On the convergence of Godunov scheme with a centered discretization of the pressure gradient - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

On the convergence of Godunov scheme with a centered discretization of the pressure gradient

Résumé

This paper deals with the numerical resolution of a linear wave system using the Godunov scheme with a centered discretization of the pressure gradient. The interest in such schemes is motivated by the low Mach number accuracy problem. We have shown that for both steady and unsteady flows, an oscillatory mode appears in the numerical solution. This can be explained by the loss of the Total Variation Diminishing property on the characteristic variables. Moreover, we have illustrated numerically that the long time numerical solution does not converge to the expected steady state. In addition, the existence of the oscillatory mode in the numerical solution jeopardizes the mesh convergence rate of the scheme.
Fichier principal
Vignette du fichier
FVCA10_Jung_Lannabi_Perrier.pdf (1.99 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04260535 , version 1 (26-10-2023)

Licence

Identifiants

  • HAL Id : hal-04260535 , version 1

Citer

Jonathan Jung, Ibtissem Lannabi, Vincent Perrier. On the convergence of Godunov scheme with a centered discretization of the pressure gradient. FVCA X 2023 - Finite Volumes for Complex Applications X, Oct 2023, Strasbourg, France. ⟨hal-04260535⟩
109 Consultations
92 Téléchargements

Partager

More