Communication Dans Un Congrès Année : 2023

STREAMER 3.0: Towards Online Monitoring and Distributed Learning

Résumé

Applications that generate continuous data have proliferated in recent years, and thus the challenge of processing those data streams has emerged. This requires Data Stream Processing frameworks with monitoring capabilities able to detect and react to any nondesired situation. Many streaming use cases deal with distributed sources of data which, for privacy and communication saving purposes, need to be tackled in a distributed manner. Based on the mentioned challenges, this paper presents STREAMER 3.0, an improvement on the former data stream framework with two new modules: (i) a monitoring manager with detection algorithms, alert raising and automatic model updater; and (ii) a distributed learning module relying on federated learning. We showcase these new functionalities with an example of remaining useful life estimation of turbofan engines using an LSTM.
Fichier principal
Vignette du fichier
streamer.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04263995 , version 1 (29-10-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Baudouin Naline, Sandra Garcia-Rodriguez, Karine Zeitouni. STREAMER 3.0: Towards Online Monitoring and Distributed Learning. CIKM '23: The 32nd ACM International Conference on Information and Knowledge Management, Oct 2023, Birmingham, United Kingdom. pp.5076-5080, ⟨10.1145/3583780.3614755⟩. ⟨hal-04263995⟩
184 Consultations
137 Téléchargements

Altmetric

Partager

More