-tuples of 2 colorings

h⃗ and m-tuples of S⃗ ∈ Cm(σ,X). By Lemma 4.5, Cm(σ,X) is Π0
1(X). Since

X ∈ Nn, the class L is Π0
1(Nn), hence, since Nn |= WKL, there exists (⃗h, S⃗) ∈

Nn ∩ L. By partition regularity of P = ⟨UMn−1

Cn−1
⟩, there is a h⃗⊕X-computable

h⃗-homogeneous set Y ⊆ X in P. The 3-tuple d := (R⃗S⃗, σ, Y ) is a valid EM-
condition such that d ⊩ (∀x)¬ψe(G, x).

The following diagonalization lemma is a specialization of Proposition 2.3 to
this notion of forcing.

Lemma 6.12. Fix n > 0. Let F be a sufficiently generic Pn-filter. Then, for
every Σ0

n+1 formula φ(G, x), there exists d ∈ F such that

(∃x /∈ B)(d ⊩ φ(G, x)) ∨ (∃x ∈ B)(d ⊩ ¬φ(G, x)).

Proof. Fix some c = (R⃗, σ,X) ∈ F , and let φ(G, x) be a Σ0
n+1 formula. Let

W = {x : c ?⊢(φ(G, x)}. By Lemma 6.10, the setW is Σ0
1(Nn). By construction

of Nn in Proposition 6.6, B is not Σ0
1(Nn), hence, W ̸= B. Let x ∈ W∆B =

(W \B) ∪ (B \W ). One of the two cases holds:

• x ∈W \B, then, by Lemma 6.11, there exists a condition d ≤ c such that
d ⊩ φ(G, x).

• x ∈ B \W , then, by Lemma 6.11, there exists a condition d ≤ c such that
d ⊩ ¬φ(G, x).

In both cases, by genericity of F , there is such a d in F .

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. The case n = 0 is proven independently by the first
author and Wang (unpublished) and is a consequence of Section 2.2. Fix n > 0,
and fix a non-Σ0

n+1 set B, a tournament T , and let F be a sufficiently generic
Pn-filter containing the condition (∅, ∅, ω) (recall that T is a parameter of the
notion of forcing). By Lemma 4.14, F is (n− 1)-generic. By Lemma 4.3, GF is
T -transitive, and by Lemma 4.17, GF is infinite.

We claim thatB is not Σ0
n+1(GF ): fix a Σ

0
n+1 formula φ(G, x). By Lemma 6.12,

there exists some c ∈ F such that

(∃x /∈ B)(c ⊩ φ(G, x)) ∨ (∃x ∈ B)(c ⊩ ¬φ(G, x)).
By Lemma 4.16, since F is (n−1)-generic, (∃x /∈ B)φ(GF , x)∨(∃x ∈ B)¬φ(GF , x),
hence B is not Σ0

n(GF ).
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7 Effective constructions and lowness

This last section of our article is devoted to the proof of the third main theorem:

Main Theorem 1.5. Fix n ≥ 1. Every ∆0
n tournament T has an infinite

transitive subtournament of lown+1 degree.

First of all, notice that this bound is tight, in that there exists a computable
tournament with no infinite Σ0

2 transitive subtournament (see Patey [18]). By
relativizing the argument, for every n ≥ 1, there is a ∆0

n tournament with
no infinite Σ0

n+1 transitive subtournament, hence no infinite lown transitive
subtournament. We will actually prove the following stronger theorem:

Theorem 7.1. Fix n ≥ 1. For every set P of PA degree over ∅(n), every ∆0
n

tournament T has an infinite transitive subtournament H such that H(n) ≤T P .

Theorem 1.5 follows from Theorem 7.1 using the low basis theorem:

Proof of Theorem 1.5. Fix n ≥ 1 and a ∆0
n tournament T . By the low basis

theorem relative to ∅(n) (see Jockusch and Soare [10]), there is a set P of PA
degree over ∅(n) such that P ′ ≤T ∅(n+1). By Theorem 7.1, there is an infinite
T -transitive subtournament H such that H(n) ≤T P . In particular, H(n+1) ≤T

P ′ ≤T ∅(n+1), hence H is of lown+1 degree.

The rest of this section is therefore devoted to the proof of Theorem 7.1. The
goal will be to construct, given a ∆0

n tournament T and a set P of PA degree
over ∅(n), an infinite decreasing sequence of conditions c0 = (T, ∅, ω) ≥ c1 ≥ . . .
such that the induced filter F = {d : (∃n)cn ≤ d} is n-generic. Then, the set GF

be will be an infinite T -transitive subtournament such that G
(n)
F ≤T P .

We will work with a notion of forcing Qn which is very similar to Pn, with
the same distinction between the forcing question of the top and the ones at the
lower levels. The main difference between Qn and Pn comes from two facts:

• The tournament T is ∆0
n, hence belongs to Mn. There is therefore

no need to distinguish the original tournament T from the sequence of
tournaments R⃗ obtained with the question of forcing.

• The resulting filter will be n-generic, but there will be no diagonalization
against a fixed non-Σ0

n+1 set B. We therefore does not require that a set B
is not Σ0

1(Mn).

Because of these differences, there is no need to use a different Scott set at
the level n. We will therefore keep Mn instead of replacing it with Nn. Note
that any PA degree over ∅(n) can compute a sequence of sets M0,M1, . . . ,Mn

satisfying the properties of Proposition 3.15, except that the last set Mn is not
required to satisfy the last item, but simply to be P -computable.

Definition 7.2. Let n > 0. Let Qn denote the set of all PP -conditions (R⃗, σ,X)

for P = ⟨UMn−1

Cn−1
⟩ such that R⃗,X ∈ Mn.
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In order to analyze the computational power needed to construct an n-
generic decreasing sequence of conditions, one must fix a coding of the conditions
into finite objects. Since Mn = {Ze : e ∈ N} is countably coded by the
set Mn =

⊕
e∈ω Ze, every element X ∈ Mn can be represented by an integer e

such that X = Ze. We call such an e an Mn-index of X. Note that any
set X ∈ Mn can be represented by infinitely many Mn-indices.

Definition 7.3. Let c := (R⃗, σ,X). A Qn-index of c is a 3-tuple ⟨eR, σ, eX⟩
such that ZeX = X, i.e. eX is an Mn-index of X, and such that Φ∅(n)

eR (i, a, b) =
Ri(a, b).

In what follows, fix some n ≥ 1 and a set P of PA degree over ∅(n) computingMn.

Lemma 7.4. The statement “X ∈ UMn−1

Cn−1
” is Π0

1(Cn−1⊕(X⊕Mn−1)
′) uniformly

in X. In particular, if X ∈ Mn−1, then it is Π0
1(Cn−1 ⊕M ′

n−1) uniformly in
an Mn-index of X.

Proof. The sentence “X ∈ UMn−1

Cn−1
” is equivalent to the formula (∀(e, i) ∈

Cn−1)(X ∈ UZi
e ), where Mn−1 =

⊕
i∈ω Zi. In other words, the sentence

“X ∈ UMn−1

Cn−1
” is equivalent to

∀e∀i, (e, i) ̸∈ Cn−1 ∨ (∃ρ ⊆ X)ρ ∈WZi
e

The left-hand side of the disjunction is ∆0
0(Cn−1), and the right-hand side

is Σ0
1(X ⊕Mn−1), hence ∆0

0((X ⊕Mn−1)
′). The whole sentence is therefore

Π0
1(Cn−1 ⊕ (X ⊕Mn−1)

′) uniformly in X.

Fix a set Z and a sequence of pairs of Π0
1(Z) formulas (φs, ψs)s∈N such that

for every s, at least one of φs and ψs is true. It is well-known that any set P of
PA degree relative to Z computes a set H such that for every s, if s ∈ H then
φs is true, and if s ̸∈ H then ψs is true. Combining this fact with Lemma 7.4,
we obtain the following lemma:

Lemma 7.5. Let X ∈ Mn ∩ UMn−1

Cn−1
and f : X → 2 be a 2-coloring in Mn.

Then there is some f -homogeneous set Y ⊆ X such that Y ∈ Mn ∩ UMn−1

Cn−1
.

Moreover, an Mn-index of Y can be P -uniformly from Mn-indices of X and
and f .

Proof. Let PX be the class of all H such that for every i, if i ∈ H then X ∩Zi ∈
UMn−1

Cn−1
, and if i ̸∈ H, then X \ Zi ∈ UMn−1

Cn−1
. By partition regularity of UMn−1

Cn−1

and since X ∈ UMn−1

Cn−1
, then PX is non-empty. Moreover, by Lemma 7.4, the

class PX is Π0
1(Cn−1⊕M ′

n−1) uniformly in anMn-index of X, hence is Π0
1(Mn).

Thus, given anMn-index of X, one can find anMn-index of a tree TX such that
[TX ] = PX , and of a member H ∈ [TX ], and given an Mn-index if of f , one

can H-decide whether X ∩ f−1(0) or X ∩ f−1(1) belongs to UMn−1

Cn−1
and thus

compute an Mn-index of the corresponding set.
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Note that almost all the operations are manipulations of codes, hence do not
use the oracle P . The only place it is used is when deciding whether X ∩f−1(0)

or X∩f−1(1) belongs to UMn−1

Cn−1
. Indeed, it requires to “evaluate” theMn-index

of H into its actual set, thanks to the oracle Mn which is P -computable.

The following two lemmas analyze the uniformity of the forcing questions at
the lower levels and at the top level.

Lemma 7.6. In Lemma 4.12, a Qn-index of an extension d can be found P -
uniformly from a Qn-index of c and the Σ0

k+1 formula (∃x)ψe(G, x) for k < n.

Proof. Let c := (R⃗, σ,X) with Qn-index ⟨eR, σ, eX⟩.

• Suppose σ ?⊢m(∃x)ψe(G, x). As in the proof of Lemma 4.12, by a compactness

argument, there exists t ∈ ω such that for every 2-colorings h⃗ = h0, . . . , hm−1 ∈
2t, there is a finite τ ⊆ X ∩ {0, . . . , t} which is R⃗-transitive and h⃗-
homogeneous and some x ∈ ω such that

– if k = 0, ψe(σ ∪ τ, x),
– if k > 0, σ ∪ τ ?⊬ℓ ¬ψe(G, x) for some ℓ ≥ m.

Mn-indices of the colorings g⃗ defined in Lemma 4.12 are uniformly P -
computable in ⟨eR, σ, eX⟩. By Lemma 7.5, one can P -compute uniformly
in Mn-indices of g⃗ and eX an Mn-index of a g⃗-homogeneous set H ⊆ X

in Mn ∩ UMn−1

Cn−1
.

The colorings h⃗ are defined uniformly from the colors of g⃗-homogeneity of
H. Thus, the finite R⃗-transitive and h⃗-homogeneous set τ ⊆ X∩{0, . . . , t}
is found P -uniformly in ⟨eR, σ, eX⟩. One can therefore P -compute a Qn-

index of d := (R⃗, σ ∪ τ,H) uniformly from a Qn-index of c.

If k = 0, d is the desired extension. If k > 0, since σ ∪ τ ?⊬ℓ ¬ψe(G, x),
then by induction hypothesis, one can P -computably find a Qn-index of
an extension p ≤ d such that p ⊩ ψe(G, x), uniformly in a Qn-index of d,
hence in a Qn-index of c.

• Suppose σ ?⊬m(∃x)ψe(G, x). For every set Y , let PY be the class of all

m-tuple of 2-colorings h⃗ = h0, . . . , hm−1 ∈ 2Y and S⃗ ∈ Cm(σ, Y ), such

that for all τ ⊆ Y \ {0, . . . , |σ|} which is S⃗-transitive and h⃗-homogeneous,
and for all x ∈ ω,

– if k = 0, ¬ψe(σ ∪ τ, x),
– if k > 0, σ ∪ τ ?⊢ℓ ¬ψe(G, x) for all ℓ ≥ m.

Note that the class PY is Π0
1(Mk ⊕ Y ) uniformly in Y .

Since σ ?⊬m(∃x)ψe(G, x), there exists s ∈ ω and Y0, . . . Ys a partition of ω
such that for all i ≤ s, (†) either Yi ̸∈ UMk

Ck
or PYi ̸= ∅. Let L be the class of

all such s-partitions of ω. Since the statement “Yi ̸∈ UMk

Ck
” is Π0

1(Ck⊕M ′
k)
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and the statement “PYi ̸= ∅” is Π0
1(Mk⊕Yi) uniformly in Yi, the class L is

Π0
1(Ck⊕M ′

k) and in particular is Π0
1(Mn) since k < n. One can P -compute

uniformly in an index of L an Mn-index of some (Y0, . . . , Ys) ∈ L. By
Lemma 7.5, one can P -compute uniformly in an Mn-index of (Y0, . . . , Ys)
and anMn-index ofX some i ≤ s and anMn-index of some setH0 ⊆ X∩Yi
in Mn ∩ UMn−1

Cn−1
. In particular, Yi ∈ UMk

Ck
, thus PXi

̸= ∅ and one can P -

computably find an Mn-index of an m-tuple h⃗ and S⃗ ∈ Cm(σ, Y ) in PXi
.

By Lemma 7.5, one can P -compute the Mn-index of a h⃗-homogeneous

subset H ⊆ H0 in Mn ∩ UMn−1

Cn−1
uniformly in ⟨eR, σ, eX⟩. Thus, a Qn-

index of the condition d := (R⃗S⃗, σ,H) can be P -computed uniformly in a
Qn-index of c and the formula (∃x)ψe(G, x).

Lemma 7.7. In Lemma 6.11, a Qn-index of an extension d can be found P -
uniformly from a Qn-index of c and the Σ0

n+1 formula (∃x)ψe(G, x).

Proof. Let m = |R⃗|+ 1.

• First, suppose c ?⊢(∃x)ψe(G, x). The proof is essentially the same as the

first case of Lemma 7.6: One define colorings g⃗ and h⃗ similarly, and refine
the reservoir into a g⃗-homogeneous subset thanks to Lemma 7.5. One
therefore obtains a Qn-index of d := (R⃗, σ ∪ τ,H) uniformly from a Qn-
index of c, where σ ∪ τ ?⊬ℓ ¬ψe(G, x).

Then, by Lemma 7.6, one can P -computably find aQn-index of an extension p ≤
d such that p ⊩ ψe(G, x), uniformly in a Qn-index of d, hence in a Qn-
index of c.

• Now, suppose c ?⊬(∃x)ψe(G, x). Then, there exists an m-tuple of 2-

colorings h⃗ = h0, . . . , hm−1 ∈ 2X and an m-tuple of tournaments S⃗ ∈
Cm(σ,X) such that for every h⃗-homogeneous and S⃗-transitive finite chain
σ ⊆ X and every x ∈ ω, σ ∪ τ ?⊢m ¬ψe(G, x). Let L be the class of such

m-tuples of 2 colorings h⃗ and m-tuples of S⃗ ∈ Cm(σ,X). By Lemma 4.5,
Cm(σ,X) is Π0

1(X). Since X ∈ Mn, the class L is Π0
1(Mn), hence, since

P ≥T Mn, one can P -compute Mn-indices of a pair (⃗h, S⃗) ∈ Mn ∩ L. By
Lemma 7.5, one can P -compute a Qn-index of a h⃗-homogeneous set Y ⊆ X
in P uniformly in Mn-indices of X and h⃗. The 3-tuple d := (R⃗S⃗, σ, Y ) is
a valid EM-condition such that d ⊩ (∀x)¬ψe(G, x).

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let n ≥ 1. Let P be a set of PA degree over ∅(n). Let
(ψs(G))s>0 be an enumeration of all Σ0

k+1 formulas for all k ≤ n.
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Let us begin with a condition c0 := (T, ∅, ω). By induction, suppose cs−1

built, with is−1 a Qn-index of cs−1, Consider the Σ0
k+1 formula ψs(G) , for

k ≤ n. By Lemma 7.6 if k < n and by Lemma 7.7 if k = n, there exists an
extension d ≤ cs−1 such that d ⊩ ψs(G) or d ⊩ ¬ψs(G). Moreover, a Qn-
index id of d is P -computable uniformly from is−1 and s. Let cs := d, and
is := id. The (cs)s∈ω sequence is a decreasing sequence of conditions such that
F := {d ∈ Qn : (∃s)cs ≤ d} is n-generic. By Lemma 4.17 and Lemma 4.3, GF

is infinite and T -transitive, and by Lemma 4.16, G
(n)
F ≤T P .
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