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ABSTRACT
Applications that generate continuous data have proliferated in re-
cent years, and thus the challenge of processing those data streams
has emerged. This requires Data Stream Processing frameworks
with monitoring capabilities able to detect and react to any non-
desired situation. Many streaming use cases deal with distributed
sources of data which, for privacy and communication saving pur-
poses, need to be tackled in a distributed manner. Based on the
mentioned challenges, this paper presents STREAMER 3.0, an im-
provement on the former data stream framework with two new
modules: (i) a monitoring manager with detection algorithms, alert
raising and automatic model updater; and (ii) a distributed learn-
ing module relying on federated learning. We showcase these new
functionalities with an example of remaining useful life estimation
of turbofan engines using an LSTM.

CCS CONCEPTS
• Computer systems organization → Real-time system ar-
chitecture; • Software and its engineering → Integrated and
visual development environments; • Computing methodolo-
gies → Online learning settings.
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1 INTRODUCTION
With the proliferation of data generated in a continuous manner,
data stream processing has become key in research in the recent
years. Therefore, there emerged a need for dedicated tools (Data
Stream Processing Systems - DSPS) able to learn from streams, mon-
itor them and automatically react according to their evolution.
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But real-world problems may present co-located or distributed
sources of data. In the first case, a classical non-distributed solu-
tion may be proposed. However, when data come from several
sources, non-distributed approaches imply gathering data in the
same node which generally involves high communication costs.
Moreover, it may be subjected to data confidentiality and security
issues. To tackle such privacy and communication-saving purposes,
distributed learning methods can be used. Among these methods
in the state of the art, Federated Learning (FL) [12] seems to be the
best candidate by its popularity and community.

Nowadays, existing DSPS are designed with non-distributed ar-
chitectures. Among them, we can cite Avalanche [11] , River [13],
STREAMER 1.0 [6], and others already analyzed in [6]. Regarding
FL tools, Flower [4], FATE [10], and TensorFlow Federated [16] are
the most popular ones. However, any of these frameworks guar-
antees the direct use of distributed learning in realistic streaming
environments (with continuously generated data). Therefore, com-
bining DSPS and FL is needed. This motivated STREAMER 3.0
release, the contribution of this paper, which enables performing
distributed learning for exploration and monitoring purposes.

As previously presented [6], STREAMER is a DSPS for integrat-
ing and testing machine learning algorithms in realistic stream-
ing operational contexts. In other words, it implements the whole
streaming environment so that data scientists can use it for their
own experimentation. The design and creation of this tool pursues
three main objectives:

(1) Control: an experimenter is required to facilitate the in-
tegration and testing of machine learning algorithms into
realistic streaming operational environments. Users must be
able to define the context and learning configurations.

(2) Easiness: it must be easy and quick to install and deploy on
any computer. Similarly, all processes must be effortless to
follow visually, without consulting the code.

(3) Reactivity: a powerful monitoring and detection system is
needed to react to an unexpected situation, by giving an alert
and updating the model. For this task, the framework must
be able to process and incrementally learn from continuous
data streams with different contexts.

Since its first publication, STREAMER has been used in several
scientific research projects, such as [1, 19], which allowed identify-
ing new challenges and adding new capabilities. Therefore, after
continuous improvements, STREAMER 3.0 is now available [17].
Its main achievements are:

• Distributed Learning: it enables performing distributed
learning. This way STREAMER can nowwork with federated
learning algorithms.
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• Monitoring module: it allows users to follow (visually
and through log files) the evolution of the system while
learning/performing the inference or when STREAMER uses
detection algorithms to launch the model update.

STREAMER keeps its previous advantages as it can be deployed
in any operating system (Windows, Linux, MacOS); accepts the
integration of algorithms programmed in a wide variety of pro-
gramming languages (Java, Python, R, etc.); provides a graphi-
cal interface (with Kibana technologies), and is free and accessi-
ble for everybody. STREAMER also counts with 2 user guides (a
quick start and a detailed one), an HTML documentation (javadoc),
and a set of machine learning algorithms, metrics, and use cases
that were developed within several projects. STREAMER is open
source (https://github.com/streamer-framework/streamer) under
the GNU3 license and has an official website: https://streamer-
framework.github.io.

2 ARCHITECTURE & FUNCTIONALITY
EVOLUTION

STREAMER is a DSPS framework for integrating, testing and mon-
itoring machine learning algorithms in realistic streaming oper-
ational contexts. Its modular design makes it flexible, robust and
easy to extend. Since STREAMER main architecture was already
described in [6], we focus here on its new modules.

2.1 Distributed learning Module
The distributed learning module enables STREAMER to operate in
distributed environments. Instead of performing a traditional train-
ing process, a STREAMER instance can take part in a distributed
learning phase, in which systems collaborate in a network with the
aim of reaching a global model.

As mentioned in the introduction, Federated Learning was se-
lected as a distributed learning method. In this context, a server
orchestrates a network in which clients can participate in a col-
laborative process using their own data source. First, each client,
represented by the STREAMER instances, trains its model locally
from the server model parameters. Then, clients send their own
updated model parameters to the server which computes a global
model by aggregating those client parameters. Finally, this process
is repeated until the new global model is satisfactory. Since existing
FL tools are not suitable for streaming data, we decided to imple-
ment our own module. Its development in JAVA was inspired by
the Python FL framework ”Flower” [4]. Moreover, communication
between server and clients is managed by the framework gRPC
which uses the protocol HTTP/2 for the transport.

The activation of this module implies that the server takes the
lead in the training phase. This way, a new event-based training
process will replace module M3 of STREAMER instances [6]. Note
that STREAMER can be used for training, inference, or both. If
training is disabled, the STREAMER instance is a passive participant.
It only retrieves the updated model and uses it for inference. When
training is enabled, the STREAMER instance becomes an active
participant. Whether learning is performed online (in data streams
context) or offline (with batch data), the client participates in the
distributed training process by following the instruction of the
server. The only difference between offline and online training is
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Figure 1: Distributed module architecture.

that, in the first case, the process will be directly invoked without
using the rest of STREAMER modules.

The module is composed of two new components: the server,
which purpose is to orchestrate the global training process, and the
client(s), which is a distributed layer built on top of the STREAMER
instance(s) that connects with the server. The architecture overview
and the interaction of these components are illustrated in Fig. 1.

Server component . The server component launches two pro-
cesses in parallel. The server process, which will orchestrate the
FL loop and activate the difference phases (initialization, training,
evaluation), and the gRPC server process which is a gRPC interface
that manages the client message processing and the server message
sending. Several objects are involved during the server process:

• the FL loop, which determines the action performed in each
round (model parameters initialization, fitting step, evalua-
tion step, server evaluation step).

• the ClientManager, which controls the management of the
client proxies. It creates, registers, and unregisters client
proxies, samples clients, and manages the message waiting.

• the aggregation strategy class, which defines the FL strat-
egy to follow. So far just the FedAvg [12] algorithm is imple-
mented, but other strategies can be easily implemented.

• the history of the FL experience results, which are then
saved in log files.

For further details, clients proxy are defined at the server level
as abstract clients with which the server can interact. It can send
them requests, receive results from them or disconnect them from
the network. Each client proxy represents one single client that
could be solicited by the server during the different phases.

Client component. On the other side, the client component is
built on top of the STREAMER instance. A new process is opened in
parallel to this instance in which a gRPC connection is made with
the server. The training and evaluation steps will be now controlled
by the server. This component contains a gRPC interface for the
server that manages the server message processing as well as the
client message sending.
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To configure the FL scenario, as to define the streaming con-
text, its parameters can also be set up in the properties files [6].
For instance, users can configure the server address to launch an
experiment on several machines, the number of rounds, the mini-
mum number of clients to start a training step, and the maximum
quantity of clients to sample during a training step.

2.2 Automatic model update & Monitoring
Capabilities

The online monitoring module performs the following tasks:
(1) Monitoring the evolution of the results provided by a model

when performing inference and online learning through the
use of certain metrics.

(2) Automatically detecting when performance drops below ex-
pectations and raise an alert.

(3) Updating the model
(4) Showing graphically and in logs the whole monitoring pro-

cess.
Users can define the monitoring context through the setup prop-

erties files monitoring.props and consult at any time the evaluation
metric values or monitoring messages in the log files which are
updated in real time.

Detection and Alert raising. STREAMER enables monitoring
[1...N] metrics with different priorities. It can detect when expected
results are dropping to, therefore, raise an alarm and call the model
update. For this, a detection algorithm was implemented based
on two deviation detection criteria:

(1) CUSUM [2] detector: it sequentially calculates the positive
and negative cumulative sum 𝑆 across data. When the value
of 𝑆 exceeds a certain positive and negative threshold value,
a change is detected.

(2) Threshold detector: it follows the evolution of the metric
values and notifies a deviation when one of them exceeds a
specific 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

The detection algorithm is called each time a new bunch of data
is evaluated. It observes each metric separately and raises an alert
when a deviation is notified by the detection criteria for more than
a certain number of iterations in a row (𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠). In the same
way, the alert is removed when the detection criteria did not detect
any deviation during consecutive 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 iterations. Thus, using
the parameter 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 gives stability to the detection algorithm
since it avoids constant changes.

When an alert is raised, the detection method launches a de-
tection event with format [𝑖𝑑,𝑚𝑒𝑡𝑟𝑖𝑐, 𝑆𝑡𝑎𝑟𝑡, 𝑆𝑡𝑜𝑝,𝑇𝑜𝑢𝑐ℎ]; where 𝑖𝑑
is the identifier of the use case, 𝑚𝑒𝑡𝑟𝑖𝑐 is the monitored metric,
𝑆𝑡𝑎𝑟𝑡 is the first iteration the alert was raised, 𝑆𝑡𝑜𝑝 is the iteration
in which the alert was stopped, and 𝑇𝑜𝑢𝑐ℎ is the last iteration a
deviation was identified.

Based on the previous specifications, we can observe the follow-
ing constraints:

• Initial values: 𝑆𝑡𝑎𝑟𝑡 = 𝑆𝑡𝑜𝑝 = 𝑇𝑜𝑢𝑐ℎ

• if 𝑆𝑡𝑎𝑟𝑡 = 𝑆𝑡𝑜𝑝 ≠ 𝑇𝑜𝑢𝑐ℎ then alert is launched and ongoing
• if (𝑇𝑜𝑢𝑐ℎ + 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠) = 𝑆𝑡𝑜𝑝 then alert is deactivated

For each iteration (a new bunch of data processed), if the alert is
still activated, STREAMER calls the routine in charge of updating

the model with the new data. Once the new model is generated,
STREAMER removes the alert but does not stop the detection event.
This way, if a deviation is still detected during the next iteration,
the alert will be raised again.

Interface and Logs. In order to facilitate the understanding of
the monitoring system, STREAMER provides a dynamic graphical
interface (figure 2) which shows in real time the metrics evaluations,
the alerts, the historical charts, etc.

Users can also follow the evolution of the process (errors, warn-
ings, evaluation metrics across time, monitoring detections, alerts,
retraining phases, etc.) at any time by just checking the log files
STREAMER generates. Placed in the log folder, the users can find:

• Logs reporting the execution of the algorithms as display-
LogTrain, displayLogTest, errorLog, infoLog (also shows alerts
and detections), temp_[id] (temporary log while algorithm
is running), etc.

• metricsLog where all the evaluation metrics are stored in
time.

• The rest of the logs are already described in [6].

3 DEMONSTRATION: REMAINING USEFUL
LIFE ESTIMATION OF TURBOFAN ENGINE

Estimating a system Remaining Useful Life (RUL) is one of the most
important challenges in the predictive maintenance research do-
main. Most of the current machine learning methods are based on
non-distributed learning processes. When the condition monitoring
data of different users are gathered in the same place, data security
and privacy issues can appear. To address these challenges, some
work combining FL and prognostics has already begun in an attempt
to make a distributed approach realistic. They usually apply their
new contributions to prognostic benchmarking problems, as for ex-
ample the NASA’s turbofan engine degradation one [15] with the C-
MAPSS dataset. In the continuity of existingwork combining FL and
this dataset [3, 5, 8, 14], this demonstration showcases the new func-
tionalities of our systemwhich not only applies the FL paradigm, but
also takes into account the streaming nature of the data. The video,
available here: https://www.youtube.com/watch?v=2A4I0aCMQyE,
shows the steps involved in setting up a distributed learning process
and the application of the new online monitoring functionalities in
STREAMER 3.0.

The C-MAPSS dataset is composed of four subsets, see Table
1 in [9], containing multivariate temporal data of 21 sensors per
turbofan engine. These sensors measure information about the
physical state of the engine, such as temperature, pressure, and
speed values. They all permit to monitor the health state of the
engines and can be used to estimate their RUL. However, differences
between subsets come from the variety of operating conditions and
fault modes. For this demonstration, we focus on the subset ’FD001’
which describes the sensor time series evolution of 100 engines for
the training set and 100 other engines for the testing set.

For evaluating the performance of the RUL estimation task, two
metrics are usually used. Root Mean Square Error (RMSE) is selected
as it is a classic metric for regression tasks. Scoring Function [7] is
another metric specifically created to apply a harder penalization
to larger RUL deviations.
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Figure 2: Example of the Monitoring interface

3.1 Scenario Components
This demo performs a distributed learning process by using the new
STREAMER module presented in sec. 2.1. Here, a machine learning
model is trained offline and then, in parallel, the model is used by
an online client to perform RUL estimation inferences.

Because of their strong ability to predict a value from sequential
data, we rely on a Long-Short TermMemory (LSTM) [18] for solving
this problem. LSTM is a recurrent neural network that does not
have long-term time dependency issues by using input gates, forget
gates, and output gates that control its information flow. The chosen
LSTM is built using one hidden layer with 8 neurons and combined
with a linear output layer that estimates the remaining useful life.

The whole process, in common with the RUL estimation, is mon-
itored through the new monitoring module using the Threshold
detector described in sec. 2.2. There are 5 STREAMER instances that
make this demonstration of RUL estimation possible: 1 server, 3
offline clients in charge of the distributed model training, and 1 on-
line client that performs the inference and monitors the incoming
data stream. We describe below the tasks performed by each kind:

Server. Initially, a server is configured, launched, and set ready
to run a specified number of rounds (see component ’FL loop’ in 2.1)
while waiting for the right number of clients to connect. The FedAvg
strategy is selected to aggregate the client model parameters.

Clients - Training process. Then, the training set is split into
three subsets of equivalent size which are assigned to three clients.
The separation has been achieved by assigning the data from differ-
ent engines to the clients (33 engines for the first subset, 33 for the
second, and 34 for the last one). Each engine has its own sensor data
(21 sensors in total). 7 sensors are removed from all the input data
because they contain constant values or information that are not
representative of the engine degradation. Then, the time series of
the 14 remaining sensors are normalized and sliced into sequences
of size 31. It constitutes therefore a batch of thousand sequences per

client (again grouped by their allocated engines), which correspond
to the correct input data format for this simple neural network. The
three clients are connected to the server and follow its training
process directions. This way, in every FL round, each client trains
its model in an offline way with their own associated subset.

Client - Online inference. At the same time, another STREAMER
instance is launched and connected to the server in order to predict
the RUL based on the incoming data (online inference). It uses a
model which is being updated by the server. The data of this fourth
client belongs to the testing dataset and is not related to the data
used for training. They arrive continuously in blocks of 31 values,
grouped by engines, and are subject to the same transformation
as the training process, i.e. sensors selection, normalization, and
sequences generation. Inference results will be analyzed through
the monitoring dashboard and the generated logs. The interface
shows a timeline of the engines being evaluated, the evaluations of
the model (metrics), and the alerts raised by the system.

4 CONCLUSION
This paper presents STREAMER 3.0, a data stream processing
framework with new monitoring and distributed learning capa-
bilities. Since preserving the security and the confidentiality of
condition monitoring data is key in predictive maintenance, we
applied STREAMER 3.0 to create a distributed realistic approach to
estimate the RUL of turbofan jet engines. The demo video illustrates
a distributed batch training of an LSTM model which is used, in
parallel, to estimate the RUL in new incoming streams.
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